This PR adds a `py_context_manager_DEPRECATED` that converts a C++ RAII
guard to an object that may be either used as Python context manager or
as a "Python RAII guard".
We don't convert all of them to Python context manager only due to BC
reasons; people in OSS and internally actually rely on these APIs and I
don't want to break them. We are justified in breaking BC if we wanted
to, but it seemed like too much work for not a lot of gain.
The API is postfixed with "DEPRECATED" to indicate that people should
really use `py_context_manager` (converts C++ RAII guard to Python
context manager) instead.
Test Plan:
- this PR converts all PyTorch usages of _AutoDispatchBelowAutograd to
context manager. I can do the rest in follow-ups.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102579
Approved by: https://github.com/bdhirsh, https://github.com/albanD
It turns out that we *do* need to update *_scatter ops to return the exact same strides as their inputs. I added a test to `test/test_functionalization.py`, which now trips thanks to Ed's functionalization stride debugging check. It only actually ends up tripping silent correctness if you try to .backward() on that function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91029
Approved by: https://github.com/ezyang
The previous behaviour would call `resize_` on 0-sized elements even
when their size was correct. This would make some test fail, as resize_
may be an in-place operation and it's not supported by some subsystems
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88116
Approved by: https://github.com/mruberry
This PR adds nvfuser-specific primitive - `var_mean`.
Interpretation `torch.var_mean` -> `torch.ops.nvprims.var_mean` is handled by `TorchRefsNvfuserCapabilityMode` context manager.
I moved some helper code from `_prims/__init__.py` to `_prims_common`. Correctness is tested with OpInfo tests (see `PythonRefInfo("ops.nvprims.var_mean"`).
Layer norm reference now uses `torch.var_mean` instead of `torch._refs.var_mean` to allow interception. Here's a simple comparison of performance with this PR and master (on 3080ti):
```py
import torch
from torch._prims.context import TorchRefsNvfuserCapabilityMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.executor import execute
def func(a):
return torch.native_layer_norm(a, (1024,), None, None, 1e-6)
a = torch.randn(10, 512, 1024, dtype=torch.float16, device="cuda")
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(func)(a)
for _ in range(10):
execute(gm, a, executor="strictly_nvfuser");
```
run with `PYTORCH_NVFUSER_DUMP=dump_eff_bandwidth python script.py`
```py
# WITH THIS PR
# kernel1 run in 0.032768 ms, achieved: 641.25 GB/s
# kernel1 run in 0.033792 ms, achieved: 621.818 GB/s
# kernel1 run in 0.032768 ms, achieved: 641.25 GB/s
# kernel1 run in 0.032608 ms, achieved: 644.396 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# kernel1 run in 0.032768 ms, achieved: 641.25 GB/s
# kernel1 run in 0.03072 ms, achieved: 684 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# ON MASTER
# kernel1 run in 0.05632 ms, achieved: 373.091 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.043808 ms, achieved: 479.649 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
```
So this PR gives about 35% improvement in performance using nvfuser executor with this specific normalized shape.
Also this PR fixes https://github.com/pytorch/pytorch/issues/83506 (see the change in `torch/csrc/jit/python/pybind_utils.cpp`).
Ref. https://github.com/pytorch/pytorch/issues/80187
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83508
Approved by: https://github.com/ngimel
This PR adds nvfuser-specific primitive - `var_mean`.
Interpretation `torch.var_mean` -> `torch.ops.nvprims.var_mean` is handled by `TorchRefsNvfuserCapabilityMode` context manager.
I moved some helper code from `_prims/__init__.py` to `_prims_common`. Correctness is tested with OpInfo tests (see `PythonRefInfo("ops.nvprims.var_mean"`).
