Fixes#90652
Previously, we had assumed that the only way to call `handle_torch_function_no_python_arg_parser` was through the Python key. This is no longer true with FakeTensor. Specifically `_like` functions will call `.device()` on FakeTensors when the args list is being parsed. In order to respect that the mode stack shouldn't run when the python key is off, this just adds that a check that the python key is on/the torch_function equivalent to that function
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91573
Approved by: https://github.com/ezyang
These PR fixes a number of bugs found by Svace static analyzer:
1. DEREF_AFTER_FREE at qnnpack_utils.h:
Pointer '&convolution->zero_buffer' is dereferenced at qnnpack_utils.h:258 after the referenced memory was deallocated at operator-delete.c:25 by passing as 1st parameter to function 'pytorch_qnnp_delete_operator' at qnnpack_utils.h:251.
2. DEREF_AFTER_NULL at impl.cpp:
After having been compared to NULL value at impl.cpp:1892, pointer 'schema' is passed as 2nd parameter in call to function 'c10::operator<<' at impl.cpp:1921, where it is dereferenced at function_schema_inl.h:13.
3. DEREF_OF_NULL at stmt.h:
After having been compared to NULL value at stmt.h:744, pointer 'body->_M_ptr' is passed in call to function 'torch::jit::tensorexpr::malformed_input::malformed_input' at stmt.h:745, where it is dereferenced at exceptions.h:67.
4. DEREF_OF_NULL at loopnest.h:
Pointer 'f->ptr' that can have only NULL value (checked at loopnest.cpp:1482), is passed in call to function 'torch::jit::tensorexpr::malformed_input::malformed_input' at loopnest.cpp:1483, where it is dereferenced at exceptions.h:67.
This is the same error as 3: forwarding a nullptr to malformed_input().
4. TAINTED_INT.LOOP in python_arg_parser:
Integer value 'this->size' obtained from untrusted source at python_arg_parser.cpp:118 without checking its bounds is used as a loop bound at python_arg_parser.cpp:698 by calling function 'torch::FunctionParameter::set_default_str' at python_arg_parser.cpp:133.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85705
Approved by: https://github.com/kit1980
This refactor was prompted by challenges handling mixed int/float
operations in C++. A previous version of this patch
added overloads for each permutation of int/float and was unwieldy
https://github.com/pytorch/pytorch/pull/87722/ This PR takes a different
approach.
The general outline of the patch is to combine the C++ types SymIntNode
and SymFloatNode into a single type, SymNode. This is type erased; we
no longer know statically at C++ if we have an int/float and have to test
it with the is_int()/is_float() virtual methods. This has a number of
knock on effects.
- We no longer have C++ classes to bind to Python. Instead, we take an
entirely new approach to our Python API, where we have a SymInt/SymFloat
class defined entirely in Python, which hold a SymNode (which corresponds
to the C++ SymNode). However, SymNode is not pybind11-bound; instead,
it lives as-is in Python, and is wrapped into C++ SymNode using PythonSymNode
when it goes into C++. This implies a userland rename.
In principle, it is also possible for the canonical implementation of SymNode
to be written in C++, and then bound to Python with pybind11 (we have
this code, although it is commented out.) However, I did not implement
this as we currently have no C++ implementations of SymNode.
Because we do return SymInt/SymFloat from C++ bindings, the C++ binding
code needs to know how to find these classes. Currently, this is done
just by manually importing torch and getting the attributes.
- Because SymInt/SymFloat are easy Python wrappers, __sym_dispatch__ now
takes SymInt/SymFloat, rather than SymNode, bringing it in line with how
__torch_dispatch__ works.
Some miscellaneous improvements:
- SymInt now has a constructor that takes SymNode. Note that this
constructor is ambiguous if you pass in a subclass of SymNode,
so an explicit downcast is necessary. This means toSymFloat/toSymInt
are no more. This is a mild optimization as it means rvalue reference
works automatically.
- We uniformly use the caster for c10::SymInt/SymFloat, rather than
going the long way via the SymIntNode/SymFloatNode.
