Commit Graph

862 Commits

Author SHA1 Message Date
Nikita Shulga
a38eeeff5c Make setup.py python 2 friendly (#46317)
Summary:
import print_function to make setup.py invoked by Python2 print human readable error:
```
% python2 setup.py
Python 2 has reached end-of-life and is no longer supported by PyTorch.
```
Also, remove `future` from the list of the PyTorch package install dependencies

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46317

Reviewed By: walterddr, bugra

Differential Revision: D24305004

Pulled By: malfet

fbshipit-source-id: 9181186170562384dd2c0e6a8ff0b1e93508f221
2020-10-14 16:37:06 -07:00
Nikita Shulga
45de2ee3ac Remove Python version upper boundary check (#46315)
Summary:
This prevents setup.py from erroring out when Python-3.9 is used

Fixes https://github.com/pytorch/pytorch/issues/46314

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46315

Reviewed By: heitorschueroff

Differential Revision: D24304846

Pulled By: malfet

fbshipit-source-id: 573a88ea8c1572d7d8a9991539effb3c228bffc9
2020-10-14 07:36:55 -07:00
Eli Uriegas
615013edcb setup: Dataclasses only when < 3.7 (#45844)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45844

Someone pointed out that dataclasses were actually added to the python
stdlib in 3.7 and not 3.8, so bumping down the dependency on dataclasses
from 3.8 -> 3.7 makes sense here

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Test Plan: Imported from OSS

Reviewed By: walterddr, malfet

Differential Revision: D24113367

Pulled By: seemethere

fbshipit-source-id: 03d2d93f7d966d48a30a8e2545fd07dfe63b4fb3
2020-10-05 13:29:21 -07:00
Michael Suo
18253f4a48 Fix BUILD_CAFFE2 if FBGEMM and NNPACK are not built (#45610)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45610

Also add to the usual documentation places that this option exists.

Test Plan: Imported from OSS

Reviewed By: gmagogsfm

Differential Revision: D24058199

Pulled By: suo

fbshipit-source-id: 81574fbd042f47587e2c7820c726fac0f68af2a7
2020-10-01 14:58:55 -07:00
Eli Uriegas
5959de3aeb setup: Only include dataclasses for py < 3.8 (#45611)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45611

dataclasses was made a standard library item in 3.8

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>

Test Plan: Imported from OSS

Reviewed By: walterddr

Differential Revision: D24031740

Pulled By: seemethere

fbshipit-source-id: 15bdf1fe0d8de9b8ba7912e4a651f06b18d516ee
2020-10-01 14:52:28 -07:00
Bugra Akyildiz
27c7158166 Remove __future__ imports for legacy Python2 supports (#45033)
Summary:
There is a module called `2to3` which you can target for future specifically to remove these, the directory of `caffe2` has the most redundant imports:

```2to3 -f future -w caffe2```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45033

Reviewed By: seemethere

Differential Revision: D23808648

Pulled By: bugra

fbshipit-source-id: 38971900f0fe43ab44a9168e57f2307580d36a38
2020-09-23 17:57:02 -07:00
Daily, Jeff
b98ac20849 install ATen/native/cuda and hip headers (#45097)
Summary:
The ATen/native/cuda headers were copied to torch/include, but then not included in the final package.  Further, add ATen/native/hip headers to the installation, as well.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/45097

Reviewed By: mruberry

Differential Revision: D23831006

Pulled By: malfet

fbshipit-source-id: ab527928185faaa912fd8cab208733a9b11a097b
2020-09-22 17:43:47 -07:00
Michael Suo
161490d441 Move torch/version.py generation to cmake (#44577)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/44577

I would like to to move this to cmake so that I can depend on it
happening from other parts of the build.

This PR pulls out the logic for determining the version string and
writing the version file into its own module. `setup.py` still receives
the version string and uses it as before, but now the code for writing
out `torch/version.py` lives in a custom command in torch/CMakeLists.txt

I noticed a small inconsistency in how version info is populated.
`TORCH_BUILD_VERSION` is populated from `setup.py` at configuration
time, while `torch/version.py` is written at build time. So if, e.g. you
configured cmake on a certain git rev, then built it in on another, the
two versions would be inconsistent.

This does not appear to matter, so I opted to preserve the existing
behavior.

Test Plan: Imported from OSS

Reviewed By: bertmaher

Differential Revision: D23734781

Pulled By: suo

fbshipit-source-id: 4002c9ec8058503dc0550f8eece2256bc98c03a4
2020-09-16 15:49:22 -07:00
Alexander Grund
d23f3170ef Remove pybind11 from required submodules (#44278)
Summary:
This can be taken from the system in which case it is not used from the submodule. Hence the check here limits the usage unnecessarily

ccing malfet

Pull Request resolved: https://github.com/pytorch/pytorch/pull/44278

Reviewed By: malfet

Differential Revision: D23568552

Pulled By: ezyang

fbshipit-source-id: 7fd2613251567f649b12eca0b1fe7663db9cb58d
2020-09-09 08:07:13 -07:00
Edward Yang
6ea89166bd Rewrite of ATen code generator (#42629)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42629

How to approach reviewing this diff:

- The new codegen itself lives in `tools/codegen`. Start with `gen.py`, then read `model.py` and them the `api/` folder. The comments at the top of the files describe what is going on. The CLI interface of the new codegen is similar to the old one, but (1) it is no longer necessary to explicitly specify cwrap inputs (and now we will error if you do so) and (2) the default settings for source and install dir are much better; to the extent that if you run the codegen from the root source directory as just `python -m tools.codegen.gen`, something reasonable will happen.
- The old codegen is (nearly) entirely deleted; every Python file in `aten/src/ATen` was deleted except for `common_with_cwrap.py`, which now permanently finds its home in `tools/shared/cwrap_common.py` (previously cmake copied the file there), and `code_template.py`, which now lives in `tools/codegen/code_template.py`. We remove the copying logic for `common_with_cwrap.py`.
- All of the inputs to the old codegen are deleted.
- Build rules now have to be adjusted to not refer to files that no longer exist, and to abide by the (slightly modified) CLI.
- LegacyTHFunctions files have been generated and checked in. We expect these to be deleted as these final functions get ported to ATen. The deletion process is straightforward; just delete the functions of the ones you are porting. There are 39 more functions left to port.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Reviewed By: bhosmer

Differential Revision: D23183978

Pulled By: ezyang

fbshipit-source-id: 6073ba432ad182c7284a97147b05f0574a02f763
2020-08-31 09:00:22 -07:00
Hong Xu
9063bcee04 Don't proceed into setup.py too far if Python version is unsupported (#42870)
Summary:
This prevents confusing errors when the interpreter encounters some
syntax errors in the middle.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42870

Reviewed By: albanD

Differential Revision: D23269265

Pulled By: ezyang

fbshipit-source-id: 61f62cbe294078ad4a909fa87aa93abd08c26344
2020-08-28 09:04:55 -07:00
Luca Wehrstedt
c30bc6d4d7 Update TensorPipe submodule (#42522)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42522

Main changes:
- Consolidated CMake files to have a single entry point, rather than having a specialized one for PyTorch.
- Changed the way the preprocessor flags are provided, and changed their name.

There were a few instances in PyTorch's CMake files where we were directly adding TensorPipe's source directory as an include path, which however doesn't contain the auto-generated header we now added. We fix that by adding the `tensorpipe` CMake target as a dependency, so that the include paths defined by TensorPipe are used, which contain that auto-generated header. So instead we link those targets to the tensorpipe target in order for them to pick up the correct include directories.

I'm turning off SHM and CMA for now because they have never been covered by the CI. I'll enable them in a separate PR so that if they turn out to be flaky we can revert that change without reverting this one.

Test Plan: CI

Reviewed By: malfet

Differential Revision: D22959472

fbshipit-source-id: 1959a41c4a66ef78bf0f3bd5e3964969a2a1bf67
2020-08-06 02:14:58 -07:00
Ralf Gommers
dc1f87c254 Add typing_extensions as a dependency. (#42431)
Summary:
Closes gh-38221.

The related pytorch/builder PR: https://github.com/pytorch/builder/pull/475

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42431

Reviewed By: malfet

Differential Revision: D22916499

Pulled By: ezyang

fbshipit-source-id: c8fe9413b62fc7a6b829fc82aaf32531b55994d1
2020-08-03 20:06:16 -07:00
Nikita Shulga
f00a37dd71 Make setup.py Python-2 syntactically correct (#41960)
Summary:
Import __future__ to make `print(*args)` a syntactically correct statement under Python-2
Otherwise, if once accidentally invokes setup.py using Python-2 interpreter they will be greeted by:
```
  File "setup.py", line 229
    print(*args)
          ^
SyntaxError: invalid syntax
```
instead of:
```
Python 2 has reached end-of-life and is no longer supported by PyTorch.
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41960

Reviewed By: orionr, seemethere

Differential Revision: D22710174

Pulled By: malfet

fbshipit-source-id: ffde3ddd585707ba1d39e57e0c6bc9c4c53f8004
2020-07-23 19:10:20 -07:00
Nikita Shulga
883e4c44b2 Raise exception when trying to build PyTorch on 32-bit Windows system (#40321)
Summary:
Makes errors in cases described in https://github.com/pytorch/pytorch/issues/27815 more obvious
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40321

Differential Revision: D22198352

Pulled By: malfet

fbshipit-source-id: 327d81103c066048dcf5f900fd9083b09942af0e
2020-06-23 16:54:20 -07:00
peter
0f39ed86a7 Cleanup debug info switches with MSVC (#39703)
Summary:
Switch off `/Z7` so that we don't generate debug info in Release and MinSizeRel builds, so that we will probably get smaller static libraries and object files and faster build time
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39703

Differential Revision: D21960684

Pulled By: ezyang

fbshipit-source-id: 909a237a138183591d667885b13fc311470eed65
2020-06-09 14:11:40 -07:00
Eli Uriegas
b7b7433561 setup: Add long description to wheel packages (#39676)
Summary:
Closes out https://github.com/pytorch/pytorch/issues/38354

For reference: https://packaging.python.org/guides/making-a-pypi-friendly-readme/

Should fill out the PyPI description as well.

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39676

Reviewed By: malfet

Differential Revision: D21940656

Pulled By: seemethere

fbshipit-source-id: 6c39500404227047d8f24936db0697fe44a6b9e8
2020-06-08 16:25:39 -07:00
Nikita Shulga
a864dbb360 Make _C extension a thin C wrapper (#39375)
Summary:
It just depends on a single `torch_python` library.
C library does not depend on standard C++ library and as result it closes https://github.com/pytorch/pytorch/issues/36941
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39375

Reviewed By: orionr

Differential Revision: D21840645

Pulled By: malfet

fbshipit-source-id: 777c189feee9d6fc686816d92cb9f109b8aac7ca
2020-06-02 13:11:59 -07:00
Meghan Lele
dd7eed5ae4 [JIT] Export JIT backend extension headers in setup.py (#38525)
Summary:
**Summary**
This commit adds the headers required to define and use JIT backends to
`package_data` in `setup.py` so that they are exported and copied to the
same place as the rest of the headers when PyTorch is installed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38525

Differential Revision: D21601806

Pulled By: SplitInfinity

fbshipit-source-id: 1615dd4047777926e013d7dd14fe427d5ffb8b70
2020-05-15 14:45:08 -07:00
David Reiss
328fc70b84 Remove (most) Python 2 support from setup.py (#35617)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35617

Python 2 has reached end-of-life and is no longer supported by PyTorch.
Now we can clean up some cruft that we put in place to support it.

Test Plan: CI

Differential Revision: D20842883

Pulled By: dreiss

fbshipit-source-id: 18dc5219ba99658c0ca7e2f26863df008c420e6a
2020-05-14 10:06:20 -07:00
Edward Yang
6edf340338 Delete torch/__init__.pyi, deferring to direct extension stubs (#38157)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38157

This removes the error prone process of assembling `torch/__init__.pyi`
(and frequently forgetting to expose things), since now we can simply
rely on the true source file to get things done.  Most of the old
codegen in gen_pyi.py is now rerouted to various files:

- `torch/_C/__init__.pyi` (the dumping pile of all misc bindings)
- `torch/_C/_nn.pyi` (NN function bindings)
- `torch/_C/_VariableFunctions.pyi` (torch function bindings)

`torch.types` grew a bunch more definitions that previously where
defined in `torch/__init__.pyi`

Some miscellaneous changes

- Fixed a bug where we treat single TensorList argument as implying
  varargs are accepted. This is actually only supported on IntList.
  This means we can correctly generate a stub for dequantize.
- Add missing manual stub for nonzero
- Switched torch/onnx/operators.py to directly refer to _C module,
  since apparently mypy doesn't think that methods prefixed with
  underscores get reexported.  This may be a recurring theme; maybe
  we need to find a better way to solve it.

Because I was really lazy, I dumped namedtuple definitions in both
`torch._C` and `torch._C._VariableFunctions`.  This is definitely wrong.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D21497400

Pulled By: ezyang

fbshipit-source-id: 07b126141c82efaca37be27c07255cb2b9b3f064
2020-05-11 07:20:13 -07:00
Jerry Zhang
0ed7fc581c [quant][graphmode][refactor] Split quantization.cpp (#37975)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37975

Test Plan:
.

Imported from OSS

Differential Revision: D21468497

fbshipit-source-id: 35cbf98a344ca6e4094d616a4040eacf017fd2de
2020-05-08 12:24:50 -07:00
peter
c5d6f59ab1 Replacing EHa with EHsc (#37235)
Summary:
We should not rely on the async exceptions. Catching C++ only exception is more sensible and may get a boost in both space (1163 MB -> 1073 MB, 0.92x) and performance(51m -> 49m, 0.96x).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37235

Differential Revision: D21256918

Pulled By: ezyang

fbshipit-source-id: 572ee96f2e4c48ad13f83409e4e113483b3a457a
2020-04-28 08:20:37 -07:00
Mo Zhou
5b9f7f7b0e [cmake] Add USE_SYSTEM_{GLOO,FP16,PTHREADPOOL,PSIMD,FXDIV,BENCHMARK} options (#14699) (#37277)
Summary:
These options are disabled by default, and are supposed to be used by
linux distro developers. With the existing shortcut option
USE_SYSTEM_LIBS toggled, these new options will be enabled as well.

Additionally, when USE_SYSTEM_LIBS is toggled, setup.py should
no longer check the existence of git submodules.

ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37277

Differential Revision: D21256999

Pulled By: ezyang

fbshipit-source-id: 84f97d008db5a5e41a289cb7bce94906de3c52cf
2020-04-27 09:37:27 -07:00
Mo Zhou
ff21b15624 cmake: add USE_SYSTEM_{LIBS,CPUINFO,SLEEF} options (#14699) (#37137)
Summary:
ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37137

Differential Revision: D21222632

Pulled By: ezyang

fbshipit-source-id: 47624b30f8d07b31a40a26edf665bbec39e45202
2020-04-23 20:43:36 -07:00
Christian Kastner
6df90bcecc setup.py: Remove conflicting double documentation of USE_FBGEMM (#36993)
Summary:
Line 33+ contains instructions on how to disable use, 108+ on how to enable it.
The default in CMakeLists.txt is enabled, so drop the latter.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36993

Differential Revision: D21161793

Pulled By: ngimel

fbshipit-source-id: 08c5eecaf8768491f90d4a52c338ecea32a0c35e
2020-04-21 22:33:49 -07:00
David Reiss
3c85f44ce8 Fail setup.py if trying to set up with Python 2 (#35613)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35613

Python 2 has reached end-of-life and is no longer supported by PyTorch.
To spare users from a long, doomed setup when trying to use PyTorch with
Python 2, detect this case early and fail with a clear message.  This
commit covers setup.py.

Test Plan: Attempted to build PyTorch with Python 2 and saw a clear error *quickly*.

Differential Revision: D20842881

Pulled By: dreiss

fbshipit-source-id: caaaa0dbff83145ff668bd25df6d7d4b3ce12e47
2020-04-16 10:24:03 -07:00
peter
b9260bdb7b Don't build deps for python setup.py egg_info (#36208)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/36207.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36208

Differential Revision: D20919649

Pulled By: ezyang

fbshipit-source-id: b5242a540181b29dba8987fb5f00332e1e81ca98
2020-04-08 09:02:01 -07:00
Sebastian Messmer
7ee88d61f7 Rename boxing/unboxing files and utilities (#35411)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35411

The file and class names in ATen/core/boxing were quite confusing.
Let's rename them for readability.

Also move function schema inference out of the boxing logic into op_registration.h where it belongs.
ghstack-source-id: 101539206

Test Plan: waitforsandcastle

Differential Revision: D20653621

fbshipit-source-id: 6a79c73d5758bee1e072d543c030913b18a69c7c
2020-04-04 14:13:28 -07:00
Feng Tian
762270c51f add c10d dynamic loading mechanism and unit test (#28068)
Summary:
The original behavior of pytorch c10d only supports built-in c10d backends, such as
nccl/gloo/mpi. This patch is used to extend the c10d capability to support dynamically
loading 3rd party communication libraries which are derived from ProcessGroup base class.

related RFC is in: https://github.com/pytorch/pytorch/issues/27955

Through this way, user just need specify a 3rd party c10d backend name when invoking
torch.distributed.init_process_group(). The proposed logic will try to load corresponding
c10d backend cpp extension automatically. as for how to develop a new 3rd party c10d backend
through cpp extension, pls refer to test/cpp_extensions/cpp_c10d_extension.cpp
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28068

Differential Revision: D19174838

Pulled By: agolynski

fbshipit-source-id: 3409a504a43ce7260e6f9d1207c00e87471fac62
2020-04-02 15:46:51 -07:00
Orion Reblitz-Richardson
f101949390 Remove python2 support from setup.py (#35539)
Summary:
As a followup to https://github.com/pytorch/pytorch/pull/35042 this removes python2 from setup.py and adds Python 3.8 to the list of supported versions. We're already testing this in CircleCI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35539

Differential Revision: D20709060

Pulled By: orionr

fbshipit-source-id: 5d40bc14cb885374fec370fc7c5d3cde8769039a
2020-03-27 14:33:11 -07:00
pinzhenx
bd604cb5b7 Upgrade MKL-DNN to DNNL v1.2 (#32422)
Summary:
## Motivation

This PR upgrades MKL-DNN from v0.20 to DNNL v1.2 and resolves https://github.com/pytorch/pytorch/issues/30300.

DNNL (Deep Neural Network Library) is the new brand of MKL-DNN, which improves performance, quality, and usability over the old version.

This PR focuses on the migration of all existing functionalities, including minor fixes, performance improvement and code clean up. It serves as the cornerstone of our future efforts to accommodate new features like OpenCL support, BF16 training, INT8 inference, etc. and to let the Pytorch community derive more benefits from the Intel Architecture.

