Commit Graph

1309 Commits

Author SHA1 Message Date
Pritam Damania
f050b16dd9 Move pytorch distributed tests to separate folder for contbuild. (#30445)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30445

Create distributed and rpc directories under caffe/test for better management
of unit tests.

Differential Revision: D18702786

fbshipit-source-id: e9daeed0cfb846ef68806f6decfcb57c0e0e3606
2020-01-22 21:16:59 -08:00
Yanli Zhao
193ac31441 [jit] Enable IValue to hold a PyObject (#32491)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32491

This PR enables IValue to be able to hold a pure PyObject by adding a
new enum tag, a new jit_type to denote PyObject existance in IValue and
the JIT type system. We don't and not plan to expose this to user.

This is the basic piece that enable ivalue to be adopted broader like
making RRef always hold IValue, it might also simplify some compiler
logic
ghstack-source-id: 97039980

Test Plan: Imported from OSS

Differential Revision: D19502234

fbshipit-source-id: 90be001706d707d376cfbea25980fd82980df84a
2020-01-22 15:48:32 -08:00
Elias Ellison
38d122eca9 implement tuple constants (#31841)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31841

Add Tuple Constants to JIT. The constraint here is that all elements of a tuple must themself be insertable as a a constant. Previously tuples were special cased in constant propagation, but now that there are more passes that are inserted constants, such as freezing, we should just have tuples be representable as constants.

Test Plan: Imported from OSS

Differential Revision: D19439514

Pulled By: eellison

fbshipit-source-id: 3810ba08ee349fa5598f4b53ea64525996637b1a
2020-01-22 12:13:31 -08:00
Elias Ellison
adf0916606 Add str[] float[] constants resubmit
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31791

Test Plan: Imported from OSS

Reviewed By: driazati

Differential Revision: D19439513

Pulled By: eellison

fbshipit-source-id: a04c7401687b051f0d4fb4794963931ebe004194
2020-01-22 12:11:58 -08:00
peter
b77c25dec0 Fix dll load logic for Python 3.8 on Windows (#32215)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/31181 and https://github.com/pytorch/pytorch/pull/31162#discussion_r362495611.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32215

Differential Revision: D19501869

Pulled By: ezyang

fbshipit-source-id: 363824e52d2592ad968ecf1df345aa4c0daff915
2020-01-22 08:33:34 -08:00
Jerry Zhang
44b270d892 insert_quant_dequant pass support shared class types (#31408)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31408

We'll error out when a graph is quantized with different QSchemes.
This only occurs when we have two modules that have same types (e.g. two Conv2d modules initialized with
same arguments) and quantized with two configs that would produce different quantized graphs, for example
per tensor affine and per channel affine. This is a rare case, so it should be OK to skip for now.
Actual support will come later.

Test Plan:
test_jit.py, test_quantization.py

Imported from OSS

Differential Revision: D19162366

fbshipit-source-id: 798f06d0ddef0c8458237ce88b62159cc77eec8b
2020-01-21 22:18:49 -08:00
James Reed
1ecad2bb2b Test passing custom class instance to bound method
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/32320

Test Plan: Imported from OSS

Differential Revision: D19437335

Pulled By: jamesr66a

fbshipit-source-id: 8f5166dbe6fc5704b12b6224932460b12be0d39b
2020-01-17 23:09:38 -08:00
James Reed
c7078a1ce8 Fix returning instance of custom class from method
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/32312

Test Plan: Imported from OSS

Differential Revision: D19433511

Pulled By: jamesr66a

fbshipit-source-id: f048d5f60eaba992ee42fea2d318a59b3a156578
2020-01-17 23:09:34 -08:00
Elias Ellison
e7bc1663bd fix unchecked cast alias analysis (#32309)
Summary:
Unchecked cast just refines the type of a value, the value stays the same, so the output should alias the input.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32309

Differential Revision: D19439037

Pulled By: eellison

fbshipit-source-id: fe6902d0d9a5a9ef5e9c13e1dbd056576d8c327e
2020-01-17 12:29:28 -08:00
Nikolay Korovaiko
53708e21ed classic fixed-point liveness
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31724

Differential Revision: D19426570

Pulled By: Krovatkin

fbshipit-source-id: 3387dfb25e6e9456d5d0517eac1d2e44e61d6813
2020-01-16 15:13:22 -08:00
Michael Suo
90c65b81c3 Define repr() on IValues (#32232)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32232

Previously, we were using `operator<<` as the default way of printing
IValue constants during serialization. The semantics of `operator<<`
were ill-defined; and this bit us in particular with strings and lack of
quoting.