Layer norm reference now uses `torch.var_mean` instead of `torch._refs.var_mean` to allow interception. Here's a simple comparison of performance with this PR and master (on 3080ti):
```py
import torch
from torch._prims.context import TorchRefsNvfuserCapabilityMode
from torch.fx.experimental.proxy_tensor import make_fx
from torch._prims.executor import execute
def func(a):
return torch.native_layer_norm(a, (1024,), None, None, 1e-6)
a = torch.randn(10, 512, 1024, dtype=torch.float16, device="cuda")
with TorchRefsNvfuserCapabilityMode():
gm = make_fx(func)(a)
for _ in range(10):
execute(gm, a, executor="strictly_nvfuser");
```
run with `PYTORCH_NVFUSER_DUMP=dump_eff_bandwidth python script.py`
```py
# WITH THIS PR
# kernel1 run in 0.032768 ms, achieved: 641.25 GB/s
# kernel1 run in 0.033792 ms, achieved: 621.818 GB/s
# kernel1 run in 0.032768 ms, achieved: 641.25 GB/s
# kernel1 run in 0.032608 ms, achieved: 644.396 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# kernel1 run in 0.032768 ms, achieved: 641.25 GB/s
# kernel1 run in 0.03072 ms, achieved: 684 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# kernel1 run in 0.031744 ms, achieved: 661.935 GB/s
# ON MASTER
# kernel1 run in 0.05632 ms, achieved: 373.091 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.043808 ms, achieved: 479.649 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
# kernel1 run in 0.044032 ms, achieved: 477.209 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
# kernel1 run in 0.043008 ms, achieved: 488.571 GB/s
```
So this PR gives about 35% improvement in performance using nvfuser executor with this specific normalized shape.
Also this PR fixes https://github.com/pytorch/pytorch/issues/83506 (see the change in `torch/csrc/jit/python/pybind_utils.cpp`).
Ref. https://github.com/pytorch/pytorch/issues/80187
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83508
Approved by: https://github.com/ngimel
I was working on https://github.com/pytorch/torchdynamo/issues/80 and my
working hypothesis for what was causing the error was that proxy tensor
was not advertising correct dispatch keys, causing AMP to operate
differently when you traced. I could have fixed this directly by
replicating fake tensor's fix for setting dispatch keys to also apply to
proxy tensor, but I was like, "Why must I repeat myself."
This PR is the result. It completely deletes the ProxyTensor wrapper
subclass, so that when we are tracing, the tensors flowing through the
program are the *original* real or fake tensors, depending on what the
user requested in the top-level API. There is no more wrapping. To
store the Proxy objects necessary for actually doing tracing, I store
the property directly on the tensors. (Note: I never
clean up old entries from the map at the moment, this is easily fixed
by using a weak map)
Benefits of doing this:
* No more tip-toeing around no_dispatch() creation of new ProxyTensors;
we never create new tensors (except when we call the underlying func),
so you don't have to worry about accidentally tracing them.
* No more syncing up metadata from in place operators. In particular
https://github.com/pytorch/pytorch/issues/81526 is mooted
* This fixes https://github.com/pytorch/torchdynamo/issues/519 as we no longer need to teach proxy tensor to support sparse tensor.
* No more schlepping symbolic integers from the inner fake tensor to the
outer proxy tensor. If you can make a fake tensor with symbolic ints,
you're done, nothing else to do.
To avoid having to rewrite all of the guts, when I get to the actual
proxy tensor handler, I first "fetch" the stored ProxyTensor data from
the weakmap via a tree_map, and then operate on the consequent data as
before. A more optimized implementation is possible.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83330
Approved by: https://github.com/Chillee
New namespace `torch.ops.nvprims` is meant for specific to the nvFuser set of primitives. All `impl_nvfuser` attributes are removed from `torch.ops.prims` functions.
`NvfuserPrimsMode()` context manager can be used for automatic rewrite of `torch.ops.prims` calls to `torch.ops.nvprims` when possible.
The previous way to test whether a prim would be executable with nvFuser was to test `impl_nvfuser is not None`, now all functions in the `torch.ops.nvprims` namespace are supposed to have the `impl_nvfuser` attribute and hence all are executable by nvFuser.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82155
Approved by: https://github.com/jjsjann123, https://github.com/ngimel