<br>

## What's included?

Even DNNL has many breaking changes to the API, we managed to absorb most of them in ideep. This PR contains minimalist changes to the integration code in pytorch. Below is a summary of the changes:

<br>

**General:**

1. Replace op-level allocator with global-registered allocator

```
// before
ideep::sum::compute<AllocForMKLDNN>(scales, {x, y}, z);

// after
ideep::sum::compute(scales, {x, y}, z);
```

The allocator is now being registeted at `aten/src/ATen/native/mkldnn/IDeepRegistration.cpp`. Thereafter all tensors derived from the `cpu_engine` (by default) will use the c10 allocator.

```
RegisterEngineAllocator cpu_alloc(
  ideep::engine::cpu_engine(),
  [](size_t size) {
    return c10::GetAllocator(c10::DeviceType::CPU)->raw_allocate(size);
  },
  [](void* p) {
    c10::GetAllocator(c10::DeviceType::CPU)->raw_deallocate(p);
  }
);
```
------

2. Simplify group convolution

We had such a scenario in convolution where ideep tensor shape mismatched aten tensor: when `groups > 1`, DNNL expects weights tensors to be 5-d with an extra group dimension, e.g. `goihw` instead of `oihw` in 2d conv case.

As shown below, a lot of extra checks came with this difference in shape before. Now we've completely hidden this difference in ideep and all tensors are going to align with pytorch's definition. So we could safely remove these checks from both aten and c2 integration code.

```
// aten/src/ATen/native/mkldnn/Conv.cpp

if (w.ndims() == x.ndims() + 1) {
  AT_ASSERTM(
      groups > 1,
      "Only group _mkldnn_conv2d weights could have been reordered to 5d");
  kernel_size[0] = w.get_dim(0) * w.get_dim(1);
  std::copy_n(
      w.get_dims().cbegin() + 2, x.ndims() - 1, kernel_size.begin() + 1);
} else {
  std::copy_n(w.get_dims().cbegin(), x.ndims(), kernel_size.begin());
}
```

------

3. Enable DNNL built-in cache

Previously, we stored DNNL jitted kernels along with intermediate buffers inside ideep using an LRU cache. Now we are switching to the newly added DNNL built-in cache, and **no longer** caching buffers in order to reduce memory footprint.

This change will be mainly reflected in lower memory usage from memory profiling results. On the code side, we removed couple of lines of `op_key_` that depended on the ideep cache before.

------

4. Use 64-bit integer to denote dimensions

We changed the type of `ideep::dims` from `vector<int32_t>` to `vector<int64_t>`. This renders ideep dims no longer compatible with 32-bit dims used by caffe2. So we use something like `{stride_.begin(), stride_.end()}` to cast parameter `stride_` into a int64 vector.

<br>

**Misc changes in each commit:**

**Commit:** change build options

Some build options were slightly changed, mainly to avoid name collisions with other projects that include DNNL as a subproject. In addition, DNNL built-in cache is enabled by option `DNNL_ENABLE_PRIMITIVE_CACHE`.

Old | New
-- | --
WITH_EXAMPLE | MKLDNN_BUILD_EXAMPLES
WITH_TEST | MKLDNN_BUILD_TESTS
MKLDNN_THREADING | MKLDNN_CPU_RUNTIME
MKLDNN_USE_MKL | N/A (not use MKL anymore)

------

**Commit:** aten reintegration

- aten/src/ATen/native/mkldnn/BinaryOps.cpp

    Implement binary ops using new operation `binary` provided by DNNL

- aten/src/ATen/native/mkldnn/Conv.cpp

    Clean up group convolution checks
    Simplify conv backward integration

- aten/src/ATen/native/mkldnn/MKLDNNConversions.cpp

    Simplify prepacking convolution weights

- test/test_mkldnn.py

    Fixed an issue in conv2d unit test: it didn't check conv results between mkldnn and aten implementation before. Instead, it compared the mkldnn with mkldnn as the default cpu path will also go into mkldnn. Now we use `torch.backends.mkldnn.flags` to fix this issue

- torch/utils/mkldnn.py

    Prepack weight tensor on module `__init__` to achieve better performance significantly

------

**Commit:** caffe2 reintegration

- caffe2/ideep/ideep_utils.h

    Clean up unused type definitions

- caffe2/ideep/operators/adam_op.cc & caffe2/ideep/operators/momentum_sgd_op.cc

   Unify tensor initialization with `ideep::tensor::init`. Obsolete `ideep::tensor::reinit`

- caffe2/ideep/operators/conv_op.cc & caffe2/ideep/operators/quantization/int8_conv_op.cc

    Clean up group convolution checks
    Revamp convolution API

- caffe2/ideep/operators/conv_transpose_op.cc

    Clean up group convolution checks
    Clean up deconv workaround code

------

**Commit:** custom allocator

- Register c10 allocator as mentioned above

<br><br>

## Performance

We tested inference on some common models based on user scenarios, and most performance numbers are either better than or on par with DNNL 0.20.

ratio: new / old | Latency (batch=1 4T) | Throughput (batch=64 56T)
-- | -- | --
pytorch resnet18 | 121.4% | 99.7%
pytorch resnet50 | 123.1% | 106.9%
pytorch resnext101_32x8d | 116.3% | 100.1%
pytorch resnext50_32x4d | 141.9% | 104.4%
pytorch mobilenet_v2 | 163.0% | 105.8%
caffe2 alexnet | 303.0% | 99.2%
caffe2 googlenet-v3 | 101.1% | 99.2%
caffe2 inception-v1 | 102.2% | 101.7%
caffe2 mobilenet-v1 | 356.1% | 253.7%
caffe2 resnet101 | 100.4% | 99.8%
caffe2 resnet152 | 99.8% | 99.8%
caffe2 shufflenet | 141.1% | 69.0% †
caffe2 squeezenet | 98.5% | 99.2%
caffe2 vgg16 | 136.8% | 100.6%
caffe2 googlenet-v3 int8 | 100.0% | 100.7%
caffe2 mobilenet-v1 int8 | 779.2% | 943.0%
caffe2 resnet50 int8 | 99.5% | 95.5%

_Configuration:
Platform: Skylake 8180
Latency Test: 4 threads, warmup 30, iteration 500, batch size 1
Throughput Test: 56 threads, warmup 30, iteration 200, batch size 64_

† Shufflenet is one of the few models that require temp buffers during inference. The performance degradation is an expected issue since we no longer cache any buffer in the ideep. As for the solution, we suggest users opt for caching allocator like **jemalloc** as a drop-in replacement for system allocator in such heavy workloads.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32422

Test Plan:
Perf results: https://our.intern.facebook.com/intern/fblearner/details/177790608?tab=Experiment%20Results

10% improvement for ResNext with avx512, neutral on avx2

More results: https://fb.quip.com/ob10AL0bCDXW#NNNACAUoHJP

Reviewed By: yinghai

Differential Revision: D20381325

Pulled By: dzhulgakov

fbshipit-source-id: 803b906fd89ed8b723c5fcab55039efe3e4bcb77
2020-03-26 22:07:59 -07:00
Pavel Belevich
11a40410e7 pybind11 type_caster for at::Generator and custom RNG python test (#34774)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34774

This PR provides pybind11's `type_caster<at::Generator>` that allows mapping `at::Generator` instance returned from user-defined method to python `torch::Generator`, defined as `THPGenerator ` c++ class.

This allows 1) defining custom RNG in c++ extension 2) using custom RNG in python code.

`TestRNGExtension.test_rng` shows how to use custom RNG defined in `rng_extension.cpp`

Test Plan: Imported from OSS

Differential Revision: D20549451

Pulled By: pbelevich

fbshipit-source-id: 312a6deccf8228f7f60695bbf95834620d52f5eb
2020-03-22 10:57:35 -07:00
Nikita Shulga
d3f5045bf5 PyTorch should always depend on future (#35057)
Summary:
Because `past` is used in `caffe2.python.core`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35057

Test Plan: CI

Differential Revision: D20547042

Pulled By: malfet

fbshipit-source-id: cad2123c7b88271fea37f21e616df551075383a8
2020-03-19 17:31:47 -07:00
Eli Uriegas
275f5c8049 setup.py: Add numpy as required for install_requires (#34510)
Summary:
Was originally not a requirement but we should add it back here since
it's required on import and we require it anyways for our conda
packages.

Tested with:

```
❯ pkginfo -f requires_dist *.whl
requires_dist: ['numpy']
```

Signed-off-by: Eli Uriegas <eliuriegas@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34510

Differential Revision: D20352125

Pulled By: seemethere

fbshipit-source-id: 383e396fe500ed7043d83c3df57d1772d0fff1e6
2020-03-17 13:31:55 -07:00
Nikita Shulga
6d790c3611 Mark PyTorch incompatible with python-3.6.0 (#34724)
Summary:
Per https://github.com/pytorch/pytorch/issues/19161 PyTorch is incompatible with 3.6.0 due to the missing `PySlice_Unpack`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34724

Test Plan: CI + try to load pytorch binary using python-3.6.0

Differential Revision: D20449052

Pulled By: malfet

fbshipit-source-id: 2c787fc64f5d1377c7f935ad2f3c77f46723d7dd
2020-03-13 15:22:34 -07:00
Nikita Shulga
dd7cec680c Do not use clang if it can not parse system extensions (#34549)
Summary:
Attempt to build pytorch with ASAN on system with gcc-8 fails due to the mismatch system compilation flags.
Address the issue by using original compiler to build `torch._C` extension
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34549

Test Plan: Run `.jenkins/pytorch/build-asan.sh` on FC-30

Differential Revision: D20373781

Pulled By: malfet

fbshipit-source-id: 041c8d25f96b4436385a5e0eb6fc46e9b5fdf3f1
2020-03-10 15:40:08 -07:00
xiaobing.zhang
b678256bfb Move glu to Aten(CPU) (#33179)
Summary:
This PR move glu to Aten(CPU).
Test script:
```
import torch
import torch.nn.functional as F
import time

torch.manual_seed(0)

def _time():
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    return time.time()

device = "cpu"

#warm up
for n in [10, 100, 1000, 10000]:
    input = torch.randn(128, n, requires_grad=True, device=device)
    grad_output = torch.ones(128, n // 2, device=device)
    for i in range(1000):
        output = F.glu(input)
        output.backward(grad_output)

for n in [10, 100, 1000, 10000]:
    fwd_t = 0
    bwd_t = 0
    input = torch.randn(128, n, requires_grad=True, device=device)
    grad_output = torch.ones(128, n // 2, device=device)
    for i in range(10000):
        t1 = _time()
        output = F.glu(input)
        t2 = _time()
        output.backward(grad_output)
        t3 = _time()
        fwd_t = fwd_t + (t2 -t1)
        bwd_t = bwd_t + (t3 - t2)
    fwd_avg = fwd_t / 10000 * 1000
    bwd_avg = bwd_t / 10000 * 1000
    print("input size(128, %d) forward time is %.2f (ms); backwad avg time is %.2f (ms)."
          % (n, fwd_avg, bwd_avg))
```
Test device: **skx-8180.**
Before:
```
input size(128, 10) forward time is 0.04 (ms); backwad avg time is 0.08 (ms).
input size(128, 100) forward time is 0.06 (ms); backwad avg time is 0.14 (ms).
input size(128, 1000) forward time is 0.11 (ms); backwad avg time is 0.31 (ms).
input size(128, 10000) forward time is 1.52 (ms); backwad avg time is 2.04 (ms).
```
After:
```
input size(128, 10) forward time is 0.02 (ms); backwad avg time is 0.05 (ms).
input size(128, 100) forward time is 0.04 (ms); backwad avg time is 0.09 (ms).
input size(128, 1000) forward time is 0.07 (ms); backwad avg time is 0.17 (ms).
input size(128, 10000) forward time is 0.13 (ms); backwad avg time is 1.03 (ms).
```
Fix https://github.com/pytorch/pytorch/issues/24707, https://github.com/pytorch/pytorch/issues/24708.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33179

Differential Revision: D19839835

Pulled By: VitalyFedyunin

fbshipit-source-id: e4d3438556a1068da2c4a7e573d6bbf8d2a6e2b9
2020-02-28 14:54:38 -08:00
Michael Suo
dbe850af5b [jit] do the code reorg (#33851)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33851

Rationale and context described in #33828.

Script to reproduce the move:
https://gist.github.com/suo/16cbefaaeb67ca5a7c6caffd49b7f6e9
ghstack-source-id: 99079645

Test Plan: Make sure CI passes

Reviewed By: jamesr66a

Differential Revision: D20133869

fbshipit-source-id: 390e9241a9c85366d9005c492ac31f10aa96488e
2020-02-27 13:02:51 -08:00
Pavel Belevich
b1c85dd916 Custom RNG DispatchKey (#32325)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32325

The purpose of this PR is to enable PyTorch dispatching on `at::Generator*` parameters and demonstrate how it can be used in cpp extensions to implement custom RNG.
1. `CustomRNGKeyId` value added to DispatchKey enum and `DispatchKeySet key_set_` added to `at::Generator`
2. The overloaded `operator()(at::Generator* gen)` added to MultiDispatchKeySet.
3. The existing CPUGenerator and CUDAGenerator class are supplied with CPUTensorId and CUDATensorId dispatch keys
4. The implementation of CPU's `cauchy_kernel`(as an example, because it's already moved to ATen) was templatized and moved to `ATen/native/cpu/DistributionTemplates.h` to make it available for cpp extensions
5. Minor CMake changes to make native/cpu tensors available for cpp extensions
6. RegisterCustomRNG test that demonstrates how CustomCPUGenerator class can be implemented and how custom_rng_cauchy_ native function can be registered to handle Tensor::cauchy_ calls.

Test Plan: Imported from OSS

Differential Revision: D19604558

Pulled By: pbelevich

fbshipit-source-id: 2619f14076cee5742094a0be832d8530bba72728
2020-01-29 11:30:04 -08:00
Pritam Damania
f050b16dd9 Move pytorch distributed tests to separate folder for contbuild. (#30445)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30445

Create distributed and rpc directories under caffe/test for better management
of unit tests.

Differential Revision: D18702786

fbshipit-source-id: e9daeed0cfb846ef68806f6decfcb57c0e0e3606
2020-01-22 21:16:59 -08:00
ashish
9a4219eb39 Install complete set of headers for ROCm build (#32076)
Summary:
This PR adds a more complete list of pytorch header files to be installed at build time. It also fixes one instance of including a header from local src directory instead of installed directory.
A more complete set of headers enable other modules to correctly work with pyTorch built for ROCm.

cc: ezyang bddppq iotamudelta
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32076

Differential Revision: D19372933

Pulled By: ezyang

fbshipit-source-id: 3b5f3241c001fa05ea448c359a706ce9a8214aa0
2020-01-13 08:33:28 -08:00
Edward Yang
4ef9daf7b2 Remove dead CAFFE2_LIBS variable (#31155)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/31155

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D19262584

Pulled By: ezyang

fbshipit-source-id: 147ac5a9c36e813ea9a2f68b498880942d661be5
2020-01-06 14:39:47 -08:00
zrphercule
c564d794ed Add ATen/native/ headers to torch target (#30835)
Summary:
We dont have ATen/native/*.h in torch target before, and we would like it to be exposed for external use.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30835

Differential Revision: D18836160

Pulled By: zrphercule

fbshipit-source-id: 7330a9c9d8b65f173cc332b1cfeeb18c7dca20a8
2019-12-05 13:24:21 -08:00
Sebastian Messmer
bc2e6d10fa Back out "Revert D17908478: Switch PyTorch/Caffe2 to C++14"
Summary: Original commit changeset: 775d2e29be0b

Test Plan: CI

Reviewed By: mruberry

Differential Revision: D18775520

fbshipit-source-id: a350b3f86b66d97241f208786ee67e9a51172eac
2019-12-03 14:33:43 -08:00
Sebastian Messmer
a2ed50c920 Revert D17908478: Switch PyTorch/Caffe2 to C++14
Test Plan: revert-hammer

Differential Revision:
D17908478

Original commit changeset: 6e340024591e

fbshipit-source-id: 775d2e29be0bc3a0db64f164c8960c44d4877d5d
2019-11-27 14:57:05 -08:00
Sebastian Messmer
d0acc9c085 Switch PyTorch/Caffe2 to C++14 (#30406)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30406

ghstack-source-id: 94642238

Test Plan: waitforsandcastle

Differential Revision: D17908478

fbshipit-source-id: 6e340024591ec2c69521668022999df4a33b4ddb
2019-11-27 10:47:31 -08:00
Thomas Viehmann
7889e1e3f9 Add torch.version.hip from cmake (#29815)
Summary:
This adds the HIP_VERSION cmake variable as hip_version.
This should help detecting ROCm, e.g. in https://github.com/pytorch/pytorch/issues/22091.

To parallel CUDA, hip_version is a string.
An alternative variant might be to split by '.' and only take the first two parts.
The method suffers a bit from ROCm not being as monolithic as CUDA.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29815

Differential Revision: D18532267

Pulled By: bddppq

fbshipit-source-id: 1bde4ad0cfacc47bfd1c0945e130921d8575a5bf
2019-11-15 12:03:15 -08:00
Junjie Bai
b0c245d52d Consolidate the places that find pybind11 include dirs (#29659)
Summary:
Also move the logic that installs the pybind11 headers from setup.py to cmake (to align with other headers).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29659

Differential Revision: D18458208

Pulled By: bddppq

fbshipit-source-id: cfd1e74b892d4a65591626ab321780c8c87b810d
2019-11-12 14:51:56 -08:00
zrphercule
eae4a69069 Add quantized fbgemm headers to torch target (#29418)
Summary:
We dont have ATen/native/quantized/cpu/*.h in torch target before, and we would like it to be exposed for external use.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29418

Differential Revision: D18383534

Pulled By: zrphercule

fbshipit-source-id: 72c06ae2c10e8cc49e7256c9e9b89288263bbfde
2019-11-08 14:32:19 -08:00
peter
d05da7dad3 Fix virtualenv builds on Windows (#29273)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29058.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29273

Differential Revision: D18349822

Pulled By: ezyang

fbshipit-source-id: c4d76521cc0742d890f22f1d7f32dede5600b651
2019-11-06 09:02:30 -08:00
qzhong0605
50fd20b64a fix bug on setup.py to include header files on caffe2/utils/math (#28869)
Summary:
This problem is from issue [https://github.com/pytorch/pytorch/issues/28753](https://github.com/pytorch/pytorch/issues/28753)