This PR defines the role of `operator<<`: much like Python `str()`, it
is intended to produce a human-readable-ish representation for
debugging purposes.

This PR also defines a new `repr()` function on IValue that is intended
to produce a valid Python expression that can be used to recreate an
object with the same value. `repr()` is not defined on all IValue kinds
(notably tensors!) for this reason.

Test Plan: Imported from OSS

Differential Revision: D19417036

Pulled By: suo

fbshipit-source-id: c102d509eaf95a28b6a62280bc99ca6f09603de5
2020-01-15 17:35:41 -08:00
Richard Zou
19bbb4fccb Stop building documentation in pytorch_linux_xenial_cuda*_build (#32187)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32187

Fixes #32058. Previously we would build documentation during the pytorch
linux cuda build. We don't actually need to do this because we have a
dedicated python_doc_build job that builds the docs. With this change,
the CUDA build should run ~10 minutes faster, giving devs faster signal.

Test Plan: - Check the CUDA (10.1) build on this PR, make sure it doesn't build the docs.

Differential Revision: D19400417

Pulled By: zou3519

fbshipit-source-id: e8fb2b818146f33330e06760377a9afbc18a71ed
2020-01-15 07:48:42 -08:00
Nikolay Korovaiko
02c3493a84 Fix an invalid peephole transformation if input/output values are written to (#28455)
Summary:
fixes https://github.com/pytorch/pytorch/issues/28360
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28455

Differential Revision: D19374601

Pulled By: Krovatkin

fbshipit-source-id: 622f24b40aba03e79e55a6b8d25d88417f7d8bad
2020-01-14 16:28:07 -08:00
davidriazati
61e509b992 Skip un-runnable tests (#31965)
Summary:
`test_init_ops` calls `orthogonal_` which fails without lapack (this test was just missing a skip condition)

The cpp tests would fail with a `undefined symbol` error if run with `BUILD_TESTS=0`, so this PR skips them if that flag is `0`
](https://our.intern.facebook.com/intern/diff/19320064/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31965

Pulled By: driazati

Differential Revision: D19320064

fbshipit-source-id: d1dcd36714107688ded25a414e8969abe026bd03
2020-01-14 11:36:52 -08:00
Jerry Zhang
1f34801460 More robust mangling (#31978)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31978

Currently we keep a `mangleIndex_` that's intenral to compilation unit and
just increment the index when we found the original name is mangled, this doesn't
guarantee the new name is not defined.
This PR fixes the problem by querying whether the new name is defined or not.
fixes: https://github.com/pytorch/pytorch/issues/31268

Test Plan:
fixes the issue

Imported from OSS

Differential Revision: D19350535

fbshipit-source-id: fe3262b2838d4208ab72e2cd4a5970b3a792ae86
2020-01-13 11:11:50 -08:00
Elias Ellison
8ecd3f783d check for object equality in constant pooling (#31800)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31800

If we know that two constants are the same object, we can ignore other constraints and pool them together. This fixes an issue introduced by the other PR where quantization relied on constant pooling happening for correctness.

Test Plan: Imported from OSS

Differential Revision: D19269499

Pulled By: eellison

fbshipit-source-id: 9d4396125aa6899cb081863d463d4f024135cbf4
2020-01-08 16:47:07 -08:00
davidriazati
883fb5434a Use real argument names for Python functions (#29300)
Summary:
This hooks up `inspect` so that Python functions get their parameters
names attached instead of naming them `0, 1, 2, ...`. This also fixes
issue #28537 where `ignore` functions were improperly typing `self`.
](https://our.intern.facebook.com/intern/diff/19256434/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29300

Pulled By: driazati

Differential Revision: D19256434

fbshipit-source-id: 6a1fe7bd0afab708b8439517798955d0abfeb44c
2020-01-08 15:41:28 -08:00
Artem Volkhin
3a2757c682 Fix tracing for modules with List[Tensor] as output (#31343)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31343

Fix an issue in TorchScript tracing for modules with `c10::List<at::Tensor>` as an output. TensorList was not supported properly.

