Fixes#132290
This PR attempts a more invasive / complete solution than the one from #132338, which removes immediate tensor fields from the `tensor_dict` copy stored in node meta. The approach taken here is to store only those fields of the `tensor_dict` which are absolutely utilized somewhere else.
So far, this appears to be limited to:
* `_dynamo_static_input_type`
* `tag` (at least in the tests). Discussion at #94080 appears to indicate this is depended on for export
(CI may point out more)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132805
Approved by: https://github.com/mlazos
Summary:
- We add Inductor logs for what tensors we tried to reinplace, what
tensors we were unable to reinplace, and of those tensors, which of
those might be bugs (the "missed reinplacing opportunities"). You can
tell this by reading the Inductor output graph but the logs make it
easier to figure out.
- Add a dynamo_compile counter for missed reinplacing opportunities. The
goal is to see how widespread existing problems (if any) are. We've had
trouble getting all of the edge cases for the reinplacing pass; the
counter will help us hunt down issues.
Test Plan:
- tested locally
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132758
Approved by: https://github.com/eellison
Need to revert due to internal hangs: S437700
This reverts commit b6c1490cc0.
Revert "[dynamo] implement IteratorVariable and polyfill fallbacks for enumerate (#131725)"
This reverts commit 2576dbbc35.
Revert "[dynamo] add itertools repeat/count bytecode reconstruction (#131716)"
This reverts commit 35b4de32fa.
Revert "[dynamo] add lazy IteratorVariable implementations for map and zip (#131413)"
This reverts commit 7d282d8755.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132528
Approved by: https://github.com/ZainRizvi
Need to revert due to internal hangs: S437700
This reverts commit b6c1490cc0.
Revert "[dynamo] implement IteratorVariable and polyfill fallbacks for enumerate (#131725)"
This reverts commit 2576dbbc35.
Revert "[dynamo] add itertools repeat/count bytecode reconstruction (#131716)"
This reverts commit 35b4de32fa.
Revert "[dynamo] add lazy IteratorVariable implementations for map and zip (#131413)"
This reverts commit 7d282d8755.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132528
Approved by: https://github.com/ZainRizvi
Fixes https://github.com/pytorch/pytorch/issues/130750.
Repro of lazy/eager `map` discrepancy without `islice`:
```python
def fn(a, b):
y = 1
def f(x):
nonlocal y
y += 1
return x
l = list(zip([a, b], map(f, [1, 2, 3, 4])))
return a + y
```
The major change is that we implement `MapVariable` and `ZipVariable` based on `IteratorVariable`. Before, `map` and `zip` were being traced by immediately unpacking the result as a `TupleVariable`, which is wrong in cases such as the example above.
`MapVariable`s are not allowed to be unpacked while `ZipVariable`s can only be unpacked if all of its iterables can also be unpacked.
We also add new `[has_]force_unpack_var_sequence` methods to `VariableTracker` for the case where it is safe to unpack the entire sequence lazily, e.g., when building a list from a map (i.e. `list(map(f, ...))`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131413
Approved by: https://github.com/anijain2305
This PR marks all buffers and parameters of an NNModule as static using the `mark_static_address` API. As a result, when tensors are passed to AOT, the `tensor_dict` metadata of placeholder nodes will contain the `static_address_type` key, indicating which graph argument positions are static for cudagraphs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130391
Approved by: https://github.com/anijain2305
This PR batch the fix for a few accuracy failures issues during training by raising tolerance. I do that only for models that I think it fails not due to real issue.
## sebotnet33ts_256
The accuracy test for this model start to fail around June 05 [link](https://hud.pytorch.org/benchmark/timm_models/inductor_with_cudagraphs?dashboard=torchinductor&startTime=Sun%2C%2002%20Jun%202024%2007%3A19%3A38%20GMT&stopTime=Tue%2C%2002%20Jul%202024%2007%3A19%3A38%20GMT&granularity=day&mode=training&dtype=amp&lBranch=main&lCommit=04a0d856207d83c2031e4b9cb6825ba3e0092850&rBranch=main&rCommit=e62925930f6a62f6aeeb1fe1a661a9bd3352b53d&model=sebotnet33ts_256).
I can not repro locally, but from the log from the dashboard:
```
RMSE (res-fp64): 0.09441, (ref-fp64): 0.02971 and shape=torch.Size([1536]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.040000
```
raising the tolerance should fix it.