The header files on directories`math` and `threadpool` should be included on the built package because they are included on the other header files, such as on file `torch/include/caffe2/utils/math.h`
```
#include "caffe2/core/common.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/math/broadcast.h"
#include "caffe2/utils/math/elementwise.h"
#include "caffe2/utils/math/reduce.h"
#include "caffe2/utils/math/transpose.h"
#include "caffe2/utils/math/utils.h"
```
But the `setup.py` doesn't include the header files on `master` branch. The header files on `utils` directory of a built `torch` package are the following:
```
> ls include/caffe2/utils
bench_utils.h  conversions.h  eigen_utils.h    map_utils.h    murmur_hash3.h   proto_wrap.h      smart_tensor_printer.h
cast.h         cpuid.h        filler.h         math-detail.h  proto_convert.h  signal_handler.h  string_utils.h
cblas.h        cpu_neon.h     fixed_divisor.h  math.h         proto_utils.h    simple_queue.h    zmq_helper.h
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28869

Differential Revision: D18226319

Pulled By: soumith

fbshipit-source-id: 51575ddc559181c069b3324aa9b2d1669310ba25
2019-10-30 11:11:15 -07:00
Wanchao Liang
4beaf1cf1c add typing runtime dependency for py2
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/28442

Test Plan: Imported from OSS

Differential Revision: D18075498

fbshipit-source-id: 075f63b1ed2c83d9a64eb81224e0d67c6a63b22c
2019-10-22 22:02:08 -07:00
Hong Xu
a5354adb08 Eliminate the use of CUDA_HOME in setup.py. (#28373)
Summary:
Variables read from CMakeCache.txt are more reliable.

Close https://github.com/pytorch/pytorch/issues/28365
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28373

Differential Revision: D18061855

Pulled By: ezyang

fbshipit-source-id: c550a365e23464411d75eca167f7e6e053f94872
2019-10-22 14:04:54 -07:00
Rohan Varma
badb08d577 Add clip_grad_norm_ to c++ api (#26140)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26140

Per https://github.com/pytorch/pytorch/issues/25883, we want to work
towards C++/Python API parity. This diff adds clip_grad_norm_ to the c++ API to
improve parity.

ghstack-source-id: 91334333
ghstack-source-id: 91334333

Test Plan: Added a unit test

Differential Revision: D17312367

fbshipit-source-id: 753ba3a4d084d01f3cc8919da3108e67c809ad65
2019-10-04 13:50:36 -07:00
Hong Xu
081069e8ca Remove CUDA_VERSION from Python script (which has already been detected in CMake) (#27316)
Summary:
(Intentionally left blank)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27316

Differential Revision: D17762715

Pulled By: ezyang

fbshipit-source-id: 044c0ea6e8c2d12912c946a9a50b934b5253d8c8
2019-10-04 07:49:57 -07:00
Pavel Belevich
493c900810 Extract version to version.txt (#27149)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27149

Extract version to version.txt and add reading version logic to setup.py and fb/torch_version.py
ghstack-source-id: 91271883

Test Plan: N/A

Reviewed By: gchanan, ezyang

Differential Revision: D17689307

fbshipit-source-id: 21899502027cec71b63d9dc151e09ff5ff3f279d
2019-10-03 12:13:15 -07:00
Hong Xu
5e5cbceeba remove tools/setup_helpers/cudnn.py (#25876)
Summary:
FindCUDNN.cmake and cuda.cmake have done the detection. This commit deletes `tools/setup_helpers/cudnn.py` as it is no longer needed.

Previously in https://github.com/pytorch/pytorch/issues/25482, one test failed because TensorRT detects cuDNN differently, and there may be situations we can find cuDNN but TensorRT cannot. This is fixed by passing our detection result down to TensorRT.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25876

Differential Revision: D17346270

Pulled By: ezyang

fbshipit-source-id: c1e7ad4a1cb20f964fe07a72906f2f002425d894
2019-09-24 07:44:33 -07:00
Sebastian Messmer
ed207b53ab c10::KernelFunction (#26337)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26337

- Factor out boxing and unboxing functionality from the c10 dispatcher into a c10::KernelFunction class
- Move that class and everything else it depends on into ATen/core/boxing
- This also allows us to get rid of c10::KernelCache. Instead, we now store a pointer to the unboxed functor in c10::KernelFunction.
- We're also getting rid of the DispatchTableEntry struct and instead store KernelFunction directly.
- To make this work, we need to change the dispatcher calling API from Dispatcher::lookup().callBoxed/callUnboxed and OperatorEntry::lookup().callBoxed/callUnboxed to Dispatcher::callBoxed/callUnboxed and OperatorEntry::callBoxed/callUnboxed.

ghstack-source-id: 90459911

Test Plan: unit tests

Differential Revision: D17416607

fbshipit-source-id: fd221f1d70eb3f1b4d33092eaa7e37d25684c934
2019-09-20 18:55:25 -07:00
Will Feng
57a4b7c55d Re-organize C++ API torch::nn folder structure (#26262)
Summary:
This PR aims to re-organize C++ API `torch::nn` folder structure in the following way:
- Every module in `torch/csrc/api/include/torch/nn/modules/` (except `any.h`, `named_any.h`, `modulelist.h`, `sequential.h`, `embedding.h`) has a strictly equivalent Python file in `torch/nn/modules/`. For  example:
`torch/csrc/api/include/torch/nn/modules/pooling.h` -> `torch/nn/modules/pooling.py`
`torch/csrc/api/include/torch/nn/modules/conv.h` -> `torch/nn/modules/conv.py`
`torch/csrc/api/include/torch/nn/modules/batchnorm.h` -> `torch/nn/modules/batchnorm.py`
`torch/csrc/api/include/torch/nn/modules/sparse.h` -> `torch/nn/modules/sparse.py`
- Containers such as  `any.h`, `named_any.h`, `modulelist.h`, `sequential.h` are moved into `torch/csrc/api/include/torch/nn/modules/container/`, because their implementations are too long to be combined into one file (like `torch/nn/modules/container.py` in Python API)
- `embedding.h` is not renamed to `sparse.h` yet, because we have another work stream that works on API parity for Embedding and EmbeddingBag, and renaming the file would cause conflict. After the embedding API parity work is done, we will rename `embedding.h` to  `sparse.h` to match the Python file name, and move the embedding options out to options/ folder.
- `torch/csrc/api/include/torch/nn/functional/` is added, and the folder structure mirrors that of `torch/csrc/api/include/torch/nn/modules/`. For example, `torch/csrc/api/include/torch/nn/functional/pooling.h` contains the functions for pooling, which are then used by the pooling modules in `torch/csrc/api/include/torch/nn/modules/pooling.h`.
- `torch/csrc/api/include/torch/nn/options/` is added, and the folder structure mirrors that of `torch/csrc/api/include/torch/nn/modules/`. For example, `torch/csrc/api/include/torch/nn/options/pooling.h` contains MaxPoolOptions, which is used by both MaxPool modules in `torch/csrc/api/include/torch/nn/modules/pooling.h`, and max_pool functions in `torch/csrc/api/include/torch/nn/functional/pooling.h`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26262

Differential Revision: D17422426

Pulled By: yf225

fbshipit-source-id: c413d2a374ba716dac81db31516619bbd879db7f
2019-09-17 10:07:29 -07:00
Ailing Zhang
079cd4e1fc Remove requests as dependency (#26083)
Summary:
local build is slow... test in CI...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26083

Differential Revision: D17346949

Pulled By: ailzhang

fbshipit-source-id: f552d1a4be55ad4e2bd915af7c5a2c1b6667c446
2019-09-13 08:39:53 -07:00
Hong Xu
8a026d4f74 Remove tools/setup_helpers/dist_check.py (#25879)
Summary:
What dist_check.py does is largely merely determining whether we should
use set "USE_IBVERBS" to ON or OFF when the user sets "USE_GLOO_IBVERBS"
to ON. But this is unnecessary, because this complicated determination
will always be overrided by gloo:

2101e02cea/cmake/Dependencies.cmake (L19-L28)

Since dist_check.py becomes irrelevant, this commit also simplifies the
setting of `USE_DISTRIBUTED` (by removing its explicit setting in Python scripts), and deprecate `USE_GLOO_IBVERBS` in favor
of `USE_IBVERBS`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25879

Differential Revision: D17282395

Pulled By: pietern

fbshipit-source-id: a10735f50728d89c3d81fd57bcd26764e7f84dd1
2019-09-10 04:33:28 -07:00
Edward Yang
97b432bdf0 Back out "[pytorch][PR] remove tools/setup_helpers/cudnn.py"
Summary:
Original commit changeset: abd9cd0244ca

(Note: this ignores all push blocking failures!)

Test Plan: none

Reviewed By: nairbv

Differential Revision: D17259003

fbshipit-source-id: d7e067eeb36192766c639bfcbc66f540ce8eb77e
2019-09-09 06:47:45 -07:00
Hong Xu
66ac6698f6 remove tools/setup_helpers/cudnn.py (#25482)
Summary:
FindCUDNN.cmake and cuda.cmake have done the detection. This commit deletes `tools/setup_helpers/cudnn.py` as it is no longer needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25482

Differential Revision: D17226408

Pulled By: ezyang

fbshipit-source-id: abd9cd0244cabea1f5d9f93f828d632d77c8dd5e
2019-09-06 06:54:35 -07:00
Pieter Noordhuis
3556bea5aa Build torch.distributed with Gloo backend on macOS (#25260)
Summary:
In facebookincubator/gloo#212, a libuv based Gloo transport was introduced,
which allows us to use Gloo on macOS (and later perhaps also Windows). This
commit updates CMake code to enable building with USE_DISTRIBUTED=1 on macOS.

A few notes:
* The Caffe2 ops are not compiled, for they depend on `gloo::transport::tcp`.
* The process group implementation uses `gloo::transport::tcp` on Linux (because of `epoll(2)` on Linux and `gloo::transport::uv` on macOS).
* The TCP store works but sometimes crashes on process termination.
* The distributed tests are not yet run.
* The nightly builds don't use `USE_DISTRIBUTED=1`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/25260

Reviewed By: mrshenli

Differential Revision: D17202381

Pulled By: pietern

fbshipit-source-id: ca80a82e78a05b4154271d2fb0ed31c8d9f26a7c
2019-09-05 07:09:50 -07:00
James Reed
f71ddd4292 Switch hub to use requests because of SSL (#25083)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25083

I missed this in the last PR

Test Plan: Imported from OSS

Differential Revision: D17005372

Pulled By: jamesr66a

fbshipit-source-id: 1200a6cd88fb9051aed8baf3162a9f8ffbf65189
2019-08-24 12:06:49 -07:00
Hong Xu
1a9334ea59 Hotpatch CXXFLAGS to be the same as CFLAGS if CXXFLAGS is not set. (#23568)
Summary:
This fixes build regression caused by https://github.com/pytorch/pytorch/issues/23528 because we used to let CXXFLAGS equal CFLAGS.

cc suo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23568

Differential Revision: D16568820

Pulled By: suo

fbshipit-source-id: 64a0dc923c08ac1751224f42bc4ccdc707341762
2019-08-07 16:25:57 -07:00
Hugo
0f5d071d52 Add python_requires to help pip (#23863)
Summary:
`python_requires` helps the installer choose the correct version of this package for the user's running Python.

This is especially necessary when dropping Python 2 (https://github.com/pytorch/pytorch/issues/23795) but is useful now too.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23863

Differential Revision: D16692908

Pulled By: soumith

fbshipit-source-id: 3c9ba2eb1d1cf12763d6284daa4f18f605abb373
2019-08-07 12:47:53 -07:00
Edward Yang
a1d945b295 Roll master to 1.3.0 (#23895)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23895

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D16688489

Pulled By: ezyang

fbshipit-source-id: a56d0180a0bc57775badd9e31ea3d441d5fd4f88
2019-08-07 08:44:32 -07:00
Soumith Chintala
6313d5e28b add appropriate install_requires (#23722)
Summary:
This adds:
- dependency on numpy if compiled with numpy support
- dependency on future if python <= 2.7

Fixes https://github.com/pytorch/pytorch/issues/23670
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23722

Differential Revision: D16643824

Pulled By: soumith

fbshipit-source-id: 5cf4d79cd188678cb2328c4286eabd52a2a86fcd
2019-08-04 17:24:19 -07:00
Soumith Chintala
dded794eeb add setup metadata to help PyPI flesh out content on pypi package page (#22085)
Summary:
add setup metadata to help PyPI flesh out content on pypi package page.

Apparently this might help flesh out the "Used By" feature according to driazati
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22085

Differential Revision: D16604703

Pulled By: soumith

fbshipit-source-id: ddb4f7ba7c24fdf718260aed28cc7bc9afb46de9
2019-08-01 12:15:56 -07:00
Ilia Cherniavskii
74f8094ea5 Rename threading build options
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23407

Test Plan:
USE_CUDA=0 ATEN_THREADING=TBB USE_OPENMP=0 USE_TBB=1 MKL_THREADING=TBB
BLAS=MKL USE_MKLDNN=1 MKLDNN_THREADING=TBB BUILD_BINARY=1 python
setup.py develop install --cmake

./build/bin/parallel_info

Imported from OSS

Differential Revision: D16522538

Pulled By: ilia-cher

fbshipit-source-id: 75c4761d93a7f5936f28e4c5eedcd27d8490d0c5
2019-07-26 13:09:14 -07:00
Hong Xu
82545ecc71 Specify build dir as a global variable in BUILD_DIR in the build system.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23318

Test Plan: Imported from OSS

Differential Revision: D16493987

Pulled By: ezyang

fbshipit-source-id: 497e9dd924280f61dde095b4f2b50f5402d9da97
2019-07-25 07:19:47 -07:00
Hong Xu
fd1d06e317 Let Python build scripts accept both CMAKE_BUILD_TYPE and the oldschool DEBUG and REL_WITH_DEB_INFO variables. (#22875)
Summary:
Currently the build type is decided by the environment variable DEBUG
and REL_WITH_DEB_INFO. This commit also lets CMAKE_BUILD_TYPE be
effective. This makes the interface more consistent with CMake. This
also prepares https://github.com/pytorch/pytorch/issues/22776.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22875

Differential Revision: D16281663

Pulled By: ezyang

fbshipit-source-id: 952f92aad85ff59f1c7abe8256eca8a4a0936026
2019-07-24 08:07:47 -07:00
Hong Xu
60c46dd4df Let CMake handle NCCL detection instead of our handcrafted Python script. (#22930)
Summary:
 ---

How does the current code subsume all detections in the deleted `nccl.py`?

- The dependency of `USE_NCCL` on the OS and `USE_CUDA` is handled as dependency options in `CMakeLists.txt`.

- The main NCCL detection happens in [FindNCCL.cmake](8377d4b32c/cmake/Modules/FindNCCL.cmake), which is called by [nccl.cmake](8377d4b32c/cmake/External/nccl.cmake). When `USE_SYSTEM_NCCL` is false, the previous Python code defer the detection to `find_package(NCCL)`. The change in `nccl.cmake` retains this.

- `USE_STATIC_NCCL` in the previous Python code simply changes the name of the detected library. This is done in `IF (USE_STATIC_NCCL)`.

- Now we only need to look at how the lines below line 20 in `nccl.cmake` are subsumed. These lines list paths to header and library directories that NCCL headers and libraries may reside in and try to search these directories for the key header and library files in turn. These are done by `find_path` for headers and `find_library` for the library files in `FindNCCL.cmake`.
  * The call of [find_path](https://cmake.org/cmake/help/v3.8/command/find_path.html) (Search for `NO_DEFAULT_PATH` in the link) by default searches for headers in `<prefix>/include` for each `<prefix>` in `CMAKE_PREFIX_PATH` and `CMAKE_SYSTEM_PREFIX_PATH`. Like the Python code, this commit sets `CMAKE_PREFIX_PATH` to search for `<prefix>` in `NCCL_ROOT_DIR` and home to CUDA.  `CMAKE_SYSTEM_PREFIX_PATH` includes the standard directories such as `/usr/local` and `/usr`. `NCCL_INCLUDE_DIR` is also specifically handled.

  * Similarly, the call of [find_library](https://cmake.org/cmake/help/v3.8/command/find_library.html) (Search for `NO_DEFAULT_PATH` in the link) by default searches for libraries in directories including `<prefix>/lib` for each `<prefix>` in `CMAKE_PREFIX_PATH` and `CMAKE_SYSTEM_PREFIX_PATH`. But it also handles the edge cases intended to be solved in the Python code more properly:
     - It only searches for `<prefix>/lib64` (and `<prefix>/lib32`) if it is appropriate on the system.
     - It only searches for `<prefix>/lib/<arch>` for the right `<arch>`, unlike the Python code searches for `lib/<arch>` in a generic way (e.g., the Python code searches for `/usr/lib/x86_64-linux-gnu` but in reality systems have `/usr/lib/x86_64-some-customized-name-linux-gnu`, see https://unix.stackexchange.com/a/226180/38242 ).

 ---

Regarding for relevant issues:

- https://github.com/pytorch/pytorch/issues/12063 and https://github.com/pytorch/pytorch/issues/2877: These are properly handled, as explained in the updated comment.
- https://github.com/pytorch/pytorch/issues/2941 does not changes NCCL detection specifically for Windows (it changed CUDA detection).
- b7e258f81e A versioned library detection is added, but the order is reversed: The unversioned library becomes preferred. This is because normally unversioned libraries are linked to versioned libraries and preferred by users, and local installation by users are often unversioned. Like the document of [find_library](https://cmake.org/cmake/help/v3.8/command/find_library.html) suggests:

> When using this to specify names with and without a version suffix, we recommend specifying the unversioned name first so that locally-built packages can be found before those provided by distributions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22930

Differential Revision: D16440275

Pulled By: ezyang

fbshipit-source-id: 11fe80743d4fe89b1ed6f96d5d996496e8ec01aa
2019-07-23 08:45:51 -07:00
Edward Yang
798d5d9771 Revert D16281714: Add sanity checks for NCCL detection.
Differential Revision:
D16281714

Original commit changeset: 396bcbf099bd

fbshipit-source-id: a22cc112d1b6a62d689f9d8a7f93e8be3abe2a44
2019-07-16 13:58:27 -07:00
Hong Xu
e2046f8c1d Add sanity checks for NCCL detection.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22819

Test Plan: Imported from OSS

Differential Revision: D16281714

Pulled By: ezyang

fbshipit-source-id: 396bcbf099bd07b996cf779c6b43092096b52d90
2019-07-16 11:32:32 -07:00
Hui Wu
07ef85e326 Add USE_MKLDNN_CBLAS build option. (#19014)
Summary:
MKL-DNN is the main library for computation when we use ideep device. It can use kernels implemented by different algorithms (including JIT, CBLAS, etc.) for computation. We add the "USE_MKLDNN_CBLAS" (default OFF) build option so that users can decide whether to use CBLAS computation methods or not.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19014

Differential Revision: D16094090

Pulled By: ezyang

fbshipit-source-id: 3f0b1d1a59a327ea0d1456e2752f2edd78d96ccc
2019-07-02 12:29:54 -07:00
Hong Xu
b9ede6600e Remove the USE_MIOPEN build option as MIOpen is always used when built with ROCm. (#22420)
Summary:
Close https://github.com/pytorch/pytorch/issues/22200
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22420

Differential Revision: D16087538

Pulled By: bddppq

fbshipit-source-id: ecf3e7eb8213bb093e1c5290d096c233284a2ff9
2019-07-02 00:05:59 -07:00
Jon Malmaud
bfeff1eb8f Stubs for torch.nn (#19089)
Summary:
Closes https://github.com/pytorch/pytorch/issues/18724
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19089

Differential Revision: D16073654

Pulled By: ezyang

fbshipit-source-id: 5642179651ce45ab7c5a46cc1fcc4fd6b37fa71c
2019-07-01 09:50:17 -07:00
Pieter Noordhuis
6ff0c6ca3f Remove THD (#22065)
Summary:
It's been ~9 months since moving THD to the `torch.distributed.deprecated` namespace (see https://github.com/pytorch/pytorch/issues/11405) and we haven't seen issues related to it, so it's time to remove it.

Closes https://github.com/pytorch/pytorch/issues/18967.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22065

Reviewed By: mrshenli

Differential Revision: D15983669

Pulled By: pietern

fbshipit-source-id: 2a2f5866f9a63040bc7cef3956d5fd215aba7165
2019-06-25 12:19:13 -07:00
Ilia Cherniavskii
6350dbddd1 Fix sequential MKL case (#22062)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22062
ghimport-source-id: a30255d7453c4ffecf40215a785c1e06b7296368

Test Plan:
USE_CUDA=0 PARALLEL_BACKEND=OPENMP BLAS=MKL USE_MKLDNN=1 MKL_SEQ=1
MKLDNN_THREADING=SEQ BUILD_BINARY=1 python setup.py develop --cmake

./build/bin/parallel_info

Imported from OSS

Differential Revision: D15938079

Pulled By: ilia-cher

fbshipit-source-id: e7ef0c5bc75ebb845ebe66bf76a4070d45305b35
2019-06-24 12:56:43 -07:00
Hong Xu
0408697317 Followup cleanup in cmake.py and add a comment in setup.py (#21792)
Summary:
Following up b811b6d5c0

* Use property instead of __setattr__ in CMake.
* Add a comment clarifying when built_ext.run is called.

 ---

cc ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21792

Differential Revision: D15860606

Pulled By: umanwizard

fbshipit-source-id: ba1fa07f58d4eac81ac27fa9dc7115d1cdd3dec0
2019-06-17 13:46:25 -07:00
Hong Xu
b811b6d5c0 When building extensions, honor options set in CMake. (#21653)
Summary:
Currently when building extensions, variables such as USE_CUDA, USE_CUDNN are used to determine what libraries should be linked. But we should use what CMake has detected, because:

1. If CMake found them unavailable but the variables say some libraries should be linked, the build would fail.
2. If the first build is made using a set of non-default build options, rebuild must have these option passed to setup.py again, otherwise the extension build process is inconsistent with CMake. For example,