Test Plan: unit tests

Reviewed By: wanchaol

Differential Revision: D18850722

fbshipit-source-id: 87a223104d1361fe754d55deceeb1e8bbcad629b
2020-01-07 11:57:25 -08:00
Jerry Zhang
5579611544 Enable foldbn tests (#29220)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29220

Support for accessing constant is added in previous
PRs, this PR re-enables the foldbn tests

Test Plan:
test_jit.py

Imported from OSS

Differential Revision: D18846848

fbshipit-source-id: 90ceaf42539ffee80b984e0d8b2420da66c263c3
2020-01-04 11:47:01 -08:00
Jerry Zhang
ebe69236d1 Expose class constant through attr and setattr in object (#29219)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29219

We added class constant in previous PRs, this PR allows access to
class constant in the object API

Test Plan:
build/bin/test_jit
python test/test_jit.py

Imported from OSS

Differential Revision: D18846851

fbshipit-source-id: 888a6517d5f747d1f8ced283c0c2c30b2f6c72c6
2020-01-04 11:09:35 -08:00
BowenBao
c4f10e0fe7 Renaming scales parameter for interpolate (#31526)
Summary:
PR separated from https://github.com/pytorch/pytorch/pull/31274.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31526

Reviewed By: zou3519

Differential Revision: D19221931

Pulled By: gchanan

fbshipit-source-id: 81958a9910867ac9d62f2b47abc49384526c4e51
2020-01-02 08:19:30 -08:00
Lu Fang
cb1af5f61f Revert D19233558: add float[] str[] constants
Test Plan: revert-hammer

Differential Revision:
D19233558

Original commit changeset: 4f7c6d9ddbe7

fbshipit-source-id: a5020a9169e349a5970323471d673e8cd7818c66
2019-12-31 11:57:34 -08:00
Elias Ellison
dd0f2f0c19 add float[] str[] constants (#31503)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31503

Add support for float lists and string lists constants, which enables better constant propagation + constant pooling + freezing.

Test Plan: Imported from OSS

Differential Revision: D19233558

Pulled By: eellison

fbshipit-source-id: 4f7c6d9ddbe7623757a9a20606ce5f394e14e93d
2019-12-30 11:58:17 -08:00
davidriazati
6064223808 @slowTest some slow tests (#31706)
Summary:
These are all the jit tests that take > 10 seconds according to `pytest test/test_jit.py --durations=15`

```
32.76s call     test/test_jit.py::TestModels::test_super_resolution
32.20s call     test/test_jit.py::TestModels::test_neural_style
30.90s call     test/test_jit.py::TestJit::test_export_batchnorm
25.95s call     test/test_jit.py::TestJit::test_dropout_module_requires_grad
22.24s call     test/test_jit.py::TestJitGeneratedModule::test_nn_Transformer
12.38s call     test/test_jit.py::TestScript::test_fuser_double_float_codegen
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31706

Pulled By: driazati

Differential Revision: D19251567

fbshipit-source-id: 8e76f717506b8bf28d1a63ce302feb0446dc9141
2019-12-30 11:45:24 -08:00
Mingbo Wan
647569e546 get rid of choco install (#30897)
Summary:
7zip and cmake are part of base image, no need to re-install. Remove the install step can make build/test more stable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30897

Differential Revision: D19232961

Pulled By: mingbowan

fbshipit-source-id: fa3bbd1325839a2a977bf13fdbd97fda43793b8d
2019-12-27 13:12:04 -08:00
davidriazati
446e9af5b9 Fix parsing of big float literals (#29940)
Summary:
Stacked PRs
 * **#29940 - [jit] Fix parsing of big float literals**
 * #29935 - [jit] Fix hex literal parsing
 * #29931 - [jit] Throw a better error for int too big for int64_t
](https://our.intern.facebook.com/intern/diff/19186604/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29940

Pulled By: driazati

Differential Revision: D19186604

fbshipit-source-id: 6ef66588a5cf956f281e7bd1e5584ef06f5296e9
2019-12-23 17:21:07 -08:00
Gregory Chanan
68e5172382 Support optional float parameters (float?, optional<double>). (#31517)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31517

This is going to be used by upsample (which currently uses magic values to represent optionals).

For now, we just introduce a fake function for testing (torch._test_optional_float(x)).

Test Plan: Imported from OSS

Differential Revision: D19198721

Pulled By: gchanan

fbshipit-source-id: 0a1382fde0927c5d277d02d62bfb31fb574b8c74
2019-12-23 08:33:39 -08:00
James Reed
7d630278da Separate torchbind from Python (#30242)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30242

Pull Request resolved: https://github.com/pytorch/pytorch/pull/29501

Currently blocked on schema serialization issue

Test Plan: Imported from OSS

Differential Revision: D18463063

Pulled By: jamesr66a

fbshipit-source-id: c12a1b644eb9bf04e68ff93cccf91d6cb3e75359
2019-12-21 22:52:40 -08:00
Martin Yuan
11854bcd38 Add test to torch.jit.export_opnames, make the _C function private
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31446

Test Plan: Imported from OSS

Differential Revision: D19172851

Pulled By: iseeyuan

fbshipit-source-id: f06d8766ed73c9abe4ebf41c402ee64880d745be
2019-12-20 13:38:43 -08:00
Nikolay Korovaiko
5375ceae80 run optimizations on pre-profiled graph (#31392)
Summary:
This is the first stab at running profile-insensitive optimizations on pre-profiled graphs. Running those optimizations has a potential to simplify graphs greatly before GuardElimination and GuardElimination should be able to remove more guards.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31392

Differential Revision: D19173639

Pulled By: Krovatkin

fbshipit-source-id: 2485a2a598c10f9b5445efb30b16439ad4551b3f
2019-12-20 10:49:08 -08:00
Zachary DeVito
457286a383 fix missing type check in dictionary literal
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31375

Test Plan: Imported from OSS

Differential Revision: D19145440

Pulled By: zdevito

fbshipit-source-id: 69909089586149ef766b4858d3420864a81b2493
2019-12-19 16:22:36 -08:00
Nikolay Korovaiko
fc3103b116 fixing a naming issue in creating a residual loop node in a bailout graph (#31400)
Summary:
This addresses the issue of differentiating between `%4` in
`%12 : int, %y.1 : Tensor = prim::Loop(%9, %6, %4, %3)` and `%y.5 : Double(3) = aten::cat(%22, %4) # test_jit.py:3772:24` in `%4` loop's body in a residual continuation loop, because these should be different values.