- Removed some unnecessary toSymInt/toSymFloat calls in normalize_*
functions, pretty sure this doesn't do anything.
- guard_int is now a free function, since to guard on an int you cannot
assume the method exists. A function can handle both int and SymInt
inputs.
- We clean up the magic method definition code for SymInt/SymFloat/SymNode.
ONLY the user classes (SymInt/SymFloat) get magic methods; SymNode gets
plain methods; this is to help avoid confusion between the two types.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
cc @jansel @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87817
Approved by: https://github.com/albanD, https://github.com/anjali411
No more "expected tuple but got tuple". We appropriately
grovel in the list/tuple for the element that mismatched
and report what exactly twinged the failure.
invalid_arguments.cpp is a shitshow so I did something
slapdash to get it not completely horrible. See
https://github.com/pytorch/pytorch/issues/87514 for more context.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87601
Approved by: https://github.com/Chillee
This reverts commit bbd7b38d55.
Reland https://github.com/pytorch/pytorch/pull/86915 with a fix for python arg parser handing for SymInt and SymIntList.
This was uncovered because we are calling directly into python bindings code through test_autocast.py (`torch._C._nn.nll_loss`) without providing a value for the optional symint arg (`ignore_index`). The arg parser constructs the SymInt and SymIntList using the recorded "default_int" or "default_int_list" (schema string parsing) in case a value is not received for an optional argument. Since we weren't handling the symint case properly, the default_int just had a garbage value which was later being used to construct SymInt.
Follow up issue for other unhandled parameter types: https://github.com/pytorch/pytorch/issues/87283
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87095
Approved by: https://github.com/ezyang, https://github.com/albanD
Based on @ezyang's suggestion, mode stack now has "one true mode" which is the _only_ mode that can ever be active at the C++ level. That mode's torch dispatch is just to take the top mode in the stack, reenable itself (if we aren't at the end of the mode stack), and run the top mode's torch_{dispatch|function}
This maintains that in the middle of a mode's torch dispatch, the mode itself will not be active. It changes the function the user has to call to see what the current mode is (no longer queries the C++, it's python only) but allows the user to also see the entire mode stack easily
Removes `enable_torch_dispatch_mode` and `.restore()` since neither makes sense in this new setup
### Background
Why do we want this? Well, a pretty common pattern that was coming up was that users had to do something like
```python
## PRE-PR UX
def f(mode):
with mode.restore(): # user needs to understand this restore thing?
...
with Mode() as m:
pass
f(m)
```
Many users were getting error from forgetting to call `.restore` or from forgetting to add the (tbh weird) "mode instantiation" step where they use the mode as a context manager with an empty body. Really, they wanted to treat modes like context managers and just write
```python
## FROM FEEDBACK, USER DESIRED CODE. POSSIBLE POST-PR
def f(mode):
with mode:
...
f(Mode())
```
** Technical Details **
With the old mode stack, we basically had a linked list so the mode itself could only be used once and had a fixed parent. In this new design, the mode stack is just a python list that we're pushing to and popping from. There's only one mode that's ever active at the C++ level and it runs the next mode in the Python list. The modes don't have state on them anymore
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84774
Approved by: https://github.com/ezyang, https://github.com/zou3519
This is by no means comprehensive, but adds initial support for SymInt as a Scalar.