```bash
# First build
USE_CUDA=0 python setup.py install
# Subsequent builds like this would fail, unless "build/" is deleted
python setup.py install
```

This commit addresses the above issues by using variables from CMakeCache.txt when building the extensions.

 ---

The changes in `setup.py` may look lengthy, but the biggest changed block is mostly moving them into a function `configure_extension_build` (along with some variable names changed to `cmake_cache_vars['variable name']` and other minor changes), because it must be called after CMake has been called (and thus the options used and system environment detected by CMake become available).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21653

Differential Revision: D15824506

Pulled By: ezyang

fbshipit-source-id: 1e1eb7eec7debba30738f65472ccad966ee74028
2019-06-14 08:13:40 -07:00
Ilia Cherniavskii
5485f09f18 Native TBB parallel backend (#20480)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20480
ghimport-source-id: c710f897c4c9b9616fc3dd76d80b4845aea43a1f

Differential Revision: D15333692

Pulled By: ilia-cher

fbshipit-source-id: 61e476dd5c737fe144e3aec000d8ebb11fbc0547
2019-06-13 10:11:16 -07:00
Karl Ostmo
49481d576d Torch rename (#20774)
Summary:
This renames the CMake `caffe2` target to `torch`, as well as renaming `caffe2_gpu` to `torch_gpu` (and likewise for other gpu target variants).  Many intermediate variables that don't manifest as artifacts of the build remain for now with the "caffe2" name; a complete purge of `caffe2` from CMake variable names is beyond the scope of this PR.

The shell `libtorch` library that had been introduced as a stopgap in https://github.com/pytorch/pytorch/issues/17783 is again flattened in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20774

Differential Revision: D15769965

Pulled By: kostmo

fbshipit-source-id: b86e8c410099f90be0468e30176207d3ad40c821
2019-06-12 20:12:34 -07:00
Hong Xu
646a7f99bb Move management of calls of "cmake --build" to setup_helper/cmake.py and refactor as a CMake class
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21493

Differential Revision: D15759279

Pulled By: ezyang

fbshipit-source-id: 157e1de36f1c5a51caf2a25b363a94369c442012
2019-06-11 07:04:05 -07:00
Hong Xu
240d62fbaa Move redundant code that checks NumPy during build to a helper module and add an option to disable building with NumPy
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/21417

Reviewed By: ezyang

Differential Revision: D15694357

Pulled By: fmassa

fbshipit-source-id: bc1bda23349ba4531f19619fa4adecb846225c20
2019-06-06 08:15:19 -07:00
Hong Xu
9a989ec469 Add an option to stop the build process once cmake terminates. (#21034)
Summary:
Add an option to setup.py to stop the build process once cmake terminates. This leaves users a chance to fine adjust build options. Also update README accordingly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21034

Differential Revision: D15530096

Pulled By: soumith

fbshipit-source-id: 71ac6ff8483c3ee77c38d88f0d059db53a7d3901
2019-05-28 17:11:00 -07:00
Ilia Cherniavskii
580eab6562 Restore TBB module (#20454)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20454
ghimport-source-id: 14aca1dedbe647d41e55e7538a6b7eeab0fc4384

Differential Revision: D15326062

Pulled By: ilia-cher

fbshipit-source-id: 02b005a679b10dc7a264978e87a8d2bb98ab972f
2019-05-28 02:49:36 -07:00
Ilia Cherniavskii
82aecfad6a Native ATen/Parallel backend (#20087)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20087
ghimport-source-id: bcfc8a86abe0893e4a380fe6f6123e2082ba4317

Differential Revision: D15248663

Pulled By: ilia-cher

fbshipit-source-id: fdb7a8860c85d8202026b629cb7fa344782bd2c4
2019-05-28 01:40:54 -07:00
Hong Xu
1e8f129a05 In setup.py, also check some submodules of submodules. (#20937)
Summary:
Sometimes users forget using the "--recursive" option when they update submodules. This added check should help expose this issue.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20937

Differential Revision: D15502846

Pulled By: mrshenli

fbshipit-source-id: 34c28a2c71ee6442d16b8b741ea44a18733b1536
2019-05-26 18:43:24 -07:00
Gregory Chanan
47043220ee Update version strings to 1.2
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20812

Differential Revision: D15451892

Pulled By: gchanan

fbshipit-source-id: 07355dbd446053a69b5cf4e3be1842aa1075c71f
2019-05-24 11:07:29 -07:00
Ilia Cherniavskii
c3d05e86cc Resend "Split ATen/Parallel into interface and backend" (#20825)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20825
ghimport-source-id: 0371fbd37cb37635647d473d5ac9f2859e787061

Differential Revision: D15458073

Pulled By: ilia-cher

fbshipit-source-id: cd27d0da1691f6be1183cd152348ac0d93a53996
2019-05-24 02:03:06 -07:00
Hong Xu
795a1a6ffa When detecting numpy, assign relavant variables outside the try block (#20739)
Summary:
When detecting the presence of NumPy using import, move numpy-related variable assignments outside the try block (i.e., to an else block) to improve readability.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20739

Differential Revision: D15453916

Pulled By: ezyang

fbshipit-source-id: d3c37f2b290846be3c6a1462251cbb3e95d493be
2019-05-22 11:27:36 -07:00
Edward Yang
fd95947e68 Revert D15248618: Split ATen/Parallel into interface and backend
Differential Revision:
D15248618

Original commit changeset: 060879266bc8

fbshipit-source-id: fc5cbb030b87613c9e15100118c3d4a064097c20
2019-05-22 09:55:51 -07:00
Ilia Cherniavskii
c4a3b4d528 Split ATen/Parallel into interface and backend (#20057)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20057
ghimport-source-id: c583f61bf661c994eb4d0625748a299e892a7246

Differential Revision: D15248618

Pulled By: ilia-cher

fbshipit-source-id: 060879266bc8616916fe220adef6ae6c0b076fbd
2019-05-21 19:15:47 -07:00
Ilia Cherniavskii
481b6d0268 Allow a non-OpenMP based build (#19749)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19749
ghimport-source-id: a6636c0acddbdc5fd5b0dcb20b9f80cbdb9159b9

Differential Revision: D15141993

Pulled By: ilia-cher

fbshipit-source-id: 96085608398b2a4c97c68b2948f5184d07f9ad3d
2019-05-06 19:34:48 -07:00
Bram Wasti
035966d538 Add options to Operator to enable registration of alias analysis passes (#19382)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19382
ghimport-source-id: aeaad3b84ea20dd95b38635ca28c5ff657187909

Differential Revision: D14990873

Pulled By: bwasti

fbshipit-source-id: e1292ac8358ca8ff5bad8d8aeaddf06c23e66067
2019-05-06 15:40:13 -07:00
Jon Malmaud
0565141728 Type annotations for util.data. (#18963)
Summary:
I haven't had a chance to rigorously try these out yet so don't merge yet.
Closes #18725.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18963

Differential Revision: D14832897

Pulled By: ezyang

fbshipit-source-id: 4780e7a34126bc66ddbfd9d808dfc9e0edd77e68
2019-04-08 09:52:53 -07:00
Jon Malmaud
1b25fdbcd0 More type stubs (#18511)
Summary:
Added stubs for:

* The `device` module
* The `cuda` module
* Parts of the `optim` module
* Began adding stubs for the `autograd` module. I'll annotate more later but `no_grad` and friends are probably the most used exports from it so it seemed like a good place to start.

This would close #16996, although comments on that issue reference other missing stubs so maybe it's worth keeping open as an umbrella issue.

The big remaining missing package is `nn`.

Also added a `py.typed` file so mypy will pick up on the type stubs. That closes #17639.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18511

Differential Revision: D14715053

Pulled By: ezyang

fbshipit-source-id: 9e4882ac997063650e6ce47604b3eaf1232c61c9
2019-04-01 16:03:58 -07:00
Shuichi KITAGUCHI
ddbfdc911d Create torch/lib directory before copying _C.lib on Windows environment. (#18666)
Summary:
`python setup.py develop` fails with following messages.
~~~
...
-- Building with NumPy bindings
-- Not using cuDNN
-- Not using MIOpen
-- Not using CUDA
-- Using MKLDNN
-- Not using NCCL
-- Building without distributed package