```
[DUMP profiling_graph_executor_impl.cpp:124] with prim::BailoutTemplate_0 = graph(%z.1 : int,
[DUMP profiling_graph_executor_impl.cpp:124]       %size.1 : int):
[DUMP profiling_graph_executor_impl.cpp:124]   %2 : Tensor = prim::Constant[value= 1  1 [ CPUDoubleType{2} ]]()
[DUMP profiling_graph_executor_impl.cpp:124]   %3 : Double(2) = prim::BailOut[index=0](%2, %z.1, %size.1)
[DUMP profiling_graph_executor_impl.cpp:124]   %4 : int = prim::Constant[value=0]() # test_jit.py:3772:54
[DUMP profiling_graph_executor_impl.cpp:124]   %5 : None = prim::Constant()
[DUMP profiling_graph_executor_impl.cpp:124]   %6 : bool = prim::Constant[value=1]() # test_jit.py:3770:16
[DUMP profiling_graph_executor_impl.cpp:124]   %counters.1 : int[] = prim::ListConstruct()
[DUMP profiling_graph_executor_impl.cpp:124]   %8 : int = prim::Constant[value=8]()
[DUMP profiling_graph_executor_impl.cpp:124]   %9 : int = aten::__round_to_zero_floordiv(%size.1, %8)
[DUMP profiling_graph_executor_impl.cpp:124]   %10 : int = aten::mul(%9, %8)
[DUMP profiling_graph_executor_impl.cpp:124]   %11 : int = aten::sub(%size.1, %10)
[DUMP profiling_graph_executor_impl.cpp:124]   %12 : int, %y.1 : Tensor = prim::Loop(%9, %6, %4, %3) # test_jit.py:3770:16
[DUMP profiling_graph_executor_impl.cpp:124]     block0(%i.2 : int, %15 : int, %y.7 : Tensor):
[DUMP profiling_graph_executor_impl.cpp:124]       %17 : Double(2) = prim::BailOut[index=1](%y.7, %z.1, %counters.1, %9, %11, %i.2, %15)
[DUMP profiling_graph_executor_impl.cpp:124]       %18 : int[] = aten::append(%counters.1, %15) # test_jit.py:3771:20
[DUMP profiling_graph_executor_impl.cpp:124]       %19 : int[] = prim::ListConstruct(%z.1)
[DUMP profiling_graph_executor_impl.cpp:124]       %20 : Tensor = aten::ones(%19, %5, %5, %5, %5) # test_jit.py:3772:38
[DUMP profiling_graph_executor_impl.cpp:124]       %21 : Double(1) = prim::BailOut[index=2](%20, %z.1, %counters.1, %9, %11, %i.2, %15, %17)
[DUMP profiling_graph_executor_impl.cpp:124]       %22 : Tensor[] = prim::ListConstruct(%17, %21)
[DUMP profiling_graph_executor_impl.cpp:124]       %y.5 : Double(3) = aten::cat(%22, %4) # test_jit.py:3772:24
[DUMP profiling_graph_executor_impl.cpp:124]       %24 : int = prim::Constant[value=1]()
[DUMP profiling_graph_executor_impl.cpp:124]       %25 : int = aten::add(%15, %24)
[DUMP profiling_graph_executor_impl.cpp:124]       %26 : int[] = aten::append(%counters.1, %25) # test_jit.py:3771:20
[DUMP profiling_graph_executor_impl.cpp:124]       %27 : int[] = prim::ListConstruct(%z.1)
[DUMP profiling_graph_executor_impl.cpp:124]       %28 : Tensor = aten::ones(%27, %5, %5, %5, %5) # test_jit.py:3772:38
[DUMP profiling_graph_executor_impl.cpp:124]       %29 : Double(1) = prim::BailOut[index=3](%28, %z.1, %counters.1, %9, %11, %i.2, %y.5, %25)
[DUMP profiling_graph_executor_impl.cpp:124]       %30 : Tensor[] = prim::ListConstruct(%y.5, %29)
[DUMP profiling_graph_executor_impl.cpp:124]       %y.9 : Double(4) = aten::cat(%30, %4) # test_jit.py:3772:24
[DUMP profiling_graph_executor_impl.cpp:124]       %32 : int = aten::add(%25, %24)
[DUMP profiling_graph_executor_impl.cpp:124]       %33 : int[] = aten::append(%counters.1, %32) # test_jit.py:3771:20