Things that don't work yet but need to:
- for some reason `torch.add(tensor, sym_int)` got matched to the `add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor` schema
- `x + sym_int` failed bc we tried to turn `x` into a sym int:
```
"__radd__",
[](c10::SymIntNode a, py::object b) -> c10::SymIntNode {
auto snb = toSymIntNode(a, b);
return a->add(snb);
})
```
- Many more things I'm sure
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84958
Approved by: https://github.com/ezyang
Signed-off-by: Edward Z. Yang <ezyangfb.com>
From @ezyang's original PR:
There are a number of situations where we have non-backend kernels (e.g., CompositeImplicitAutograd, batching rules) which we would like to port to Python, but we have no way to integrate these ports with the overall system while using preexisting C++ registrations otherwise. This PR changes that by introducing a Python dispatcher (which can have its own kernels directly in Python), which can be interpose over ordinary C++ dispatch. The ingredients:
We introduce a new PythonDispatcher dispatch key, that has the same tenor as FuncTorchDynamicLayerFrontMode: it works by getting triggered before every other dispatch key in the dispatch key, and shunting to a Python implementation
The Python dispatcher is a per-interpreter global object that is enabled/disabled via the guard EnablePythonDispatcher/DisablePythonDispatcher. We don't make it compositional as I have no idea what a compositional version of this feature would look like. Because it is global, we don't need to memory manage it and so I use a simpler SafePyHandle (newly added) to control access to this pointer from non-Python C++. Like __torch_dispatch__, we use PyInterpreter to get to the Python interpreter to handle the dispatch.
I need to reimplement dispatch table computation logic in Python. To do this, I expose a lot more helper functions for doing computations on alias dispatch keys and similar. I also improve the pybind11 handling for DispatchKey so that you can either accept the pybind11 bound enum or a string; this simplifies our binding code. See https://github.com/pybind/pybind11/issues/483#issuecomment-1237418106 for how this works; the technique is generally useful.
I need to be able to call backend fallbacks. I do this by permitting you to call at a dispatch key which doesn't have a kernel for the operator; if the kernel doesn't exist, we check the backend fallback table instead.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84826
Approved by: https://github.com/ezyang
This PR adds support for `SymInt`s in python. Namely,
* `THPVariable_size` now returns `sym_sizes()`
* python arg parser is modified to parse PyObjects into ints and `SymbolicIntNode`s
* pybind11 bindings for `SymbolicIntNode` are added, so size expressions can be traced
* a large number of tests added to demonstrate how to implement python symints.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78135
Approved by: https://github.com/ezyang
I figured these out by unconditionally turning on a no-op torch function
mode on the test suite and then fixing errors as they showed up. Here's
what I found:
- _parse_to failed internal assert when __torch_function__'ed because it
claims its name is "to" to the argument parser; added a name override
so we know how to find the correct name
- Infix operator magic methods on Tensor did not uniformly handle
__torch_function__ and TypeError to NotImplemented. Now, we always
do the __torch_function__ handling in
_wrap_type_error_to_not_implemented and your implementation of
__torch_function__ gets its TypeErrors converted to NotImplemented
(for better or for worse; see
https://github.com/pytorch/pytorch/issues/75462 )
- A few cases where code was incorrectly testing if a Tensor was
Tensor-like in the wrong way, now use is_tensor_like (in grad
and in distributions). Also update docs for has_torch_function to
push people to use is_tensor_like.
- is_grads_batched was dropped from grad in handle_torch_function, now
fixed
- Report that you have a torch function even if torch function is
disabled if a mode is enabled. This makes it possible for a mode
to return NotImplemented, pass to a subclass which does some
processing and then pass back to the mode even after the subclass
disables __torch_function__ (so the tensors are treated "as if"
they are regular Tensors). This brings the C++ handling behavior
in line with the Python behavior.
- Make the Python implementation of overloaded types computation match
the C++ version: when torch function is disabled, there are no
overloaded types (because they all report they are not overloaded).
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75484
Approved by: https://github.com/zou3519
Summary:
This PR introduces `SymInt` type to Pytorch which will be used by LTC and AOTAutograd for tracing size arithmetic and tests.
`SymInt` is a C++ union structure [int64_t, SymbolicIntNode*] that wraps around an int64_t field where the value of the field could be an index into a list of `shared_ptr<SymbolicIntNode>` or a real int.
This PR doesn't add any support for actually tracing symbolic ints. i.e. data_ for now can only contain real ints.