Copying extension caffe2.python.caffe2_pybind11_state
Copying caffe2.python.caffe2_pybind11_state from torch\Lib\site-packages\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd to C:\data\source\pytorch\build\lib.win-amd64-3.7\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd
copying torch\Lib\site-packages\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd -> C:\data\source\pytorch\build\lib.win-amd64-3.7\caffe2\python
building 'torch._C' extension
creating build\temp.win-amd64-3.7
creating build\temp.win-amd64-3.7\Release
creating build\temp.win-amd64-3.7\Release\torch
creating build\temp.win-amd64-3.7\Release\torch\csrc
...
creating C:\data\source\pytorch\build\lib.win-amd64-3.7\torch
C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Tools\MSVC\14.16.27023\bin\HostX64\x64\link.exe /nologo /INCREMENTAL:NO /LTCG /nodefaultlib:libucrt.lib ucrt.lib /DLL /MANIFEST:EMBED,ID=2 /MANIFESTUAC:NO /LIBPATH:C:\data\source\pytorch\torch\lib /LIBPATH:C:\data\dlenv\libs /LIBPATH:C:\data\dlenv\PCbuild\amd64 "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Tools\MSVC\14.16.27023\ATLMFC\lib\x64" "/LIBPATH:C:\Program Files (x86)\Microsoft Visual Studio\2017\Professional\VC\Tools\MSVC\14.16.27023\lib\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\NETFXSDK\4.6.1\lib\um\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.17763.0\ucrt\x64" "/LIBPATH:C:\Program Files (x86)\Windows Kits\10\lib\10.0.17763.0\um\x64" shm.lib torch_python.lib /EXPORT:PyInit__C build\temp.win-amd64-3.7\Release\torch/csrc/stub.obj /OUT:build\lib.win-amd64-3.7\torch\_C.cp37-win_amd64.pyd /IMPLIB:build\temp.win-amd64-3.7\Release\torch/csrc\_C.cp37-win_amd64.lib /NODEFAULTLIB:LIBCMT.LIB
   ライブラリ build\temp.win-amd64-3.7\Release\torch/csrc\_C.cp37-win_amd64.lib とオブジェクト build\temp.win-amd64-3.7\Release\torch/csrc\_C.cp37-win_amd64.exp を作成中
コード生成しています。
コード生成が終了しました。
copying build\lib.win-amd64-3.7\torch\_C.cp37-win_amd64.pyd -> torch
copying build\lib.win-amd64-3.7\caffe2\python\caffe2_pybind11_state.cp37-win_amd64.pyd -> caffe2\python
copying build/temp.win-amd64-3.7/Release/torch/csrc/_C.cp37-win_amd64.lib -> build/lib.win-amd64-3.7/torch/lib/_C.lib
error: could not create 'build/lib.win-amd64-3.7/torch/lib/_C.lib': No such file or directory
~~~

When `python setup.py install` is executed, `torch/lib`  has been created by previous process (copying many files) and this copy succeeds. But in develop mode, that process does not executed and this copy fails.

This patch creates `torch/lib` directory if do not exist.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18666

Differential Revision: D14704269

Pulled By: ezyang

fbshipit-source-id: b2d7c698a906b945bf34bb78f17b91b4fdfd3294
2019-04-01 07:28:08 -07:00
Edward Yang
173f224570 Turn on F401: Unused import warning. (#18598)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a

Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**

This was requested by someone at Facebook; this lint is turned
on for Facebook by default.  "Sure, why not."

I had to noqa a number of imports in __init__.  Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it.  Left for future work.

Be careful!  flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments.  flake8-3 will
report an import unused; flake8-2 will not.  For now, I just
noqa'd all these sites.

All the changes were done by hand.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Differential Revision: D14687478

fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
2019-03-30 09:01:17 -07:00
Gao, Xiang
a40e0a7f2d Add torch.version.git_version (#18299)
Summary:
Fixes: https://github.com/pytorch/pytorch/issues/18293
cc: colesbury
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18299

Differential Revision: D14611972

Pulled By: soumith

fbshipit-source-id: cdb48ef37c8869713a9a43ea0da08e1bed9279a2
2019-03-25 19:59:40 -07:00
Sebastian Messmer
daa77c6e26 Move schema inference to c10 (#18090)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18090

This schema inference is needed by the c10 operator registration mechanism. Move it to c10.
It is going to be used by diffs stacked on top.

Reviewed By: ezyang

Differential Revision: D14491454

fbshipit-source-id: 0f8ddcdbd91467c8347d315dd443a1ca8b216481
2019-03-21 14:57:30 -07:00
peter
906f9efc57 Revert "Add check for x64 Python before setup (#17707)" (#17864)
Summary:
This reverts commit 08fb9021da.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17864

Differential Revision: D14404920

Pulled By: soumith

fbshipit-source-id: d41fc06e249f3437d4f80d1d6a5fdbd44c90462b
2019-03-11 08:52:13 -07:00
peter
08fb9021da Add check for x64 Python before setup (#17707)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/17657.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17707

Differential Revision: D14346705

Pulled By: ezyang

fbshipit-source-id: 5daafacdb99eb9a9c6517263d10f20c79f920d24
2019-03-06 10:48:16 -08:00
Lu Fang
9e08c998db Throw exception when foxi is not checked out (#17477)
Summary:
Add check and provide useful warning/error information to user if foxi is not checked out.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17477

Reviewed By: zrphercule

Differential Revision: D14212896

Pulled By: houseroad

fbshipit-source-id: 557247d5d8fdc016b1c24c2a21503e59f874ad09
2019-02-25 14:39:24 -08:00
Vishwak Srinivasan
9e69703dac USE_ --> BUILD_ for CAFFE2_OPS and TEST (#17390)
Differential Revision: D14195572

Pulled By: soumith

fbshipit-source-id: 28e4ff3fe03a151cd4ed014c64253389cb85de3e
2019-02-22 17:19:44 -08:00
Zachary DeVito
356a94b64e Lazily load libcuda libnvrtc from c++ (#17317)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/16860
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17317

Differential Revision: D14157877

Pulled By: zdevito

fbshipit-source-id: c37aec2d77c2e637d4fc6ceffe2bd32901c70317
2019-02-22 13:51:45 -08:00
Soumith Chintala
3069c45069 upgrade documentation in setup.py to NO_ -> USE_ (#17333)
Summary:
fixes https://github.com/pytorch/pytorch/issues/17265
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17333

Differential Revision: D14168483

Pulled By: soumith

fbshipit-source-id: a79f4f9d9e18cb64e2f56f777caa69ae92d2fa4b
2019-02-21 10:25:43 -08:00
Tri Dao
37890610b0 Include vec256 headers in setup.py (#17220)
Summary:
Fix #16650.

Headers such as `ATen/cpu/vml.h` contain `#include <ATen/cpu/vec256/vec256.h>`
for example, but these vec256 headers aren't included, due to commit e4c0bb1.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17220

Differential Revision: D14165695

Pulled By: ezyang

fbshipit-source-id: 27b2aa2a734b3719ca4af0565f79623b64b2620f
2019-02-21 07:37:01 -08:00
Elias Ellison
89df22e57b Lightweight String check Utility (#16858)
Summary:
light weight implementation of LLVM filecheck utility. Currently only handles string matching - regexes & saving a regex to a variable name can be added as needed.

Current intended usage is through FileCheckBuilder python handle, and is shown in the tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16858

Differential Revision: D14096244

Pulled By: eellison

fbshipit-source-id: c7c8d1457691c105e6ccbb3c1a378d96baac2569
2019-02-19 12:31:57 -08:00
Dmytro Dzhulgakov
5a26579e27 Add more headers to setup.py to make pytorch/benchmark work (#16890)
Summary:
Since we don't do tmp_install any more it's better to include all necessary headers.

cc kostmo for better suggestions of how to list all headers here
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16890

Differential Revision: D14079848

Pulled By: dzhulgakov

fbshipit-source-id: 4522c80d05e5d91f99f6700cde46cac559330d28
2019-02-13 23:14:36 -08:00
Simeon Monov
bad4442a7c Parse the command line and check the arguments before build_deps() (#16914)
Summary:
This is needed to check for wrong arguments or --help options
before `build_deps()` is executed. Otherwise command line arguments
are not parsed and checked until `setup()` is run.

Fixes: #16707
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16914

Differential Revision: D14041236

Pulled By: soumith

fbshipit-source-id: 41f635772ccf47f05114775d5a19ae04c495ab3b
2019-02-12 00:15:42 -08:00
Zachary DeVito
21193bf123 try to get rid of tmp_install (#16414)
Summary:
Rehash of previous attempts. This tries a different approach where we accept the install as specified in cmake (leaving bin/ include/ and lib/ alone), and then try to adjust the rest of the files to this more standard layout.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16414

Differential Revision: D13863635

Pulled By: zdevito

fbshipit-source-id: 23725f5c64d7509bf3ca8f472dcdcad074de9828
2019-01-29 17:29:40 -08:00
Thomas Viehmann
6a6983ed7f create type hint stub files for module torch (#12500)
Summary:
We have:

- This is an initial stab at creating a type stub `torch/__init__.pyi` .
- This is only tested on Python 3, since that's the only Python version mypy
  works on.
- So far, we only aim at doing this for torch functions and torch.Tensor.
- Quite a few methods and functions have to be typed manually. These are
  done in `torch/__init__.pyi.in`

For me, PyCharm (the non-paid one) didn't seem to indicate errors in the .pyi when opening and seemed to be able to get the type hint for the few functions I tried, but I don't use PyCharm for my usual PyTorch activities, so I didn't extensively try this out.

An example of a generated PYI is at [this gist](https://gist.github.com/ezyang/bf9b6a5fa8827c52152858169bcb61b1).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12500

Differential Revision: D13695553

Pulled By: ezyang

fbshipit-source-id: 4566c71913ede4e4c23ebc4a72c17151f94e8e21
2019-01-29 12:14:17 -08:00
Zachary DeVito
9477a5d9c8 Remove bash from build (#16289)
Summary:
This commit removes the dependency on `build_pytorch_libs.sh` by moving the remaining functionality that is not expressible in cmake into python. Removing the indirection through bash also removes over 300 lines of environment munging code that is incredibly hard to understand because it passes a lot of secret parameters through `os.env`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16289

Reviewed By: ezyang

Differential Revision: D13821662

Pulled By: zdevito

fbshipit-source-id: d658d26925e3b1169ac1e3d44a159cf8a1f0d9b1
2019-01-25 16:03:53 -08:00
Zachary DeVito
0cd1ab82b0 Remove dead code from setup.py, remove need for build target. (#16162)
Summary:
Now it is only necessary to use 'develop' or 'install' to build. Incremental cmake is on by default. `develop --cmake` forces it to rerun.

The NinjaBuilder stuff is dead. It was used to make building _C.so
faster but now _C.so is just an empty stub file.

Removed a bunch of custom build commands from setup.py that are
no longer meaningful now that cmake handles most of the build.

Removed unused targets in build_pytorch_lib.sh/bat
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16162

Differential Revision: D13744155

Pulled By: zdevito

fbshipit-source-id: d836484782c65b7f8e8c7a82620886f7a7777892
2019-01-21 17:27:56 -08:00
Zachary DeVito
b5c733324c Fix RERUN_CMAKE
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16132

Differential Revision: D13726816

Pulled By: zdevito

fbshipit-source-id: 26ad70651b0138642ad5240670f5c452018c13a2
2019-01-18 00:04:31 -08:00
Sebastian Messmer
3e85a2bcbf Move c10 dispatcher back to ATen/core (#16050)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16050

The c10 dispatcher will (soon) depend on IValue and IValue can't be moved to c10 yet because it depends on at::Tensor, which depends on legacy Type dispatch and we don't want the legacy dispatch in c10.

So instead, we move the c10 dispatcher back to ATen/core until we can actually move at::Tensor to c10.

Reviewed By: ezyang

Differential Revision: D13684517

fbshipit-source-id: 1125f4254223907c52f96ff73034f6d4ae9fd0a7
2019-01-17 15:56:52 -08:00
Jesse Hellemn
99b029aca3 Include all Caffe2 headers in Python installations (#16124)
Summary:
Confirmed on a local run that all the additional headers are present. This shouldn't be caught in any existing tests though.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16124

Differential Revision: D13720773

Pulled By: pjh5

fbshipit-source-id: 22a42639f5649cac555ecc5a8b6760a8cbfcf01f
2019-01-17 13:51:51 -08:00
peter
f7733526aa Generate PDB files for better debugging on Windows (#16008)
Summary:
1. Unify `build_pytorch_libs.bat`, `setup.py` and `torch/CMakeLists.txt` on the debugging flags with the `CMAKE_BUILD_TYPE` being `Debug`, `Release` and `RelWithDebInfo`.
2. Install PDBs through CMake if they are generated.

Reference:
1. CMake PDB install: https://gitlab.kitware.com/cmake/cmake/issues/18393#note_459199
2. About debugging flags https://stackoverflow.com/a/4662345
3. MSDN page about /DEBUG flag: https://docs.microsoft.com/en-us/cpp/build/reference/debug-generate-debug-info?view=vs-2017
4. MSDN page about /Z{i/I/7}: https://docs.microsoft.com/en-us/cpp/build/reference/z7-zi-zi-debug-information-format?view=vs-2017

Work to do:
- [x] Test the changes work in Release config through this PR
- [ ] <del> Test debug build through https://github.com/pytorch/pytorch/pull/16009 </del>
- [x] Test release build with debugging symbols through #16013

Difficulties:
- [x] Replace /Zi flags with /Z7 (which will be added if DEBUG or RelWithDebInfo is used), as it is not supported by sccache
- [x] Resolve `LINK : fatal error LNK1210: exceeded internal ILK size limit; link with /INCREMENTAL:NO` in the debug build
- [ ] DEBUG build blocked by a MSVC bug. In order to resolve it, we'll need to update the MSVC in CI: https://developercommunity.visualstudio.com/content/problem/225957/fatal-error-lnk1318-unexpected-pdb-error-ok-0.html
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16008

Differential Revision: D13709527

Pulled By: ezyang

fbshipit-source-id: e8365bc75d9ec64099093f7001f83d99a06b196b
2019-01-16 23:34:32 -08:00
Jesse Hellemn
406b9c49bd Fix Python path finding for benchmark tests
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/16022

Differential Revision: D13673792

Pulled By: pjh5

fbshipit-source-id: 177a823ef343b7f60e26ad9ef51415332045438d
2019-01-15 10:48:40 -08:00
Jesse Hellemn
8964a2e6e6 Split Caffe2 CI into cmake-only and python builds (#15917)
Summary:
bypass-lint

- Change all Caffe2 builds to use setup.py instead of cmake
- Add a -cmake- Caffe2 build configuration that uses cmake and only builds cpp
- Move skipIfCI logic from onnx test scripts to the rest of CI logic
- Removal of old PYTHONPATH/LD_LIBRARY_PATH/etc. env management
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15917

Reviewed By: orionr

Differential Revision: D13637583

Pulled By: pjh5

fbshipit-source-id: c5c5639db0251ba12b6e4b51b2ac3b26a8953153
2019-01-14 15:20:44 -08:00
Sebastian Messmer
d408324350 Move files to/from c10/core and c10/util (#15316)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15316

This starts cleaning up the files in c10 according to the module structure we decided on.

Move to c10/util:
- Half.h, Half-inl.h, Half.cpp, bitcasts.h

Move to c10/core:
- Device.h, Device.cpp
- DeviceType.h, DeviceType.cpp

i-am-not-moving-c2-to-c10

Reviewed By: dzhulgakov

Differential Revision: D13498493

fbshipit-source-id: dfcf1c490474a12ab950c72ca686b8ad86428f63
2019-01-10 16:22:22 -08:00
peter
0ed3f766e9 Unify flags and environmental variable when building LibTorch/PyTorch (#15868)
Summary:
Fixes #15858.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15868

Differential Revision: D13622354

Pulled By: soumith

fbshipit-source-id: bb8c49520ebf926c6194d42db75accba867018c7
2019-01-10 06:47:14 -08:00
andersj
8a5ba577c1 Revert "remove use of tmp_install" (#15847)
Summary:
This reverts commit 04bf528589.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15847

Differential Revision: D13603174

Pulled By: anderspapitto

fbshipit-source-id: ae321434d3345ad94fad67bf71fd027cddeb4588
2019-01-08 16:30:19 -08:00
Jesse Hellemn
4f51ca490e Correcting source pybind11 library to install into Python
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15836

Reviewed By: anderspapitto

Differential Revision: D13601331

Pulled By: pjh5

fbshipit-source-id: 36785c501774c01f47acb49cdac265b2c95a5040
2019-01-08 15:06:55 -08:00
andersj
04bf528589 remove use of tmp_install
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14553

Differential Revision: D13583335

Pulled By: anderspapitto

fbshipit-source-id: 8711fead9eda877c1037a0bc59f91a3d2e01f3e0
2019-01-04 13:48:12 -08:00
Soumith Chintala
4c5b1cc026 version bump to 1.1 (#15554)
Summary:
version bump to 1.1
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15554

Differential Revision: D13550818

Pulled By: soumith

fbshipit-source-id: 8a28582c98b42c081e103581551a01fd96c9f42d
2018-12-26 15:44:25 -08:00
Peter Goldsborough
ad6799537e Support stateful dataset (#15096)
Summary:
Currently re-implements the dataloader for stateful datasets. Outstanding work:
- Refactor DataLoader and DataLoader2 to have common base classes and only differ in specifi pieces of logic,
- Figure out how to not duplicate the `MapDataset` logic for stateful vs. non-stateful
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15096

Differential Revision: D13522043

Pulled By: goldsborough

fbshipit-source-id: 08e461ca51783047f11facc4d27dfa2e4f1e4c2a
2018-12-24 06:26:40 -08:00
peter
d71fac20eb Refactor hotpatch_vars and apply it to libtorch (#14976)
Summary:
Fixes #14801.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14976

Differential Revision: D13485381

Pulled By: soumith

fbshipit-source-id: 0af3c2e1b90988d56f6f85632328d1e4b788ffd2
2018-12-16 21:53:31 -08:00
Junjie Bai
bdfff2f8c2 Add missing caffe2_hip extension in setup.py
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15189

Reviewed By: orionr

Differential Revision: D13457644

Pulled By: bddppq

fbshipit-source-id: c2363e9b8fd21709b62777e5b2199f01ec1c65f8
2018-12-13 15:59:51 -08:00
Zachary DeVito
92314c83fa re-enable copy of python files, but be careful that the copy is only … (#14982)
Summary:
…done once

This allow no-op build to work correctly even when BUILD_CAFFE2_OPS is on.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14982

Differential Revision: D13413960

Pulled By: zdevito

fbshipit-source-id: 6e5412a8c375af8a47c76f548cdd31cff15f3853
2018-12-11 16:54:08 -08:00
Orion Reblitz-Richardson
687834dcb4 Install cpp tests when built (#15000)
Summary:
This is broken out of https://github.com/pytorch/pytorch/pull/13733/

We want to install cpp tests so they can ultimately be runnable from that location for Caffe2 tests run from PyTorch builds.

cc pjh5 yf225 anderspapitto
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15000

Reviewed By: pjh5

Differential Revision: D13416253

Pulled By: orionr

fbshipit-source-id: 51280be0a22557a742f90c9f303c58c35cbd4a38
2018-12-11 10:07:48 -08:00
Jesse Hellemn
5222a1b190 Fixing reading of FBGEMM from env variables
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/15023

Reviewed By: orionr

Differential Revision: D13406778

Pulled By: pjh5

fbshipit-source-id: 2265f01170fb7969cbdf4e44ca6ef183f5d8017d
2018-12-10 18:18:38 -08:00
Zachary DeVito
e747acbebb Respect -q of setup.py (#14972)
Summary:
1. Changes the prints along the 'rebuild' pathway to respect the '-q' flag of setup.py
A clean rebuild now only prints:

    [zdevito@devgpu172.prn2 /data/users/zdevito/pytorch] python setup.py -q rebuild develop
    [0/1] Install the project...
    -- Install configuration: "RelWithDebInfo"
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.
    ninja: no work to do.

2. Deletes apparently dead calls to `generate_code`. Now that CMake builds these files,
it appears that it is getting called twice and the second version is never used.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14972

Reviewed By: soumith

Differential Revision: D13396330

Pulled By: zdevito

fbshipit-source-id: 83c45143bbc6a6d2c1cfee929291ec059f2b5dc3
2018-12-09 22:47:49 -08:00
Sergei Nikolaev
a0ee3a279c USE_TENSORRT support and TensorRT 5 compatibility
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13945

Differential Revision: D13317525

Pulled By: yinghai

fbshipit-source-id: 8630dfec1bbc5aac19539e344e7c38a7fd8b051d
2018-12-07 14:01:11 -08:00
HB_alon
5e307bd1be use "Extension" instead of the unimported "setuptools.Extension" (#14475)
Summary:
use "Extension" instead of the unimported "setuptools.Extension"
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14475

Differential Revision: D13356219

Pulled By: ezyang

fbshipit-source-id: 5a3e7eb73a32d6bf09676efd9eddded5586435cd
2018-12-05 22:18:47 -08:00
Soumith Chintala
aa842fe101 clean up linkage options (#14609)
Summary: minor code cleanup

Differential Revision: D13277803

Pulled By: soumith

fbshipit-source-id: 5ef925fe95037cab540b329054d7070c1ea7031e
2018-11-30 09:36:59 -08:00
andersj
fb7e40b7eb nccl fixes (#14195)
Summary:
This has 4 changes

1) propagate USE_SYSTEM_NCCL. Previously it was ignored and cmake always did a FindPackage
2) respect SCCACHE_DISABLE in our caffe2 sccache wrapper for circleci
3) use SCCACHE_DISABLE when building nccl, because it triggers the same bug as when using CCACHE (already tracked in https://github.com/pytorch/pytorch/issues/13362). This was hidden because we weren't respecting USE_SYSTEM_NCCL, and were never building nccl ourselves in CI
4) In one particular CI configuration (caffe2, cuda 8, cudnn 7), force USE_SYSTEM_NCCL=1. Building the bundled nccl triggers a bug in nvlink. I've done some investigation, but this looks like a tricky, preexisting bug, so rather than hold up this diff I'm tracking it separately in https://github.com/pytorch/pytorch/issues/14486
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14195

Differential Revision: D13237502

Pulled By: anderspapitto

fbshipit-source-id: 1100ac1269c7cd39e2e0b3ba12a56a3ce8977c55
2018-11-28 14:43:06 -08:00
Sebastian Messmer
50e9c56830 Move Scalar and ScalarType to c10/core
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/14022

Reviewed By: ezyang

Differential Revision: D13015236

fbshipit-source-id: 92aac4e342d85f75a31837b2943fa5b80f0c35c9
2018-11-27 12:59:36 -08:00
Zachary DeVito
788d2e87bd Address jittering issues in python_print (#14064)
Summary:
export - print a method with python_print
import - import a method with import_method

We want to ensure:

    export(g) == export(import(export(g)))

That is after after exporting/importing once, the graph will stay exactly
the same. This is less strict that g == import(export(g)) which would
require us to maintain a lot more information about the structure of the
IR and about the names of debug symbols.

This PR addresses this with the following fixes:
* print out double-precision numbers with high enough precision such
  that they always parse in the same way
* when creating loop-carried dependencies, sort them
  by variable name, ensuring a consistent order
* parse nan correctly
* DCE: remove unused outputs of if statements, and loop-carried dependencies
  in loops that are dead both after the loop and inside the body of the
  loop.
* Do not set uniqueName for variables whose names are _[0-9]+, these
  are probably rare in user code, and we need a way to communicate
  that we do not care about a variable name when re-parsing the graph.
  Otherwise temporary variable names will jitter around.
* Expand the definition of a constant in printing code to None,
  and family.
* Allow re-treeing to work as long as the only thing in its way is a
  constant node. These do not have side effects but are sometimes
  inserted in a different order when tracing compared to how we print them.
* Print all constant nodes out first in the order in which they are used_val
 (or, if they are inlined, ensure they get assigned CONSTANT.cX number
  in a consistent order). Cleanup tuples (this is done in the compiler,
  but not in the tracer, leading to some tuple indexing jitter if not
  done).
* use strtod_l, not std::stod which can throw exceptions

Other:
* Add REL_WITH_DEB_INFO to setup.py. It already existed for the
  cmake files. Threading it into setup.py allows us to turn on
  debug symbols with optimization everywhere.
* enable round trip testing for all generated graphs. This only adds
  ~6 seconds to total build time but tests printing for every graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14064

Differential Revision: D13094637

Pulled By: zdevito

fbshipit-source-id: 0a1c6912194d965f15d6b0c6cf838ccc551f161d
2018-11-21 06:38:29 -08:00
Edward Yang
48099c23b4 Move AT_CUDA_CHECK to c10
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13910

Reviewed By: smessmer

Differential Revision: D13046201

fbshipit-source-id: 8d360a0e4d6c2edf070d130e600c6b04f0ee0058
2018-11-19 08:20:10 -08:00
Anders Papitto
2983998bb3 add torch-python target (#12742)
Summary:
This is the next minimal step towards moving _C into cmake. For now,
leave _C in setup.py, but reduce it to an empty stub file. All of its
sources are now part of the new torch-python cmake target.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12742

Reviewed By: soumith

Differential Revision: D13089691

Pulled By: anderspapitto

fbshipit-source-id: 1c746fda33cfebb26e02a7f0781fefa8b0d86385
2018-11-16 11:43:48 -08:00
Edward Yang
fbabe5bf62 Rename c10::detail to c10::impl (#13838)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13838

According to Sebastian, the detail convention is specifically for header-private
functionality.  That's not what c10/detail is; it's general, library private headers
which may be used in multiple places within PyTorch.  Rename it to impl to avoid
the confusion in nomenclature.

Reviewed By: smessmer

Differential Revision: D13024368

fbshipit-source-id: 050f2632d83a69e3ae53ded88e8f938c5d61f0ef
2018-11-14 07:39:37 -08:00
jario-jin
0bedaf9cf6 Update setup.py to support Nvidia TX2 (#13939)
Summary:
add platform.machine() == 'aarch64' for supporting Nvidia TX2
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13939

Differential Revision: D13055834

Pulled By: soumith

fbshipit-source-id: 0fadc87adf9e6b796978ce743e824eb98b006856
2018-11-13 20:10:35 -08:00
CircleCI
f1a2bc4eae Corrected python lib path on windows to be consistent with Linux (#13848)
Summary:
The python lib path on Windows was set to an incorrect path. This fixes it to be consistent with Linux.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13848

Differential Revision: D13030945

Pulled By: soumith

fbshipit-source-id: 7fb9013ffe66cff98018aea25fdb5cda03cbceb1
2018-11-12 14:39:55 -08:00
Johannes M Dieterich
53a3c46950 Switch to packaged Thrust on Ubuntu, enable CentOS 7.5 as a CI target (#12899)
Summary:
1) Use the hip-thrust version of Thrust as opposed to the GH master. (ROCm 267)

2) CentOS 7.5 docker (ROCm 279)

* Always install the libraries at docker creation for ubuntu.
* Add Dockerfile for CentOS ROCm
* Enable the centos build
* Source devtoolset in bashrc
* Set locales correctly depending on whether we are on Ubuntu or CentOS
* Install a newer cmake for CentOS
* Checkout thrust as there is no package for CentOS yet.

PyTorch/Caffe2 on ROCm passed tests: https://github.com/ROCmSoftwarePlatform/pytorch/pull/280

For attention: bddppq ezyang

Docker rebuild for Ubuntu not urgent (getting rid of Thrust checkout and package install is mainly cosmetic). If docker for CentOS 7.5 is wanted, build is necessary. Build of PyTorch tested by me in CentOS docker. PyTorch unit tests work mostly, however, a test in test_jit causes a python recursion error that seems to be due to the python2 on CentOS as we haven't ever seen this on Ubuntu - hence please do not enable unit tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12899