[DUMP profiling_graph_executor_impl.cpp:124]       %34 : int[] = prim::ListConstruct(%z.1)
[DUMP profiling_graph_executor_impl.cpp:124]       %35 : Tensor = aten::ones(%34, %5, %5, %5, %5) # test_jit.py:3772:38
[DUMP profiling_graph_executor_impl.cpp:124]       %36 : Double(1) = prim::BailOut[index=4](%35, %z.1, %counters.1, %9, %11, %i.2, %y.9, %32)
[DUMP profiling_graph_executor_impl.cpp:124]       %37 : Tensor[] = prim::ListConstruct(%y.9, %36)
[DUMP profiling_graph_executor_impl.cpp:124]       %y.10 : Double(5) = aten::cat(%37, %4) # test_jit.py:3772:24
[DUMP profiling_graph_executor_impl.cpp:124]       %39 : int = aten::add(%32, %24)
[DUMP profiling_graph_executor_impl.cpp:124]       %40 : int[] = aten::append(%counters.1, %39) # test_jit.py:3771:20
[DUMP profiling_graph_executor_impl.cpp:124]       %41 : int[] = prim::ListConstruct(%z.1)
[DUMP profiling_graph_executor_impl.cpp:124]       %42 : Tensor = aten::ones(%41, %5, %5, %5, %5) # test_jit.py:3772:38
[DUMP profiling_graph_executor_impl.cpp:124]       %43 : Double(1) = prim::BailOut[index=5](%42, %z.1, %counters.1, %9, %11, %i.2, %y.10, %39)
[DUMP profiling_graph_executor_impl.cpp:124]       %44 : Tensor[] = prim::ListConstruct(%y.10, %43)
[DUMP profiling_graph_executor_impl.cpp:124]       %y.11 : Double(6) = aten::cat(%44, %4) # test_jit.py:3772:24
[DUMP profiling_graph_executor_impl.cpp:124]       %46 : int = aten::add(%39, %24)
[DUMP profiling_graph_executor_impl.cpp:124]       %47 : int[] = aten::append(%counters.1, %46) # test_jit.py:3771:20
[DUMP profiling_graph_executor_impl.cpp:124]       %48 : int[] = prim::ListConstruct(%z.1)
[DUMP profiling_graph_executor_impl.cpp:124]       %49 : Tensor = aten::ones(%48, %5, %5, %5, %5) # test_jit.py:3772:38
[DUMP profiling_graph_executor_impl.cpp:124]       %50 : Double(1) = prim::BailOut[index=6](%49, %z.1, %counters.1, %9, %11, %i.2, %y.11, %46)
[DUMP profiling_graph_executor_impl.cpp:124]       %51 : Tensor[] = prim::ListConstruct(%y.11, %50)
[DUMP profiling_graph_executor_impl.cpp:124]       %y.12 : Double(7) = aten::cat(%51, %4) # test_jit.py:3772:24
[DUMP profiling_graph_executor_impl.cpp:124]       %53 : int = aten::add(%46, %24)
[DUMP profiling_graph_executor_impl.cpp:124]       %54 : int[] = aten::append(%counters.1, %53) # test_jit.py:3771:20
[DUMP profiling_graph_executor_impl.cpp:124]       %55 : int[] = prim::ListConstruct(%z.1)
[DUMP profiling_graph_executor_impl.cpp:124]       %56 : Tensor = aten::ones(%55, %5, %5, %5, %5) # test_jit.py:3772:38
[DUMP profiling_graph_executor_impl.cpp:124]       %57 : Double(1) = prim::BailOut[index=7](%56, %z.1, %counters.1, %9, %11, %i.2, %y.12, %53)
[DUMP profiling_graph_executor_impl.cpp:124]       %58 : Tensor[] = prim::ListConstruct(%y.12, %57)
[DUMP profiling_graph_executor_impl.cpp:124]       %y.13 : Double(8) = aten::cat(%58, %4) # test_jit.py:3772:24
[DUMP profiling_graph_executor_impl.cpp:124]       %60 : int = aten::add(%53, %24)
[DUMP profiling_graph_executor_impl.cpp:124]       %61 : int[] = aten::append(%counters.1, %60) # test_jit.py:3771:20
[DUMP profiling_graph_executor_impl.cpp:124]       %62 : int[] = prim::ListConstruct(%z.1)