```
Goal 1: just to show we can add a type to PyTorch core. (wraps int) LANDEABLE
Finalize the naming - symint
Want the name to be short
Does invoke “size” - NO
SInt/SymInt/SymbolicInt
SInt could mean signed int
sym_int or symint or SymInt (originally it was “int”; capitalized implies object semantics, whereas lowercase implies value semantics)
JIT schema - symint
C++ - symint
```
See more details here: https://docs.google.com/document/d/1iiLNwR5ohAsw_ymfnOpDsyF6L9RTUaHMpD8 (d843f63f2a)YLw-jxEw
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74861
Reviewed By: qihqi, ngimel
Differential Revision: D35226230
Pulled By: Krovatkin
fbshipit-source-id: 34acf342bd50fcaa4d8d5dd49c2fd6a98823a5b3
(cherry picked from commit 218643f63ef181cabb92d13a6e837eb64f2dda3c)
This creates a `histogramdd` operator with overloads matching the `Union`
behaviour used in the functional variant. Moving into C++ is preferred because
it can handle torch function automatically instead of needing to differentiate
between the overloads manually.
This also adds a new return type: `std::tuple<Tensor, std::vector<Tensor>>`. For
which I've updated `wrap` to be completely generic for tuples and removed the
old manual definitions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74200
Approved by: https://github.com/ezyang
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68693
Generation of python bindings for native functions is split over 8
different files. One for each namespace, with the torch namespace
split into 3 shards, and methods in their own file as well. This
change ensures that editing any single (non-method) operator only
causes one of these files to be rebuilt.
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D32596270
Pulled By: albanD
fbshipit-source-id: 0570ec69e7476b8f1bc21138ba18fe8f95ebbe3f
(cherry picked from commit ba0fc71a3a)
Summary:
Use `Py_ssize_t` when calling Python API
Use `c10::irange` to automatically infer loop type
Use `size_t` or `unsigned` for unsigned type
Partially addresses https://github.com/pytorch/pytorch/issues/69948
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71250
Reviewed By: atalman
Differential Revision: D33569724
Pulled By: malfet
fbshipit-source-id: c9eb75be9859d586c00db2f824c68840488a2822
Summary:
https://github.com/pytorch/pytorch/issues/65868 pointed out that the "long-form" versions of some binary ops like `mul`, `sub`, and `div` don't match their alias's behavior when it comes to handling scalar inputs. This PR adds the missing registration in `python_arg_parser.cpp` to resolve this.
CC ptrblck ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65937
Reviewed By: malfet
Differential Revision: D32156580
Pulled By: ngimel
fbshipit-source-id: b143cf7119a8bb51609e1b8734204edb750f0210
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64360
This PR adds a (private) enable_python_mode context manager.
(see torch/utils/_python_dispatch.py).
enable_python_mode accepts the type of a __torch_dispatch__ object
as its argument. Whenever an operator gets called inside of the
context manager, it dispatches to the __torch_dispatch__ of
the passed-in type.
Example usage:
```
with enable_python_mode(LoggingTensor):
z = torch.empty([])
assert isinstance(z, LoggingTensor)
```
There are quite a few changes that were made to support this.
First, we added TorchDispatchTypeObject, a C++ struct that represents the
type of a `__torch_dispatch__` object (e.g. LoggingTensor).
It holds both the PyObject* representing the class and a PyInterpreter*
so we know which Python interpreter it came from.
Next, we updated the concrete_dispatch_fn in python_variable.cpp to accept
a `const std::shared_ptr<TorchDispatchTypeObject>&` argument. When this
is null, dispatching happens as usual. When it is non-null, we prepend
the TorchDispatchTypeObject's PyObject* to the overloaded args list so that
it is considered first for dispatch.
To get that to work, we changed how `handle_torch_dispatch_no_python_arg_parser`
works. The "overloaded args list" previously only consisted of Tensor PyObjects,
but now it can have types in addition to Tensors!
- We renamed `append_overloaded_arg` to `append_overloaded_arg`
- We added a new `append_overloaded_type` that appends a type to
overloaded_args
- We added special handling in `handle_torch_dispatch_no_python_arg_parser`
and `append_overloaded_arg` to handle types in addition to Tensors.
Then, there is PythonMode and PythonModeTLS.
- We reuse the DispatchKey::Python dispatch key as a mode key
- We use PythonMode::enter and PythonMode::exit to enable/disable
DispatchKey::Python and set the PythonModeTLS.