## DebertaForQuestionAnswering
This model fails accuracy test on the dashboard only in max-autotune mode. I can not repro locally by command:
```
TORCHINDUCTOR_MAX_AUTOTUNE=1 time python benchmarks/dynamo/huggingface.py --accuracy --no-translation-validation --training --amp --backend inductor --device cuda --only DebertaForQuestionAnswering
```
From error message on the dashboard:
```
RMSE (res-fp64): 0.01803, (ref-fp64): 0.00537 and shape=torch.Size([2]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.010000
```
0.02 tolerance should suppress this error.
## gluon_inception_v3
This model fail on the dashboard in max-autotune mode. I can not repro locally by command
```
TORCHINDUCTOR_MAX_AUTOTUNE=1 time python benchmarks/dynamo/timm_models.py --accuracy --training --amp --backend inductor --disable-cudagraphs --device cuda --only gluon_inception_v3
```
From error message on the dashboard
```
RMSE (res-fp64): 0.02798, (ref-fp64): 0.00730 and shape=torch.Size([384]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.010000
Accuracy failed for key name Mixed_7c.branch3x3dbl_3a.bn.running_var
```
raising tolerance should suppress this error.
# mobilenetv3_large_100
Fail in MA model. I can not repro locally by command
```
TORCHINDUCTOR_MAX_AUTOTUNE=1 time python benchmarks/dynamo/timm_models.py --accuracy --training --amp --backend inductor --disable-cudagraphs --device cuda --only
```
The error message on the dashboard is
```
RMSE (res-fp64): 0.29754, (ref-fp64): 0.05205 and shape=torch.Size([]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.040000
```
The tensor is so small that the noise can be high. I use larger multiplier for smaller tensor in torch._dynamo.utils.same.
# yolov3
Fail on dashboard with error
```
Error on the dashboard: RMSE (res-fp64): 0.01278, (ref-fp64): 0.00246 and shape=torch.Size([256]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.001000
```
Fix it by using a larger multiplier for smaller tensors and raising the tolereance.
# timm_efficientdet
Fail on the dashboard with error
```
E0623 18:37:43.638000 139924418725056 torch/_dynamo/utils.py:1468] RMSE (res-fp64): 0.00096, (ref-fp64): 0.00009 and shape=torch.Size([2]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.001000
```
But I can not repro locally with command
```
time python benchmarks/dynamo/torchbench.py --backend inductor --amp --performance --only timm_efficientdet --training
```
Raise the tolerance should fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129941
Approved by: https://github.com/jansel
ghstack dependencies: #129996
I'm debugging the accuracy failure for training vision_maskrcnn.
Unfortunately I could not succeed to run it locally (I've check pined commits for torchbenchmars/torchvision are correct, and reinstalled torchbenchmark for mask_rcnn). I get this error:
```
eager run fail: AssertionError: targets should not be none when in training mode
```
(Command: time python benchmarks/dynamo/torchbench.py --backend inductor --amp --performance --training --only vision_maskrcnn )
But look at the log from the dashboard
```
E0623 19:17:59.085000 140114670171328 torch/_dynamo/utils.py:1468] RMSE (res-fp64): nan, (ref-fp64): nan and shape=torch.Size([1024, 256, 1, 1]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.001000
```
We can see both the reference number and the pt2 number are NaN. I change torch._dynamo.utils.same to return true if both RMSE values are NaN.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129996
Approved by: https://github.com/jansel
This PR batch the fix for a few accuracy failures issues during training by raising tolerance. I do that only for models that I think it fails not due to real issue.
## sebotnet33ts_256
The accuracy test for this model start to fail around June 05 [link](https://hud.pytorch.org/benchmark/timm_models/inductor_with_cudagraphs?dashboard=torchinductor&startTime=Sun%2C%2002%20Jun%202024%2007%3A19%3A38%20GMT&stopTime=Tue%2C%2002%20Jul%202024%2007%3A19%3A38%20GMT&granularity=day&mode=training&dtype=amp&lBranch=main&lCommit=04a0d856207d83c2031e4b9cb6825ba3e0092850&rBranch=main&rCommit=e62925930f6a62f6aeeb1fe1a661a9bd3352b53d&model=sebotnet33ts_256).
I can not repro locally, but from the log from the dashboard:
```
RMSE (res-fp64): 0.09441, (ref-fp64): 0.02971 and shape=torch.Size([1536]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.040000
```
raising the tolerance should fix it.
## DebertaForQuestionAnswering
This model fails accuracy test on the dashboard only in max-autotune mode. I can not repro locally by command:
```
TORCHINDUCTOR_MAX_AUTOTUNE=1 time python benchmarks/dynamo/huggingface.py --accuracy --no-translation-validation --training --amp --backend inductor --device cuda --only DebertaForQuestionAnswering
```
From error message on the dashboard:
```
RMSE (res-fp64): 0.01803, (ref-fp64): 0.00537 and shape=torch.Size([2]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.010000
```
0.02 tolerance should suppress this error.