[DUMP profiling_graph_executor_impl.cpp:124]       %63 : Tensor = aten::ones(%62, %5, %5, %5, %5) # test_jit.py:3772:38
[DUMP profiling_graph_executor_impl.cpp:124]       %64 : Double(1) = prim::BailOut[index=8](%63, %z.1, %counters.1, %9, %11, %i.2, %y.13, %60)
[DUMP profiling_graph_executor_impl.cpp:124]       %65 : Tensor[] = prim::ListConstruct(%y.13, %64)
[DUMP profiling_graph_executor_impl.cpp:124]       %y.14 : Double(9) = aten::cat(%65, %4) # test_jit.py:3772:24
[DUMP profiling_graph_executor_impl.cpp:124]       %67 : int = aten::add(%60, %24)
[DUMP profiling_graph_executor_impl.cpp:124]       %68 : int[] = aten::append(%counters.1, %67) # test_jit.py:3771:20
[DUMP profiling_graph_executor_impl.cpp:124]       %69 : int[] = prim::ListConstruct(%z.1)
[DUMP profiling_graph_executor_impl.cpp:124]       %70 : Tensor = aten::ones(%69, %5, %5, %5, %5) # test_jit.py:3772:38
[DUMP profiling_graph_executor_impl.cpp:124]       %71 : Double(1) = prim::BailOut[index=9](%70, %z.1, %counters.1, %9, %11, %i.2, %y.14, %67)
[DUMP profiling_graph_executor_impl.cpp:124]       %72 : Tensor[] = prim::ListConstruct(%y.14, %71)
[DUMP profiling_graph_executor_impl.cpp:124]       %y.15 : Tensor = aten::cat(%72, %4) # test_jit.py:3772:24
[DUMP profiling_graph_executor_impl.cpp:124]       %74 : int = aten::add(%67, %24)
[DUMP profiling_graph_executor_impl.cpp:124]       -> (%6, %74, %y.15)
[DUMP profiling_graph_executor_impl.cpp:124]   %75 : Double(10) = prim::BailOut[index=10](%y.1, %z.1, %counters.1, %11, %12)
[DUMP profiling_graph_executor_impl.cpp:124]   %76 : int, %y : Tensor = prim::Loop(%11, %6, %12, %75) # test_jit.py:3770:16
[DUMP profiling_graph_executor_impl.cpp:124]     block0(%i.1 : int, %79 : int, %y.6 : Tensor):
[DUMP profiling_graph_executor_impl.cpp:124]       %81 : Double(*) = prim::BailOut[index=11](%y.6, %z.1, %counters.1, %11, %i.1, %79)
[DUMP profiling_graph_executor_impl.cpp:124]       %82 : int[] = aten::append(%counters.1, %79) # test_jit.py:3771:20
[DUMP profiling_graph_executor_impl.cpp:124]       %83 : int[] = prim::ListConstruct(%z.1)
[DUMP profiling_graph_executor_impl.cpp:124]       %84 : Tensor = aten::ones(%83, %5, %5, %5, %5) # test_jit.py:3772:38
[DUMP profiling_graph_executor_impl.cpp:124]       %85 : Double(1) = prim::BailOut[index=12](%84, %counters.1, %11, %i.1, %79, %81)
[DUMP profiling_graph_executor_impl.cpp:124]       %86 : Tensor[] = prim::ListConstruct(%81, %85)
[DUMP profiling_graph_executor_impl.cpp:124]       %y.4 : Tensor = aten::cat(%86, %4) # test_jit.py:3772:24
[DUMP profiling_graph_executor_impl.cpp:124]       %88 : int = prim::Constant[value=1]()
[DUMP profiling_graph_executor_impl.cpp:124]       %89 : int = aten::add(%79, %88)
[DUMP profiling_graph_executor_impl.cpp:124]       -> (%6, %89, %y.4)
[DUMP profiling_graph_executor_impl.cpp:124]   %90 : Double(12) = prim::BailOut[index=13](%y, %counters.1)
[DUMP profiling_graph_executor_impl.cpp:124]   %91 : (Tensor, int[]) = prim::TupleConstruct(%90, %counters.1)
[DUMP profiling_graph_executor_impl.cpp:124]   return (%91)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31400