Differential Revision: D13029424

Pulled By: bddppq

fbshipit-source-id: 1ca8f4337ec6a603f2742fc81046d5b8f8717c76
2018-11-12 14:39:54 -08:00
David Brownell
75bf877534 Preventing error where ninja build files are overwritten when invokin… (#13698)
Summary:
…g clean and build together
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13698

Differential Revision: D13030905

Pulled By: soumith

fbshipit-source-id: 234576ac92e0aa8c2d2409958d3cf85eb29ed1f3
2018-11-12 14:39:48 -08:00
Edward Yang
e35418b3be New implementations of DeviceGuard, StreamGuard and MultiStreamGuard (with CUDA specializations) (#13342)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13342

This PR introduces a few new concepts:

- DeviceGuardImplInterface, and implementations for CPU and CUDA, which
  provide a generic interface for interfacing with device and stream state,
  without requiring a direct dependency on the code in question.
- InlineDeviceGuard, a general template for generating both specialized
  and dynamically dispatched device guard implementations.  Dynamic
  dispatch is done by specializing it on a VirtualGuardImpl.
- Provide a device-independent DeviceGuard class, which can be used even
  from CPU code. It uses the aforementioned dynamic dispatch.
- CUDA-specialized CUDAGuard class, which doesn't have a dynamic dispatch
  but can only be used from CUDA.
- StreamGuard, which is the same as above, but for streams rather than
  devices.
- Optional variants of all the aforementioned guards, which are a no-op if
  no device/stream is specified
- CUDAMultiStreamGuard, specifically for the case when we want to set
  a device on every guard.

There are some subtle semantic changes, which have been thoroughly documented
in the class definition.

BC-breaking changes:

- Move constructor/assignment have been removed from all device guard
  implementations.
- In some cases where you previously wrote 'set_device' (or 'set_stream'), you now must write
  'reset_device', because if you switch devices/device types, the stream/device on the
  previous device is unset.  This is different from previous behavior.
- CUDAGuard no longer handles streams, or multiple streams.  Use CUDAStreamGuard
  or CUDAMultiStreamGuard as appropriate for your use case.

Reviewed By: dzhulgakov

Differential Revision: D12849620

fbshipit-source-id: f61956256f0b12be754b3234fcc73c2abc1be04e
2018-11-11 12:11:10 -08:00
Tongzhou Wang
a63ef1d605 Suggest git submodule update --init --recursive (#13769)
Summary:
We now have submodules that have submodules
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13769

Reviewed By: soumith

Differential Revision: D13000203

Pulled By: SsnL

fbshipit-source-id: 63c0c19c6c9d25ae3bf255a2421a82ca68278866
2018-11-09 08:41:44 -08:00
Freddie Mendoza
a8e303dc46 change USE_MKLDNN default from ON (from #13303) to OFF for ppc64le (#13759)
Summary:
MKLDNN is not supported on ppc64le change USE_MKLDNN to OFF for ppc64le
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13759

Differential Revision: D12993121

Pulled By: soumith

fbshipit-source-id: 539d5cfcff2c03b59fa71e10b52fac333a64c381
2018-11-08 19:33:39 -08:00
Gu, Jinghui
d01cb70497 build with mkl-dnn by default (#13303)
Summary:
build with mkl-dnn by default
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13303

Reviewed By: yinghai

Differential Revision: D12979633

Pulled By: orionr

fbshipit-source-id: 00d23fa27c0d13e82f7e5acb3ebd00ed7ba1d5dc
2018-11-08 11:18:27 -08:00
Peter Goldsborough
d4f9dbfa66 Remove catch check
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13677

Differential Revision: D12961992

Pulled By: goldsborough

fbshipit-source-id: 1f0207704d05ac67ed1ec1502bec617c845d9f79
2018-11-07 12:27:15 -08:00
Daya S Khudia
18de330e86 CMake integration for int8 server operators
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13558

Reviewed By: Maratyszcza

Differential Revision: D12945460

Pulled By: dskhudia

fbshipit-source-id: 1a91027b305fd6af77eebd9a4fad092a12f54712
2018-11-06 15:45:15 -08:00
Soumith Chintala
a7ee632dff Various Test and build fixes (#13556)
Summary:
- fixes weights-contiguous requirement for THCUNN Convolutions
- Add tests that conv backward pass works for non-contiguous weights
- fix RNN tests / error messages to be consistent and pass
- relax weight grad precision for fp16 for a particular test
- fix regression of CMAKE_PREFIX_PATH not passing through
- add missing skipIfNoLapack annotations where needed

Differential Revision: D12918456

Pulled By: soumith

fbshipit-source-id: 8642d36bffcc6f2957800d6afa1e10bef2a91d05
2018-11-06 07:13:47 -08:00
Ilija Radosavovic
9e432b593d Include caffe2 proto headers in pytorch package data (#13217)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13217

Caffe2 proto headers are not included in pytorch package data (https://github.com/pytorch/pytorch/blob/master/setup.py#L1180). However, they are required for building custom Caffe2 ops living outside PyTorch/Caffe2 repo (e.g. custom Detectron ops).

Reviewed By: pjh5

Differential Revision: D12815881

fbshipit-source-id: 4d1aaa6a69a2193247586e85e4244fbbdb3e8192
2018-11-03 16:19:39 -07:00
Pieter Noordhuis
24839aac59 Link libgloo.a after libc10d.a to resolve remaining symbols (#13462)
Summary:
libcaffe2.so depends on libgloo.a for the ops in caffe2/contrib/gloo.
Symbols in libgloo.a that are not used are ignored and don't end up in
libcaffe2.so. libc10d.a depends on the caffe2 target, which in turn
depends on the gloo target, and it expects all libgloo.a symbols to be
part of libcaffe2.so. Symbols from libgloo.a that are not used in
libcaffe2.so remain undefined in libc10d.a.

To fix this, we link to libgloo.a when linking _C.so, such that any
gloo symbols in libc10d.a are resolved when linking _C.so.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13462

Differential Revision: D12892830

Pulled By: pietern

fbshipit-source-id: 7560b3899b62f76081b394498480e513a84cefab
2018-11-01 16:03:33 -07:00
David Brownell
50a8f8531b Updated for for arbitrary command line arg ordering
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13253

Differential Revision: D12829884

Pulled By: soumith

fbshipit-source-id: 9d8abcdf635e2daffce80ddf1e0e418a1e4c337d
2018-10-29 15:52:03 -07:00
Anders Papitto
380d2dfb27 absorb nccl (#13150)
Summary:
always build nccl from within the main cmake build, rather than via a separate invocation in build_pytorch_libs.sh. Use the existing caffe2 codepaths
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13150

Differential Revision: D12815674

Pulled By: anderspapitto

fbshipit-source-id: a710b6f242d159b9816911a25ee2c4b8c3f855aa
2018-10-29 12:04:32 -07:00
Gu, Jinghui
dbab9b73b6 seperate mkl, mklml, and mkldnn (#12170)
Summary:
1. Remove avx2 support in mkldnn
2. Seperate mkl, mklml, and mkldnn
3. Fix convfusion test case
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12170

Reviewed By: yinghai

Differential Revision: D10207126

Pulled By: orionr

fbshipit-source-id: 1e62eb47943f426a89d57e2d2606439f2b04fd51
2018-10-29 10:52:55 -07:00
Sam Gross
e6ce9f303f Check that QNNPACK directory exists in setup.py
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13174

Differential Revision: D12808599

Pulled By: colesbury

fbshipit-source-id: 2548a024043f32ee570378dfead8880b00608478
2018-10-26 14:37:11 -07:00
Marat Dukhan
5e73b828bd CMake integration for Int8 ops
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13145

Differential Revision: D10860849

Pulled By: Maratyszcza

fbshipit-source-id: fdbcc23ff9beaeaedfd561176df6cfe87685c1f5
2018-10-25 22:25:10 -07:00
Anders Papitto
e07e63f0b3 Absorb shm
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/13088

Differential Revision: D10856067

Pulled By: anderspapitto

fbshipit-source-id: cfbf0f6cad3953e1ee1c55482c00a3db9f140594
2018-10-25 13:55:23 -07:00
Anders Papitto
b883afc928 Absorb c10d into the main cmake build
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12953

Differential Revision: D10850274

Pulled By: anderspapitto

fbshipit-source-id: 42296e6e49ad8c1845040e031eab95ddbaf58ae4
2018-10-24 22:34:00 -07:00
Anders Papitto
69906afaee absorb THD into main cmake build (#12775)
Summary:
We want to move _C into the same cmake invocation that builds
libcaffe2 and libtorch. However, _C depends on THD and c10d, which in
turn depend on libcaffe2. That means that we can't move _C into that
cmake file unless we do these two first. This change does so.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12775

Differential Revision: D10457374

Pulled By: anderspapitto

fbshipit-source-id: 2c1aa3b8a418a73d2112e93c7da53a2e70cf7bba
2018-10-24 21:28:37 -07:00
Anders Papitto
2dacf28b66 link libgloo_cuda.a explictly from setup.py (#12951)
Summary:
rather than pass a list through a text file
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12951

Differential Revision: D10528309

Pulled By: anderspapitto

fbshipit-source-id: d94befcd61b6304815859694b623046f256462df
2018-10-24 13:19:46 -07:00
Yangqing Jia
52beb338ab Add Modules_CUDA_Fix folder to installed folder (#13013)
Summary:
This is used to patch our cmake cuda scripts - should be in the installation script.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13013

Reviewed By: ir413

Differential Revision: D10519104

Pulled By: Yangqing

fbshipit-source-id: 542049224ea41068f32d4c0f6399c7e8b684f764
2018-10-24 10:16:18 -07:00
Anders Papitto
8f51c513a6 gloo: build once, share between pytorch/caffe2
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/12885

Differential Revision: D10492244

Pulled By: anderspapitto

fbshipit-source-id: 79af1ceb9bb0dab4585a728e64554ff4f38d6c32
2018-10-22 11:06:14 -07:00
Peter Goldsborough
a022fd2d6b Implement DataLoader (#11918)
Summary:
This PR implements a DataLoader API for the C++ frontend.

The components present in this API largely match the Python API. It consists of:
- `Dataset`s: Conceptually a function from a set of indices to a batch of examples;
- `Transform`s: A functional transformation of a dataset. A `Map<D, T>` for Dataset `D` and transform `T` is itself a dataset;
- `Sampler`s: Specify a strategy for generating indices for a new batch;
- A `DataLoader`, with the ability to automatically parallelize fetching of samples across multiple worker threads;

Note that collation functions fall naturally out of the `Map<Dataset, Transform>` abstraction.

Things that are missing right now that maybe should be added:
- Memory pinning for CUDA tensors

The API was designed to be generalizable to almost any kind of dataset, transform or sampling strategy, while providing a convenient API out of the box. To achieve this, it is quite heavily templatized on various possible input types.

There are many parts to this PR! Right now, I would like feedback on:
- Your impression of the general usability of the API;
- Your impression of which parts seem too complex or overthought;
- The implementation of the parallelization aspects of the DataLoader. I've followed the Python implementation in some matters, but also differ in others. I think my implementation is a little cleaner and decouples components slightly better than the Python dataloader.

I haven't added too many comments yet, as this is fresh out of the oven. Let me know if anything is unclear from the code itself.

There also aren't any tests yet. I will write a comprehensive test suite once we agree on the API and implementation.

apaszke ezyang The controller you requested could not be found. pietern
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11918

Reviewed By: ezyang

Differential Revision: D9998881

Pulled By: goldsborough

fbshipit-source-id: 22cf357b63692bea42ddb1cc2abc71dae5030aea
2018-10-22 10:22:41 -07:00
JerryShih
0fa69c0276 Remove the protobuf library in pytorch linking list. (#12451)
Summary:
There will be a link error when the caffe2 doesn't use its protobuf under third_party. The pytorch will always link that protobuf. The pytorch doesn't use the protobuf directly. We could remove it from
the list.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12451

Differential Revision: D10262676

Pulled By: ezyang

fbshipit-source-id: c2ff3fdf757fc21ed689e7f663c082064b1a0bca
2018-10-18 18:31:51 -07:00
Benoit Steiner
bbe6ef3864 torch.finfo and torch.iinfo to mimic the numpy equivalent (#12472)
Summary:
This pull request intends to provide the functionality requested in https://github.com/pytorch/pytorch/issues/10742 by adding a new torch.finfo and torch.iinfo API.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12472

Differential Revision: D10250829

Pulled By: benoitsteiner

fbshipit-source-id: eb22ca55d5b0064bef381fa7f1eb75989977df30
2018-10-15 13:43:52 -07:00
Yangqing Jia
713e706618 Move exception to C10 (#12354)
Summary:
There are still a few work to be done:

- Move logging and unify AT_WARN with LOG(ERROR).
- A few header files are still being plumbed through, need cleaning.
- caffe2::EnforceNotMet aliasing is not done yet.
- need to unify the macros. See c10/util/Exception.h

This is mainly a codemod and not causing functional changes. If you find your job failing and trace back to this diff, usually it can be fixed by the following approaches:

(1) add //caffe2/c10:c10 to your dependency (or transitive dependency).
(2) change objects such as at::Error, at::Optional to the c10 namespace.
(3) change functions to the c10 namespace. Especially, caffe2::MakeString is not overridden by the unified c10::str function. Nothing else changes.

Please kindly consider not reverting this diff - it involves multiple rounds of rebasing and the fix is usually simple. Contact jiayq@ or AI Platform Dev for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/12354

Reviewed By: orionr

Differential Revision: D10238910

Pulled By: Yangqing

fbshipit-source-id: 7794d5bf2797ab0ca6ebaccaa2f7ebbd50ff8f32
2018-10-15 13:33:18 -07:00
Philip Yang
b57fdf1db5 Properly set cmake python library and include_dirs (#12569)
Summary:
Properly set cmake python_library and include_dirs hints, so that systems with multiple version of python can still find the correct libraries and header files.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12569

Differential Revision: D10359910

Pulled By: soumith

fbshipit-source-id: 2238dcbed7aac8a818c9435e6bba46cda5f81cad
2018-10-12 08:11:21 -07:00
Orion Reblitz-Richardson
25bd7fe488 Add USE_FFMPEG flag for setup.py and R2Plus1D (#12543)
Summary:
Needed for https://github.com/facebookresearch/R2Plus1D/pull/46
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12543

Differential Revision: D10320147

Pulled By: orionr

fbshipit-source-id: a7dcbf7c0d4b405b9e89b28ef75a0ed1cf2a3e6a
2018-10-10 18:09:48 -07:00
Teng Li
c5d7494ca1 Use open-source NCCL2 in PyTorch (#12359)
Summary:
- Removed the old nccl file
- Make open-source NCCL a submodule
- CMake to make NCCL itself

NCCL2 now is in the default build.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12359

Reviewed By: orionr, yns88

Differential Revision: D10219665

Pulled By: teng-li

fbshipit-source-id: 134ff47057512ba617b48bf390c1c816fff3f881
2018-10-08 15:39:07 -07:00
Sam Gross
f9fb37ca79 Guard Denormals-Are-Zero with runtime CPU check (#12386)
Summary:
Previously, we were only enabling Flush-To-Zero (FTZ) and
Denormals-Are-Zero (DAZ) when compiling with SSE3 enabled. After,
Christian's patch (https://github.com/pytorch/pytorch/pull/12109) we
won't be compiling core files with SSE3 or SSE4 enabled, to better
support older AMD processors.

This moves the FTZ and DAZ code behind a runtime CPU check in
preparation for that change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12386

Differential Revision: D10222237

Pulled By: colesbury

fbshipit-source-id: 7ffe32561ab965e1e5f9eb6e679602bbf4775538
2018-10-05 14:54:54 -07:00
Orion Reblitz-Richardson
895994a7c3 Back out "[pytorch][PR] [Build] Use open-source NCCL2 in PyTorch"
Reviewed By: The controller you requested could not be found.

fbshipit-source-id: a13075339d3a7b970e81be0b1a32a7c4c3a6c68d
2018-10-04 14:12:04 -07:00
Teng Li
ae7a7fb398 Use open-source NCCL2 in PyTorch (#12312)
Summary:
- Removed the old nccl file
- Make open-source NCCL a submodule
- CMake to make NCCL itself

NCCL2 now is in the default build.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12312

Differential Revision: D10190845

Pulled By: teng-li

fbshipit-source-id: 08d42253b774149a66919d194f88b34628c39bae
2018-10-04 11:42:17 -07:00
Sven-Hendrik Haase
080266e79c Document CUDAHOSTCXX environment variable (#12265)
Summary:
This variable is already being used so this just serves to document that. I think it's an important variable, too, so it should definitely be documented there somewhere.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12265

Differential Revision: D10162261

Pulled By: soumith

fbshipit-source-id: e0d01e012c2fedea63372de9967a8eaa3745fe94
2018-10-03 06:33:06 -07:00
daquexian
1fb8925efe Fix typo LMBD->LMDB in docs of setup.py (#12282)
Summary:
`setup.py` reads `USE_LMDB` rather than `USE_LMBD`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12282

Differential Revision: D10162025

Pulled By: soumith

fbshipit-source-id: 6295a777be10509ca49516ad7c10061d26b6f9c9
2018-10-03 06:14:19 -07:00
Edward Yang
1619264ca5 Make ATen-core and caffe2 mutually recursive / merge template data<T>() (#11970)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11970

Adds an ATen-core-headers target, which caffe2_cpu_internal depends
on, and makes ATen-core depend on caffe2_headers.  If you link against
ATen-core, you must ALSO link against caffe2_cpu_internal; if you
link against caffe2_cpu_internal, you must ALSO link against ATen-core,
otherwise you'll have undefined symbols.

Then, we merge template data<T>() method with Caffe2 implementation,
demonstrating that includes to Caffe2 (core) from ATen/core are working

Reviewed By: jerryzh168

Differential Revision: D9967509

fbshipit-source-id: 3d220c38b2c3c646f8ff2884fdcc889fa9276c7a
2018-09-27 17:40:42 -07:00
Yangqing Jia
9c49bb9ddf Move registry fully to c10 (#12077)
Summary:
This does 6 things:

- add c10/util/Registry.h as the unified registry util
  - cleaned up some APIs such as export condition
- fully remove aten/core/registry.h
- fully remove caffe2/core/registry.h
- remove a bogus aten/registry.h
- unifying all macros
- set up registry testing in c10

Also, an important note that we used to mark the templated Registry class as EXPORT - this should not happen, because one should almost never export a template class. This PR fixes that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12077

Reviewed By: ezyang

Differential Revision: D10050771

Pulled By: Yangqing

fbshipit-source-id: 417b249b49fed6a67956e7c6b6d22374bcee24cf
2018-09-27 03:09:54 -07:00
Orion Reblitz-Richardson
02d7c88fa4 Unify versions across setup.py, libtorch, and libcaffe2 (#12053)
Summary:
This unifies our versions across setup.py, libtorch, and libcaffe2. CMake has a default version (bumped to 1.0.0) that can be overridden by setup.py. The versions are also printed as a part of cmake/Summary.cmake to make sure they are correct.

cc Yangqing ezyang soumith goldsborough pjh5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12053

Differential Revision: D10041878

Pulled By: orionr

fbshipit-source-id: a98a01771f6c008d1016ab63ab785c3a88c3ddb0
2018-09-26 08:55:06 -07:00
Peter Goldsborough
e05d689c49 Unify C++ API with C++ extensions (#11510)
Summary:
Currently the C++ API and C++ extensions are effectively two different, entirely orthogonal code paths. This PR unifies the C++ API with the C++ extension API by adding an element of Python binding support to the C++ API. This means the `torch/torch.h` included by C++ extensions, which currently routes to `torch/csrc/torch.h`, can now be rerouted to `torch/csrc/api/include/torch/torch.h` -- i.e. the main C++ API header. This header then includes Python binding support conditioned on a define (`TORCH_WITH_PYTHON_BINDINGS`), *which is only passed when building a C++ extension*.

Currently stacked on top of https://github.com/pytorch/pytorch/pull/11498

Why is this useful?

1. One less codepath. In particular, there has been trouble again and again due to the two `torch/torch.h` header files and ambiguity when both ended up in the include path. This is now fixed.
2. I have found that it is quite common to want to bind a C++ API module back into Python. This could be for simple experimentation, or to have your training loop in Python but your models in C++. This PR makes this easier by adding pybind11 support to the C++ API.
3. The C++ extension API simply becomes richer by gaining access to the C++ API headers.

soumith ezyang apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11510

Reviewed By: ezyang

Differential Revision: D9998835

Pulled By: goldsborough

fbshipit-source-id: 7a94b44a9d7e0377b7f1cfc99ba2060874d51535
2018-09-24 14:44:21 -07:00
Yangqing Jia
a6f1ae7f20 set up c10 scaffolding. Move macros proper first.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/11939

Reviewed By: orionr, dzhulgakov

Differential Revision: D10004629

Pulled By: Yangqing

fbshipit-source-id: ba50a96820d35c7922d81c78c4cbe849c85c251c
2018-09-24 11:09:59 -07:00
Peter Goldsborough
6100c0ea14 Introduce ExtensionVersioner for C++ extensions (#11725)
Summary:
Python never closes shared library it `dlopen`s. This means that calling `load` or `load_inline` (i.e. building a JIT C++ extension) with the same C++ extension name twice in the same Python process will never re-load the library, even if the compiled source code and the underlying shared library have changed. The only way to circumvent this is to create a new library and load it under a new module name.

I fix this, of course, by introducing a layer of indirection. Loading a JIT C++ extension now goes through an `ExtensionVersioner`, which hashes the contents of the source files as well as build flags, and if this hash changed, bumps an internal version stored for each module name. A bump in the version will result in the ninja file being edited and a new shared library and effectively a new C++ extension to be compiled. For this the version name is appended as `_v<version>` to the extension name for all versions greater zero.

One caveat is that if you were to update your code many times and always re-load it in the same process, you may end up with quite a lot of shared library objects in your extension's folder under `/tmp`. I imagine this isn't too bad, since extensions are typically small and there isn't really a good way for us to garbage collect old libraries, since we don't know what still has handles to them.

Fixes https://github.com/pytorch/pytorch/issues/11398 CC The controller you requested could not be found.

ezyang gchanan soumith fmassa
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11725

Differential Revision: D9948244

Pulled By: goldsborough

fbshipit-source-id: 695bbdc1f1597c5e4306a45cd8ba46f15c941383
2018-09-20 14:43:12 -07:00
Mingzhe Li
a7cbcb1bb9 Enable build_python on windows (#11385)
Summary:
The PR aims to resolve issues related to BUILD_PYTHON and BUILD_TEST after FULL_CAFFE2 is removed on Windows.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11385

Reviewed By: orionr

Differential Revision: D9884906

Pulled By: mingzhe09088

fbshipit-source-id: fc114c0cbff6223f1ec261161e4caecc1fef5dd6
2018-09-17 21:40:03 -07:00
Bram Wasti
e8ecbcdf01 Move IValue to ATen/core (#11610)
Summary:
unblocks D9202320
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11610

Differential Revision: D9774853

Pulled By: bwasti

fbshipit-source-id: 4798223f6de680a7152283e8cad8814da7f90209
2018-09-17 18:25:50 -07:00
Soumith Chintala
73738ec570 bump version to 1.0 (#11717)
Summary:
I'm just doing the honors and bumping the version to 1.0.0.

1.0 preview and RC releases will have the 1.0.0.dev{date} tag
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11717

Reviewed By: SsnL

Differential Revision: D9840857

Pulled By: soumith

fbshipit-source-id: 4c9c2e01dccb3c521dab26c49e1569d970a87ace
2018-09-17 12:13:48 -07:00
Gregory Chanan
e125e61824 Fix flake8
Summary: Fix flake8

Reviewed By: ezyang

Differential Revision: D9873872

fbshipit-source-id: 26e81238f22caaeccd2c8b4f39cedb6cfb5520dd
2018-09-17 11:10:29 -07:00
Jesse Hellemn
5bfd8f583c Moving copy of Caffe2 protos back to build_pytorch_libs.sh (#11726)
Summary:
This way it shows up in all current and future setup.py commands, as otherwise we'd have to override every once to have them all call copy_protos. This is needed because the nightly packages still do not include caffe2_pb2, because setup.py bdist does not go through setup.py install or setup.py develop
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11726

Reviewed By: orionr

Differential Revision: D9844075

Pulled By: pjh5

fbshipit-source-id: 57b469e48010aacd0c08c214ba8a7e5d757feefa
2018-09-17 08:58:05 -07:00
Soumith Chintala
acb6f18bab fix generate_code.py caching (#11644)
Summary:
Currently, because of some setup.py logic, `ninja` caching of the `generate_code.py` build step was broken. This resulted in `generate_code.py` running every single time builds were happening, regardless of whether inputs changed.

This updated logic fixes the input caching
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11644

Reviewed By: orionr

Differential Revision: D9814348

Pulled By: soumith

fbshipit-source-id: 2012960908d0f600488d410094095cfd72adc34f
2018-09-13 12:39:48 -07:00
Teng Li
6dcdbd3a1d Make C10d support CPU only build (#11513)
Summary:
This makes torch.distributed works for CPU only build.

Also added one more CI test case to cover MPI CPU build.
All CI tests should cover this change
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11513

Differential Revision: D9784546

Pulled By: teng-li

fbshipit-source-id: 0976a6b0fd199670926f0273e17ad7d2805e42e7
2018-09-11 22:10:34 -07:00
Zachary DeVito
289a8c9b7d Allow train/eval, and non-Tensor arguments to python functions (#11505)
Summary:
This whitelists train/eval functions in script modules, and tests that nested nn.Modules still work.

This also changes the code for calling python functions from script to allow non-tensor inputs/outputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11505

Differential Revision: D9765466

Pulled By: zdevito

fbshipit-source-id: 1177bff931324422b69e18fa0bbaa82e3c98ec69
2018-09-11 15:05:09 -07:00
Orion Reblitz-Richardson
d32b41003a Copy protos on install same as develop (#11517)
Summary:
This is a potential fix for https://github.com/pytorch/pytorch/issues/11453 and https://github.com/pytorch/pytorch/issues/11074 worked through with pjh5 . Turns out we had some protos copy code that was in the .sh file that was removed. Better to have it in setup.py, though, same as for develop.

cc ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11517

Differential Revision: D9771911

Pulled By: orionr

fbshipit-source-id: 76975d8f71f38d951eaaed0b50dd3ec36dd177a9
2018-09-11 10:09:56 -07:00
Soumith Chintala
4e8d9a4a58 Introducing python setup.py rebuild develop (#11487)
Summary:
This speeds up incremental builds by doing the following changes:

- Uses `rsync` instead of `cp` (when `rsync` is found) which is a bit smarter in doing "maybe copy"
- Introduces a `rebuild` mode which does not rerun `cmake` in `build_pytorch_libs.sh`.
   *Note: `rebuild` should only be used if you dont add / remove files to the build, as `cmake` is not rerun*

Current no-op rebuild speedup:
- 1m 15s -> 20s

There are some lingering bugs. No-op rebuilds rerun `cmake`  for two rebuilds (likely that cmake logic is dependent on the install folder, hence kicking off rebuild).

So what you see