- PythonModeTLS stores a TorchDispatchTypeObject as metadata.
- PythonMode is in libtorch_python, and PythonModeTLS is in ATen.
This split is due to the libtorch_python library boundary (because we need
to save TLS in ATen/ThreadLocalState)
- We modify the PythonFallbackKernel to look up
the relevant TorchDispatchTypeObject (if Python Mode is active) and
dispatch using it.
There are two more miscellaneous changes:
- internal_new_from_data (torch/csrc/utils/tensor_new.cpp) gets an
exclude guard. enable_python_mode currently does not handle
torch.tensor and the exclude guard is to prevent a bug.
Future:
- This PR does not allow for the nesting of Python modes. In the future we
should be able to enable this with a more sane no_dispatch API and by changing
the TLS to a stack. For now I did not need this for CompositeImplicitAutograd testing.
Test Plan: - new tests
Reviewed By: ezyang
Differential Revision: D30698082
Pulled By: zou3519
fbshipit-source-id: 7094a90eee6aa51f8b71bc4d91cfb6f49e9691f8
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63496
This PR adds a (private) enable_python_mode context manager.
(see torch/utils/_python_dispatch.py).
enable_python_mode accepts the type of a __torch_dispatch__ object
as its argument. Whenever an operator gets called inside of the
context manager, it dispatches to the __torch_dispatch__ of
the passed-in type.
Example usage:
```
with enable_python_mode(LoggingTensor):
z = torch.empty([])
assert isinstance(z, LoggingTensor)
```
There are quite a few changes that were made to support this.
First, we added TorchDispatchTypeObject, a C++ struct that represents the
type of a `__torch_dispatch__` object (e.g. LoggingTensor).
It holds both the PyObject* representing the class and a PyInterpreter*
so we know which Python interpreter it came from.
Next, we updated the concrete_dispatch_fn in python_variable.cpp to accept
a `const std::shared_ptr<TorchDispatchTypeObject>&` argument. When this
is null, dispatching happens as usual. When it is non-null, we prepend
the TorchDispatchTypeObject's PyObject* to the overloaded args list so that
it is considered first for dispatch.
To get that to work, we changed how `handle_torch_dispatch_no_python_arg_parser`
works. The "overloaded args list" previously only consisted of Tensor PyObjects,
but now it can have types in addition to Tensors!
- We renamed `append_overloaded_arg` to `append_overloaded_arg`
- We added a new `append_overloaded_type` that appends a type to
overloaded_args
- We added special handling in `handle_torch_dispatch_no_python_arg_parser`
and `append_overloaded_arg` to handle types in addition to Tensors.
Then, there is PythonMode and PythonModeTLS.
- We reuse the DispatchKey::Python dispatch key as a mode key
- We use PythonMode::enter and PythonMode::exit to enable/disable
DispatchKey::Python and set the PythonModeTLS.
- PythonModeTLS stores a TorchDispatchTypeObject as metadata.
- PythonMode is in libtorch_python, and PythonModeTLS is in ATen.
This split is due to the libtorch_python library boundary (because we need
to save TLS in ATen/ThreadLocalState)
- We modify the PythonFallbackKernel to look up
the relevant TorchDispatchTypeObject (if Python Mode is active) and
dispatch using it.
There are two more miscellaneous changes:
- internal_new_from_data (torch/csrc/utils/tensor_new.cpp) gets an
exclude guard. enable_python_mode currently does not handle
torch.tensor and the exclude guard is to prevent a bug.
Future:
- This PR does not allow for the nesting of Python modes. In the future we
should be able to enable this with a more sane no_dispatch API and by changing
the TLS to a stack. For now I did not need this for CompositeImplicitAutograd testing.
Test Plan: - new tests
Reviewed By: malfet, albanD
Differential Revision: D30543236
Pulled By: zou3519
fbshipit-source-id: ef5444d96a5a957d1657b7e37dce80f9a497d452
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`
All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008
Reviewed By: driazati, r-barnes
Differential Revision: D29838584
Pulled By: malfet
fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13