Differential Revision: D19172750

Pulled By: Krovatkin

fbshipit-source-id: 85d3aac4e80b65b83b6be3c0bca8075a731a2b7e
2019-12-19 00:34:50 -08:00
Elias Ellison
fb24f7c4ad catch all exceptions in converting default values to ivalues (#31398)
Summary:
Previously we would only catch `py::cast_error` which led to incomprehensible error messages like: `TypeError: 'NoneType' object is not iterable`. We are running arbitrary pybind code here, and not doing anything with the error message, so we should be less restrictive with the types of errors we catch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31398

Differential Revision: D19166655

Pulled By: eellison

fbshipit-source-id: 84db8b3714c718b475913f2f4bb6f19e62f2d9ec
2019-12-18 20:27:46 -08:00
Jerry Zhang
fe707c7849 Use default_observer and default_weight_observer in tests (#31424)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31424

att

Test Plan:
test_jit.py

Imported from OSS

Differential Revision: D19162368

fbshipit-source-id: 33b95ba643eeeae942283bbc33f7ceda8d14c431
2019-12-18 18:35:07 -08:00
James Reed
a3cdb7eca3 Fix default instantation of dynamic quantized LSTM
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/31433

Test Plan: Imported from OSS

Differential Revision: D19164539

Pulled By: jamesr66a

fbshipit-source-id: 7045817ab3dfb530c4480a10523c4c6bcdbfc7eb
2019-12-18 16:59:00 -08:00
davidriazati
148bcd3ee5 Add support for builtins as attributes (#31269)
Summary:
Fixes #27495

This adds builtins as another piece of a concrete type. They're separate from normal functions since they represent the `BuiltinFunction` sugared value (which is a direct call to a builtin op). It also moves the builtins related logic from `jit/__init__.py` to `jit/_builtins.py` so it can be used from `jit/_recursive.py` to look up functions in the builtins table.
](https://our.intern.facebook.com/intern/diff/19149779/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31269

Pulled By: driazati

Differential Revision: D19149779

fbshipit-source-id: d4e5e5d7d7d528b75a2f503e6004394251a4e82d
2019-12-18 15:24:45 -08:00
davidriazati
7692494c67 Fix hex literal parsing (#29935)
Summary:
Stacked PRs
 * #29940 - [jit] Fix parsing of big float literals
 * **#29935 - [jit] Fix hex literal parsing**
 * #29931 - [jit] Throw a better error for int too big for int64_t

Previously these were all parsed as `0`
](https://our.intern.facebook.com/intern/diff/19124944/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29935

Pulled By: driazati

Differential Revision: D19124944

fbshipit-source-id: 1ee0c1dee589933363a5efba069a2cfaf94373c5
2019-12-18 14:00:22 -08:00
davidriazati
1f50cfc24d Throw a better error for int too big for int64_t
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29931

Pulled By: driazati

Differential Revision: D19124934

fbshipit-source-id: 91841d7ba4f2f6142c51fba07b7faa14bb817e3a
2019-12-18 14:00:16 -08:00
Elias Ellison
fb30a48b4e add unsupported section (#31329)
Summary:
Add a section for unsupported ops, and modules. Automatically generate the properties and attributes that aren't bound, and for ops that have semantic mismatches set up tests so the docs stay up to date.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31329

Differential Revision: D19164472

Pulled By: eellison

fbshipit-source-id: 46290bb8a64d9de928cfb1eda5ff4558c3799c88
2019-12-18 13:56:02 -08:00
Alexander Stante
f30b14dead Fix handling of type comments in body (#30590)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/30477. Any type comment after `# type: (...) -> ` is ignored.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30590

Differential Revision: D18887351

Pulled By: driazati

fbshipit-source-id: 162c652f6d7610d14609bbcb25aaa27cdd947a76
2019-12-12 18:19:30 -08:00
Elias Ellison
bee6344d4e remove / rewrite weak module tests (#31193)
Summary:
Remove most of the testing for `weak_script`, since we removed it. Refactor a few of the existing tests to use recursive scripting api.