```
python setup.py rebuild develop    # first time - ~5 mins
python setup.py rebuild develop    # second time - ~3 mins
python setup.py rebuild develop    # third time - ~2 mins
python setup.py rebuild develop    # fourth time - ~20 seconds
python setup.py rebuild develop    # fifth time - ~20 seconds
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11487

Differential Revision: D9769087

Pulled By: soumith

fbshipit-source-id: 20fbecde33af6426149c13767e8734fb3be783c5
2018-09-11 08:56:25 -07:00
Orion Reblitz-Richardson
a175282776 Flags for LMDB, LevelDB, and Caffe2 ops (#11462)
Summary:
Add flags for LMDB and LevelDB, default `OFF`. These can be enabled with

```
USE_LMDB=1 USE_LEVELDB=1 python setup.py build_deps
```

Also add a flag to build Caffe2 ops, which is default `ON`. Disable with

```
NO_CAFFE2_OPS=1 python setup.py build_deps
```

cc Yangqing soumith pjh5 mingzhe09088
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11462

Reviewed By: soumith

Differential Revision: D9758156

Pulled By: orionr

fbshipit-source-id: 95fd206d72fdf44df54fc5d0aeab598bff900c63
2018-09-10 17:27:50 -07:00
Peter Goldsborough
a0d4106c07 Integrate custom op tests with CI (#10611)
Summary:
This PR is stacked on https://github.com/pytorch/pytorch/pull/10610, and only adds changes in one file `.jenkins/pytorch/test.sh`, where we now build the custom op tests and run them.

I'd also like to take this PR to discuss whether the [`TorchConfig.cmake`](https://github.com/pytorch/pytorch/blob/master/cmake/TorchConfig.cmake.in) I made is robust enough (we will also see in the CI) orionr Yangqing dzhulgakov what do you think?

Also ezyang for CI changes
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10611

Differential Revision: D9597627

Pulled By: goldsborough

fbshipit-source-id: f5af8164c076894f448cef7e5b356a6b3159f8b3
2018-09-10 15:40:21 -07:00
Orion Reblitz-Richardson
802d21c8f4 Remove FULL_CAFFE2 flag (#11321)
Summary:
Continuing pjh5's work to remove FULL_CAFFE2 flag completely.

With these changes you'll be able to also do something like

```
NO_TEST=1 python setup.py build_deps
```
and this will skip building tests in caffe2, aten, and c10d. By default the tests are built.

cc mingzhe09088 Yangqing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11321

Reviewed By: mingzhe09088

Differential Revision: D9694950

Pulled By: orionr

fbshipit-source-id: ff5c4937a23d1a263378a196a5eda0cba98af0a8
2018-09-07 15:09:44 -07:00
Peter Goldsborough
01930a3145 Move sync_params to C++ (#9805)
Summary:
The next function I'm moving to C++ is `sync_params`. It is stacked on top of https://github.com/pytorch/pytorch/pull/9729, so some changes will go away when it lands and I rebase.

I also split code into a `.h` and `.cpp` file for better code organization.

The controller you requested could not be found. pietern apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9805

Differential Revision: D9688604

Pulled By: goldsborough

fbshipit-source-id: 4467104d3f9e2354425503b9e4edbd59603e20a8
2018-09-07 12:56:40 -07:00
iotamudelta
9de2085806 Use custom hcc/HIP, purge hcSPARSE (#11198)
Summary:
* purge hcSPARSE now that rocSPARSE is available
* integrate a custom hcc and HIP
* hcc brings two important compiler fixes (fixes hundreds of unit tests)
* HIP brings a smart dispatcher that allows us to avoid a lot of static_casts (we haven't yet removed the automatic static_casts but this catches some occurrences the script did not catch)
* mark 5 unit tests skipping that have regressed w/ the new hcc (we don't know yet what is at fault)
* optimize bitonic sort - the comparator is always an empty struct - therefore passing it by value saves at least 3 bytes. It also removes an ambiguity around passing references to `__global__` functions
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11198

Differential Revision: D9652340

Pulled By: ezyang

fbshipit-source-id: f5af1d891189da820e3d13b7bed91a7a43154690
2018-09-06 19:38:07 -07:00
Orion Reblitz-Richardson
dda8402447 Cleanup dependency of distributed flags (#11221)
Summary:
Now that we're building everything together, making all distributed flags conditional of USE_DISTRIBUTED being set.

cc pietern The controller you requested could not be found. cpuhrsch
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11221

Reviewed By: Yangqing

Differential Revision: D9664267

Pulled By: orionr

fbshipit-source-id: a296cda5746ad150028c97160f8beacba955ff73
2018-09-06 08:56:00 -07:00
Jesse Hellemn
c0efe6f027 Forward declarations of needed curand functions (#10911)
Summary:
Needed for FULL_CAFFE2=1 with statically linked CUDA libraries. Waiting on advice from Nvidia
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10911

Reviewed By: pjh5

Differential Revision: D9636256

Pulled By: orionr

fbshipit-source-id: fcad7945910b6c8fb5f52e81cc87dad5fcfb3c65
2018-09-05 16:56:26 -07:00
Richard Zou
68c2e014cb Handling for py2/py3 division differences (#11016)
Summary:
- In Python 2, use of `/` (regardless of int/float/Tensor) causes a compiler error if
  `from __future__ import division` is not imported in the file.
- The / operator is universally set to do "true" division for integers
- Added a `prim::FloorDiv` operator because it is used in loop unrolling.

The error if users use '/' in python 2 without importing from __future__
occurs when building the JIT AST.

cc apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11016

Differential Revision: D9613527

Pulled By: zou3519

fbshipit-source-id: 0cebf44d5b8c92e203167733692ad33c4ec9dac6
2018-09-05 14:57:38 -07:00
Teng Li
020501b7b0 Getting rid of USE_C10D for build (#11237)
Summary:
Will use USE_DISTRIBUTED for both c10d and THD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11237

Differential Revision: D9647825

Pulled By: teng-li

fbshipit-source-id: 06e0ec9b5e2f8f38780fc88718f8499463e9e969
2018-09-04 17:27:53 -07:00
iotamudelta
33c7cc13ca improve docker packages, fix bugs, enable tests, enable FFT (#10893)
Summary:
* improve docker packages (install OpenBLAS to have at-compile-time LAPACK functionality w/ optimizations for both Intel and AMD CPUs)
* integrate rocFFT (i.e., enable Fourier functionality)
* fix bugs in ROCm caused by wrong warp size
* enable more test sets, skip the tests that don't work on ROCm yet
* don't disable asserts any longer in hipification
* small improvements
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10893

Differential Revision: D9615053

Pulled By: ezyang

fbshipit-source-id: 864b4d27bf089421f7dfd8065e5017f9ea2f7b3b
2018-09-02 08:54:42 -07:00
Teng Li
3791bd12c8 PT1 Release Milestone No.2 MPI Group Support with all tests passed (#11128)
Summary:
Added MPI group support.
And this will make all previous group test cases of MPI passed.

Also, release the MPI thread level support by serializing different PG's MPI ops. This is required.

The build is fixed too
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11128

Differential Revision: D9602188

Pulled By: teng-li

fbshipit-source-id: 1d618925ae5fb7b47259b23051cc181535aa7497
2018-08-31 12:39:56 -07:00
Edward Yang
cd9416317d Minor copy-edit on setup.py
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10933

Reviewed By: cpuhrsch

Differential Revision: D9526650

fbshipit-source-id: 8ad1c989bee7009b3f95a2641189f55cf6c1979f
2018-08-29 13:41:04 -07:00
Orion Reblitz-Richardson
3c9775fff8 Remove nanopb since we've switched to protobuf (#10772)
Summary:
We no longer use nanopb in PyTorch (or Caffe2) so removing. All protobuf manipulation should go through standard protobuf, which is statically linked inside libcaffe2.so by default.

cc zdevito pjh5 ezyang Yangqing
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10772

Reviewed By: pjh5

Differential Revision: D9465894

Pulled By: orionr

fbshipit-source-id: 8cdf9f1d3953b7a48478d381814d7107df447201
2018-08-24 10:54:38 -07:00
Orion Reblitz-Richardson
8c13971f57 Remove protobuf require and use requirements.txt (#10771)
Summary:
In prep for making FULL_CAFFE2 default, users shouldn't be required to have protobuf installed.

cc pjh5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10771

Reviewed By: pjh5

Differential Revision: D9474458

Pulled By: orionr

fbshipit-source-id: 3e28f5ce64d125a0a0418ce083f9ec73aec62492
2018-08-24 10:39:40 -07:00
Johannes M Dieterich
a4c59a9dab MIOpen integration, more tests enabled, bug fixes (#10612)
Summary:
* first integration of MIOpen for batch norm and conv on ROCm
* workaround a ROCm compiler bug exposed by elementwise_kernel through explicit capture of variables in the densest packing
* workaround a ROCm compiler bug exposed by having `extern "C" __host__` as a definition and just `__host__` in the implementation through the hipify script
* use fabs() in accordance with C++11 for double absolute, not ::abs() which is integer-only on ROCm
* enable test_sparse set on CI, skip tests that don't work currently on ROCm
* enable more tests in test_optim after the elementwise_bug got fixed
* enable more tests in test_dataloader
* improvements to hipification and ROCm build

With this, resnet18 on CIFAR data trains without hang or crash in our tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10612

Reviewed By: bddppq

Differential Revision: D9423872

Pulled By: ezyang

fbshipit-source-id: 22c0c985217d65c593f35762b3eb16969ad96bdd
2018-08-23 15:24:47 -07:00
Edward Yang
227635142f Delete THD master_worker (#10731)
Summary:
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10731

Differential Revision: D9423675

Pulled By: ezyang

fbshipit-source-id: 37221e11d84cc3672b944af598ea229a1d4c38cc
2018-08-22 08:54:36 -07:00
Peter Goldsborough
c101a57a74 Build mechanism for custom operators (#10226)
Summary:
This is the last step in the custom operator implementation: providing a way to build from C++ and Python. For this I:

1. Created a `FindTorch.cmake` taken largely from ebetica with a CMake function to easily create simple custom op libraries
2. Created a ` torch/op.h` header for easy inclusion of necessary headers,
3. Created a test directory `pytorch/test/custom_operator` which includes the basic setup for a custom op.
    1. It defines an op in `op.{h,cpp}`
    2. Registers it with the JIT using `RegisterOperators`
    3. Builds it into a shared library via a `CMakeLists.txt`
    4. Binds it into Python using a `setup.py`. This step makes use of our C++ extension setup that we already have. No work, yey!

The pure C++ and the Python builds are separate and not coupled in any way.

zdevito soumith dzhulgakov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10226

Differential Revision: D9296839

Pulled By: goldsborough

fbshipit-source-id: 32f74cafb6e3d86cada8dfca8136d0dfb1f197a0
2018-08-16 18:56:17 -07:00
Anders Papitto
130881f0e3 Delete build_caffe2.sh, replace with build_libtorch.py (#10508)
Summary:
delete build_caffe2.sh, replace with build_libtorch.py as suggested by peter (and copy-pasted from his draft PR).  This ensures that all consumers of the torch CMake file go through as unified a path as possible.