## gluon_inception_v3
This model fail on the dashboard in max-autotune mode. I can not repro locally by command
```
TORCHINDUCTOR_MAX_AUTOTUNE=1 time python benchmarks/dynamo/timm_models.py --accuracy --training --amp --backend inductor --disable-cudagraphs --device cuda --only gluon_inception_v3
```
From error message on the dashboard
```
RMSE (res-fp64): 0.02798, (ref-fp64): 0.00730 and shape=torch.Size([384]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.010000
Accuracy failed for key name Mixed_7c.branch3x3dbl_3a.bn.running_var
```
raising tolerance should suppress this error.
# mobilenetv3_large_100
Fail in MA model. I can not repro locally by command
```
TORCHINDUCTOR_MAX_AUTOTUNE=1 time python benchmarks/dynamo/timm_models.py --accuracy --training --amp --backend inductor --disable-cudagraphs --device cuda --only
```
The error message on the dashboard is
```
RMSE (res-fp64): 0.29754, (ref-fp64): 0.05205 and shape=torch.Size([]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.040000
```
The tensor is so small that the noise can be high. I use larger multiplier for smaller tensor in torch._dynamo.utils.same.
# yolov3
Fail on dashboard with error
```
Error on the dashboard: RMSE (res-fp64): 0.01278, (ref-fp64): 0.00246 and shape=torch.Size([256]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.001000
```
Fix it by using a larger multiplier for smaller tensors and raising the tolereance.
# timm_efficientdet
Fail on the dashboard with error
```
E0623 18:37:43.638000 139924418725056 torch/_dynamo/utils.py:1468] RMSE (res-fp64): 0.00096, (ref-fp64): 0.00009 and shape=torch.Size([2]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.001000
```
But I can not repro locally with command
```
time python benchmarks/dynamo/torchbench.py --backend inductor --amp --performance --only timm_efficientdet --training
```
Raise the tolerance should fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129941
Approved by: https://github.com/jansel
ghstack dependencies: #129996
I'm debugging the accuracy failure for training vision_maskrcnn.
Unfortunately I could not succeed to run it locally (I've check pined commits for torchbenchmars/torchvision are correct, and reinstalled torchbenchmark for mask_rcnn). I get this error:
```
eager run fail: AssertionError: targets should not be none when in training mode
```
(Command: time python benchmarks/dynamo/torchbench.py --backend inductor --amp --performance --training --only vision_maskrcnn )
But look at the log from the dashboard
```
E0623 19:17:59.085000 140114670171328 torch/_dynamo/utils.py:1468] RMSE (res-fp64): nan, (ref-fp64): nan and shape=torch.Size([1024, 256, 1, 1]). res.dtype: torch.float32, multiplier: 3.000000, tol: 0.001000
```
We can see both the reference number and the pt2 number are NaN. I change torch._dynamo.utils.same to return true if both RMSE values are NaN.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129996
Approved by: https://github.com/jansel
# Compile time for eager backend
## AlbertForMaskedLM
No inlining - 3.65 seconds
Inlining on main - 7.48 seconds
Inlining + this PR - 6.70 seconds
## MobileBertForMaskedLM
No inlining - 26.90 seconds
Inlining on main - 48.21 seconds
Inlining + this PR - 43.85 seconds
*Next PR in the stack makes the total compile time better/comparable to no inlining*
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129315
Approved by: https://github.com/jansel
ghstack dependencies: #129316
FIXES#113263. Same idea as in https://github.com/pytorch/pytorch/pull/113417, but we need a more intrusive C API to silently nop default saved tensor hooks, in order to support user-code that use torch.autograd.disable_saved_tensors_hooks (see test_unpack_hooks_can_be_disabled). We mock the output of get_hooks while leaving push/pop untouched.
For compiled autograd, we're firing pack hooks once and unpack hooks twice right now, I'll look into this separately from this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123196
Approved by: https://github.com/soulitzer
This is a short-term fix (for 2.4). In the longer term we should
fix https://github.com/pytorch/pytorch/issues/128430
The problem is that warnings.warn that are inside Dynamo print
all the time. Python warnings are supposed to print once, unless their
cache is reset: Dynamo ends up resetting that cache everytime it runs.
As a workaround we provide our own warn_once cache that is keyed on the
warning msg. I am not worried about this increasing memory usage because
that's effectively what python's warnings.warn cache does.
Test Plan:
- fix tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128456
Approved by: https://github.com/anijain2305