Fix for https://github.com/pytorch/pytorch/issues/23965
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31193

Differential Revision: D18966291

Pulled By: eellison

fbshipit-source-id: 6b1e18c293f55017868a14610d87b69be42bde12
2019-12-12 13:33:38 -08:00
Elias Ellison
56de8853da Resubmit overload v2 (#31123)
Summary:
Resubmit of https://github.com/pytorch/pytorch/pull/30356 and https://github.com/pytorch/pytorch/pull/31014 :'(

The last commit contains the fix. There was an internal FBcode error not able to compile the previous `impl_default->second.equal(default_val.second))` line. I tried various fixes in C++ internally but couldn't figure anything out. This is a good example of the programming costs of going from python -> c++ for different types of objects, because the conceptual overhead has expanded in scope from (python) -> (python, c++, pybind).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31123

Differential Revision: D18936128

Pulled By: eellison

fbshipit-source-id: 7d8fd66a6dd4a3e9838f3a0b68c219b6565a9462
2019-12-12 07:54:23 -08:00
Lara
97c1e90f46 ONNX Interpolate Add Scales Params (#28324)
Summary:
Fix for : https://github.com/pytorch/pytorch/issues/27176
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28324

Reviewed By: hl475

Differential Revision: D18309133

Pulled By: houseroad

fbshipit-source-id: 348bb41393442c6b107d88fc2cd3224e0afa3ccf
2019-12-11 20:09:15 -08:00
davidriazati
679b20b1e4 Unify list elements for all list types (#30777)
Summary:
Previously list elements were only unified for tensor lists.
This improves error messages and expands the unification logic
to include all types.
](https://our.intern.facebook.com/intern/diff/18837726/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30777

Pulled By: driazati

Differential Revision: D18837726

fbshipit-source-id: c4d275562a8429700987569426d694faa8f6002e
2019-12-11 17:00:52 -08:00
David Riazati
1f87e823b8 Make nn.Transformer TorchScript compatible (#28561)
Summary:
This makes `nn.Transformer` usable from TorchScript. It preserves backwards compatibility via `__setstate__` on the encoder/decoder.

Fixes https://github.com/pytorch/pytorch/issues/24173
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28561

Differential Revision: D18124753

Pulled By: driazati

fbshipit-source-id: 7314843e5aa9c9bf974c4672e4edb24ed8ef4a6f
2019-12-11 10:57:31 -08:00
Alban Desmaison
717274c001 Add useful warnings for t.grad when it won't be populated for known reasons (#30531)
Summary:
Fix https://github.com/pytorch/pytorch/issues/2362 and https://github.com/pytorch/pytorch/issues/19778

To avoid issues with frozen model, we only consider warning for Tensors that require gradients and are neither leafs nor retain gradients.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30531

Differential Revision: D18832767

Pulled By: albanD

fbshipit-source-id: 743e863dc14ab57713e66da78b2e4d759dfba0ff
2019-12-11 09:47:18 -08:00
Elias Ellison
9f3fe78239 peephole optimize type refinements (#31024)
Summary:
Peephole optimize out type refinements when they are no longer refining the type.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31024

Differential Revision: D18920958

Pulled By: eellison

fbshipit-source-id: 6d05d9812b9f9dcf001de760a78a2042fb832773
2019-12-10 18:32:28 -08:00
Pieter Noordhuis
78a00d72b4 Revert D18899127: resubmit polish up overloads on free functions
Test Plan: revert-hammer

Differential Revision:
D18899127

Original commit changeset: 9049b8718926

fbshipit-source-id: c70a8aa4120aa757dce0926a8ab3cc5c92cd6041
2019-12-10 10:51:07 -08:00
Elias Ellison
af4040d808 resubmit polish up overloads on free functions (#31014)
Summary:
Resubmitting https://github.com/pytorch/pytorch/pull/30356

Second commit has reintroduces deleted function which caused revert previously.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31014

Differential Revision: D18899127

Pulled By: eellison

fbshipit-source-id: 9049b8718926c329d9cb46bb96eac6c278e9b866
2019-12-10 07:57:47 -08:00
Elias Ellison
f48a8901c5 Add floor_divide function (#30493)
Summary:
Adds `torch.floor_divide` following the numpy's `floor_divide` api. I only implemented the out-of-place version, I can add the inplace version if requested.

Also fixes  https://github.com/pytorch/pytorch/issues/27512
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30493

Differential Revision: D18896211

Pulled By: eellison

fbshipit-source-id: ee401c96ab23a62fc114ed3bb9791b8ec150ecbd
2019-12-10 07:51:39 -08:00