In order to change the surrounding infrastructure as little as possible, I made some tweaks to enable build_pytorch_libs.sh to generate the test binaries relative to the current directory, rather than hardcoding to pytorch/build.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10508

Differential Revision: D9354398

Pulled By: anderspapitto

fbshipit-source-id: 05b03df087935f88fca7ccefc676af477ad2d1e9
2018-08-16 08:10:04 -07:00
Orion Reblitz-Richardson
021b4888db Remove setup_requires and tests_require from setup.py for FULL_CAFFE2 (#10530)
Summary:
In my environment, it looks like setup.py hangs when running

```
FULL_CAFFE2=1 python setup.py build_deps
```

Removing this fixes things, but we might also want to look at `tests_require`, which came over from `setup_caffe2.py`.

cc pjh5
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10530

Differential Revision: D9349597

Pulled By: orionr

fbshipit-source-id: 589145eca507dfaf16386884ee2fbe60299660b4
2018-08-15 14:26:53 -07:00
Anders Papitto
d1442b36f3 add a rebuild_libtorch command for speedier iteration. (#10036)
Summary:
It just calls into `ninja install`. For iterative work on
libtorch.so/_C.so,
`python setup.py rebuild_libtorch develop` should provide quick iteration
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10036

Differential Revision: D9317869

Pulled By: anderspapitto

fbshipit-source-id: 45ea45a1b445821add2fb9d823a724fc319ebdd2
2018-08-14 12:10:02 -07:00
iotamudelta
75651d5b58 improve use of ROCm libraries, enable more tests, small fixes (#10406)
Summary:
* some small leftovers from the last PR review
* enable more unit test sets for CI
* replace use of hcRNG w/ rocRAND (docker image was already updated w/ newer rocRAND)
* use rocBLAS instead of hipBLAS to allow convergence w/ Caffe2
* use strided_batched gemm interface also from the batched internal interface
* re-enable Dropout.cu as we now have philox w/ rocRAND
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10406

Reviewed By: Jorghi12

Differential Revision: D9277093

Pulled By: ezyang

fbshipit-source-id: 7ef2f6fe4ead77e501ed7aea5c3743afe2466ca2
2018-08-13 11:39:43 -07:00
Jesse Hellemn
cd81217f8e A single print statement in setup.py
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10473

Reviewed By: ml7

Differential Revision: D9299196

Pulled By: pjh5

fbshipit-source-id: f9aa84c2859df12f9da9ac5205e1918c253e19fb
2018-08-13 11:39:42 -07:00
Sam Gross
0b63d12db6 Don't call into Python during Storage destruction. (#10407)
Summary:
```
This removes PyObjectFinalizer. We were seeing SIGSEGV at exit in some
programs that use multiprocessing. The backtrace pointed to
StorageRef.__del__ being called from subtype_dealloc. My guess is that
the Python interpreter was shutdown before all C++ Storage objects were
deallocated. Deallocating the C++ Storage called the finalizer which
called back into Python after it was no longer safe to do so.

This avoids a callback from C++ into Python during Storage finalization.
Instead, dead Storage objects (expired weak references) are collected
periodically when shared_cache exceeds a limit. The limit is scaled with
2x the number of live references, which places an upper bound on the
amount of extra memory held by dead Storage objects. In practice, this
should be very small.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10407

Differential Revision: D9272400

Pulled By: colesbury

fbshipit-source-id: ecb14d9c6d54ffc91e134c34a4e770a4d09048a2
2018-08-13 11:20:07 -07:00
Jesse Hellemn
def3715e82 Minor changes for nicer pip packages (#9544)
Summary:
I am using this to test a CI job to upload pip packages, and so am using the Caffe2 namespace to avoid affecting the existing pytorch packages.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9544

Reviewed By: orionr

Differential Revision: D9267111

Pulled By: pjh5

fbshipit-source-id: a68162ed29d2eb9ce353d8435ccb5f16c3b0b894
2018-08-10 12:09:46 -07:00
Yangqing Jia
40109b16d0 Remove caffe1 specific proto (#10380)
Summary:
This was used as a convenient way for us to convert c1 models. Now that conversion is more or less done, we should probably require any users who need to convert c1 models to explicitly install c1. This PR removes the explicit c1 proto (which was copied from c1) in favor of explicit installation.

Note that caffe_translator would still work properly, only difference is that now users need to install c1 separately.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10380

Differential Revision: D9267981

Pulled By: Yangqing

fbshipit-source-id: a6ce5d9463e6567976da83f2d08b2c3d94d14390
2018-08-10 11:10:26 -07:00
peter
506142ac8a Add warning for building PyTorch using Python 2.7 on Windows (#10247)
Summary:
Fixes #9232.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10247

Differential Revision: D9178257

Pulled By: SsnL

fbshipit-source-id: cc553335a5a918b6d77fe1064460cb66114859ca
2018-08-05 21:24:02 -07:00
Shuichi KITAGUCHI
df23bdc82d add BEGIN NOT-CLEAN-FILES marker to .gitignore. (#10233)
Summary:
Using Visual Studio Code and Visual Studio, these IDEs store configurations to `FOLDER/.vscode` and `FOLDER/.vs`.
But "setup.py clean" deletes these folders because those are described in `.gitignore` file.

To prevent this, add "BEGIN NOT-CLEAN-FILES" marker to `.gitignore` file and "setup.py clean" ignores lines after this marker.

Discussed in #10206
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10233

Differential Revision: D9175515

Pulled By: ezyang

fbshipit-source-id: 24074a7e6e505a3d51382dc5ade5c65c97deda37
2018-08-05 15:55:44 -07:00
Elias Ellison
170d29769b Strings lexing, parsing, implementation in print (#9324)
Summary:
This PR adds strings to the ast and implements them for print statements. Strings are lifted as attributes to the print node. They must be arguments to print itself, not as an argument for an object that is passed to print.  If they are encountered elsewhere a NYI exception will be thrown.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9324

Reviewed By: jramseyer

Differential Revision: D8807128

Pulled By: eellison

fbshipit-source-id: 984401ff458ed18d473c6d1bd86750e56c77d078
2018-08-02 11:09:03 -07:00
Gregory Chanan
2d56b5cf8b Prepare THC for first class scalars (0-dimensional tensors).
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10072

Differential Revision: D9082421

Pulled By: gchanan

fbshipit-source-id: d4327b07aaef85cc2521393008154ebceae8cbfd
2018-08-01 14:28:51 -07:00
Edward Yang
37a226de63 When BUILD_ATEN=OFF, use ATen/core directly (#10019)
Summary:
ATenCore.h is a dummy header to just test that this is working at all.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10019

Reviewed By: smessmer

Differential Revision: D9067262

Pulled By: ezyang

fbshipit-source-id: 58bab9c0aa83b56335e36b719b9b6505400d8dee
2018-07-30 21:09:55 -07:00
Edward Yang
a08119afc2 Eliminate direct access to size/strides of THTensor; replace them with std::vector (#9561)
Summary:
* THTensor now stores `sizes_` and `strides_` which is a `std::vector<int64_t>`
* Anywhere a "public" API function made use of a int64_t* of sizes, I opted to just finagle it out of the tensor using THTensor_getSizePtr rather than try to rewrite all of these sites to use ArrayRef. They should use ArrayRef eventually, but not yet.
* There are new utility functions for resizing sizes/strides in one go (THTensor_resizeDim), or replacing sizes and strides with completely new values (THTensor_setSizesAndStrides)
* Anywhere you said `t->size[n] = 0`, we now say `THTensor_setSizeAt(t, n, 0)`, ditto for strides
* Anywhere you said `t->size[n]`, we now say `t->size(n)` (coming soon: ditto for strides)

Previous review of just the `std::vector` change in #9518, but I'm planning to merge this all in one go.

Note for gchanan: review from commit "ci" and after
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9561

Reviewed By: cpuhrsch

Differential Revision: D8901926

Pulled By: ezyang

fbshipit-source-id: 483cf275060ab0a13845cba1ece39dd127142510
2018-07-19 14:10:06 -07:00
Anders Papitto
4c615b1796 Introduce libtorch to setup.py build (#8792)
Summary:
Prior to this diff, there have been two ways of compiling the bulk of the torch codebase. There was no interaction between them - you had to pick one or the other.

1) with setup.py. This method
- used the setuptools C extension functionality
- worked on all platforms
- did not build test_jit/test_api binaries
- did not include the C++ api
- always included python functionality
- produced _C.so

2) with cpp_build. This method
- used CMake
- did not support Windows or ROCM
- was capable of building the test binaries
- included the C++ api
- did not build the python functionality
- produced libtorch.so

This diff combines the two.

1) cpp_build/CMakeLists.txt has become torch/CMakeLists.txt. This build
- is CMake-based
- works on all platforms
- builds the test binaries
- includes the C++ api
- does not include the python functionality
- produces libtorch.so

2) the setup.py build
- compiles the python functionality
- calls into the CMake build to build libtorch.so
- produces _C.so, which has a dependency on libtorch.so

In terms of code changes, this mostly means extending the cmake build to support the full variety of environments and platforms. There are also a small number of changes related to the fact that there are now two shared objects - in particular, windows requires annotating some symbols with dllimport/dllexport, and doesn't allow exposing thread_local globals directly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8792

Reviewed By: ezyang

Differential Revision: D8764181

Pulled By: anderspapitto

fbshipit-source-id: abec43834f739049da25f4583a0794b38eb0a94f
2018-07-18 14:59:33 -07:00
Chunli Fu
a487b08c2e AutoBatching - IR transformation(basic operators) (#9198)
Summary:
Use decorator `torch.jit.batch` to implement auto-batching (call `to_batch` pass to do IR tranformation).
- `to_batch` pass: "to_batch.h/cpp" in csrc/jit/passess to transform a graph to a new batched graph.
- Write several basic operators for BatchTensor (add, mul, sigmoid, tanh, mm, matmul, select).
- Register the operators in a lookup table `<std::string, std::shared_ptr<Graph>>`. (use the Graph to replace the original node in IR graph)

Move BatchTensor in python from torch.BatchTensor to torch.jit.BatchTensor
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9198

Reviewed By: zdevito

Differential Revision: D8744466

Pulled By: ChunliF

fbshipit-source-id: 9ea56a30f55cb870f13a2069a47cc635419763ff
2018-07-11 18:25:07 -07:00
Adam Paszke
b9f575fc33 Remove legacy code from the JIT (#9323)
Summary:
In particular, get rid of backward tracing and CppOp.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9323

Reviewed By: ezyang

Differential Revision: D8795935

Pulled By: apaszke

fbshipit-source-id: fb7a7eeee41902da35f2a8efd77262ca60fd6bbe
2018-07-11 10:25:38 -07:00
Zachary DeVito
efefd1d7cf Unify aten_dispatch and aten_schema into a single operator abstraction with human-readable schema. (#8885)
Summary:
This is a series of two commits that should probably be read separately. They are stacked on top of #9018 since the second commit requires it for correctness.

Commit 1
=======

This commit is the first in a series that will clean up how we handle declaring operators and intrinsics in the JIT to make it more modular and readable. This introduces readable declarations that can be used to register operators and switches gen_jit_dispatch to generate this schema. A follow up PR will remove the dispatch keys like "add-3" and resolve ops directly based on the registered schema, further simplifying the generation process.

* Switches schema over to parsed declarations, in the future this will allow something like:

```
  registry.register_intrinsic("foo(Tensor a, Tensor b) -> Tensor", [](Stack& stack) {
    ...
  })
```

This will allow the scalable registration of intrinsics for lists, tuples, and other ops, as long as meta-data for these ops (e.g. derivatives and size propagation routines).

The declarations resemble those used by PythonArgParser but have been singificantly cleaned up to minimize the number of types that can appear in the declaration. We should strive to get the other parts of PyTorch switched over to this restricted declaration set when possible, but it is too much to do in a single PR. My hope is that eventually we will use a very similar language to describe declarations in C10, and this can serve as a guide for that.

Parsing is done using the script lexer, so it is very robust to whitespace and extensible for future types.

This removes the other way we encoded schema, and makes it easier to see what schema are registered.

Current generated declarations: https://gist.github.com/zdevito/a96a17766fb3a098d69a91ee00abaaf6

* Switches how we handle attempting to use an integer in the place of a fixed-sized int list, such as in conv (e.g. 'int[3] stride=1'). Now that we can statically distinguish between int and Tensor, we handle the expansion as an implicit conversion in the compiler. This allows us to simplify the interpreter since it no longer needs to handle the conversion itself.

* Schema declarations have been changed so that they match the type system in the IR exactly. In particular, attribute_info which was used by liftConstantAttributes has been dropped and constant attributes are lifted purely based on the type of the input. Type conversions in compiler have been simplified due to this change.

* Error highlighting in ErrorReport now only reports at most 20 lines of code, to make reading where an error occurred easier.

Commit 2
=======

This commit unifies aten_dispatch and aten_schema into a single Operator object that both contains schema and implementation information. In the future we can use this object to also contain functionality like shape prop and autodiff needed by all operators. Operators are registered globally, and dispatch logic uses the schema information to figure out which variant to use. Descriptor keys, a frequent source of inscrutable debug errors, have been removed.

* Introduce Operator, to replace TensorOp. Unlike TensorOp, we use Operator for all op implementations, including primitives that may occur in the graphs. The only exceptions are ops that are only known to the interpreter like jumps, and GraphExecutors where we need to record additional debug info.

* Adds a global registry for Operator implementations. aten_dispatch.cpp turns into register_aten_ops.cpp, which registers all the Operators for aten with the operator registry. register_prim_ops.cpp now contains the implementations for primitive operators that used to be in the interpreter. This means that it is now safe to use `getOperation(node)` to lookup the true interpreter function for the node, which will simplify const-propagation passes.

* Remove addInterpreterOpHandler in favor of global operator registry.

* Instead of descriptors, we match Node arguments directly against FunctionSchema describing expected inputs in `matchSchema`. `matchSchema` knows how parse both attributes and positional inputs from a node and match it to the appropriate registered operator. Debug error messages when we try to run an invalid operator are significantly improved: they now automatically display the schema for the op with the same name that are registered.

* Merge aten_schema into regsiter_aten_ops. Each Operator takes a string schema which is parsed to determine when to dispatch to that op.

* Cleans up gen_jit_dispatch.py now that we do not need to write out descriptors.  In particular, skip_scalar_overloads can be removed since Richard's code sorts declarations to put Tensor, Tensor declarations first.

* remove matchSchemaAndLiftConstantAttributes and use emitBuiltinCall instead to remove code duplication

* refactor stack manipulation functions into a separate header file.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8885

Reviewed By: jamesr66a

Differential Revision: D8751048

Pulled By: zdevito

fbshipit-source-id: 312aabfbf88307c5f6ab947b6caf691468b94557
2018-07-10 10:24:48 -07:00
Edward Yang
d0d1820814 Add weak pointer and finalizer support directly to THStorage. (#9148)
Summary:
The underlying use-case is the file descriptor to storage cache in
torch.multiprocessing.reductions.  Previously, this was implemented by wrapping
an existing allocator with a "weak ref" allocator which also knew to null out
the weak reference when the storage died.  This is terribly oblique, and
prevents us from refactoring the allocators to get rid of per-storage allocator
state.

So instead of going through this fiasco, we instead directly implement weak
pointers and finalizers in THStorage.  Weak pointers to THStorage retain the
THStorage struct, but not the data_ptr.  When all strong references die,
data_ptr dies and the finalizers get invoked.

There is one major hazard in this patch, which is what happens if you
repeatedly call _weak_ref on a storage.  For cleanliness, we no longer
shove our grubby fingers into the finalizer struct to see if there is already
a Python object for the weak reference and return it; we just create a new one
(no one is checking these Python objects for identity).  This means if you
keep calling it, we'll keep piling on finalizers.  That's bad! But I am
not going to fix it until it is actually a problem for someone, because
then we need to add another caching layer.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9148

Differential Revision: D8729106

Pulled By: ezyang

fbshipit-source-id: 69710ca3b7c7e05069090e1b263f8b6b9f1cf72f
2018-07-10 06:25:33 -07:00
Peter Goldsborough
4498fb962b Add space around operator (#9294)
Summary:
Fixes lint failure on master
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9294

Differential Revision: D8779010

Pulled By: goldsborough

fbshipit-source-id: da1ea2604189fd704c22fa8a5770bd92845cea91
2018-07-09 20:24:21 -07:00
Jesse Hellemn
99ab082366 Making setup.py install work for Caffe2 (#8509)
Summary:
Tested on my mac on a pretty clean anaconda3
Pull Request resolved: https://github.com/pytorch/pytorch/pull/8509

Reviewed By: orionr

Differential Revision: D8702257

Pulled By: pjh5

fbshipit-source-id: eda03ef9732da9fc56b31d909af5c0e39520d689
2018-07-09 18:10:58 -07:00
Zachary DeVito
819815d9c0 Fix missing compile_commands.json for aten (#9227)
Summary:
When we moved the libaten build into libcaffe2, we changed the location where it generated compile_commands.json such that it was no longer being picked up by the build script. This fixes it so it is still found.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9227

Reviewed By: goldsborough

Differential Revision: D8757984

Pulled By: zdevito

fbshipit-source-id: 73df26bf08d98f18ac841d6c0db7e332fd328ab6
2018-07-08 16:54:34 -07:00
Francisco Massa
f6027bb15d Install hpp headers for CPP Extensions (#9182)
Summary:
With the Cppzation of a few files in `TH`/`THC`, the CPP extensions got broken whenever the user uses feature from `THC` in their files, when pytorch is installed via `python setup.py install`.

This addresses issues such as
```
/home/me/.conda/envs/pytorch/lib/python3.6/site-packages/torch/lib/include/THC/THCDeviceTensorUtils.cuh:5:25: fatal error: THCTensor.hpp: No such file or directory
```
Closes https://github.com/pytorch/pytorch/pull/9182

Reviewed By: soumith

Differential Revision: D8734581

Pulled By: fmassa

fbshipit-source-id: 2a1138f208592eaccb01fcdb805a6b369d7a497a
2018-07-05 07:55:25 -07:00
Roy Li
c61f0217a5 combine size_average and reduce args in loss functions (#8018)
Summary:
closes #7929
Closes https://github.com/pytorch/pytorch/pull/8018

Differential Revision: D8682540

Pulled By: li-roy

fbshipit-source-id: 649170dd1a7f373151c1d4e949838bd1c5651936
2018-07-01 05:39:00 -07:00
Chunli Fu
67b21117b7 Add BatchTensor class (#8922)
Summary:
Add BatchTensor class
- construct from data, mask, dims or construct from list of tensors
- can return a list of tensors from an BatchTensor class

next step: do IR level transformation and operators
Closes https://github.com/pytorch/pytorch/pull/8922

Differential Revision: D8668986

Pulled By: ChunliF

fbshipit-source-id: 8b24d2a9f46a3b42dbb397e99e9e059dfb2b326e
2018-06-29 15:57:27 -07:00
Zachary DeVito
f74207c99f
Allow autograd to work even when the shape of values cannot be determined (#8641)
This commit implements the solution proposed in https://github.com/pytorch/pytorch/issues/8410
to workaround the need to create zero tensors with the same shape as inputs.
It introduces the concept of a LinearBlock which marks places in the code
where we know if all the inputs to the node are zero, then the outputs
to the node are also zero. Autodiff introduces LinearBlocks around
backwards functions, which have this property. specializeUndef then
propagates Undef nodes using this information.

Notes:
* Since we do not always specialize, we have a pass LowerLinearBlocks
that replaces the block with an if statement that dynamically guards
the Undef case.
* We introduce AutogradAdd which is addition that still works when
its inputs might be undefined. In cases where we specialize this will
get removed in favor of a normal add, but there are cases where
gradient graphs do not specialize (e.g. when they are not differentiable,
but a derivative is required) so it is important for this op to be executable.
2018-06-25 18:40:04 -07:00
Orion Reblitz-Richardson
5a7b4840d9 Move nanopb-generated ONNX to unique file name (#8773)
* Move nanopb-generated ONNX to unique file name

* fix other places
2018-06-22 09:51:56 -04:00
Richard Zou
8489c4cc6e
Better support for literals in jit script (#8687)
Addresses #8177

A design doc can be found here: [gist](https://gist.github.com/zou3519/4b7f13f03cc9f3612bd9363e6405fa0a) version or [quip](https://fb.quip.com/azL1AqUckBdo) version

General approach:
- Add NumberType, FloatType, IntType to represent Python numbers, floats and ints.
- Emit these types for python literals
- Change aten_schema such that Scalars are NumberType, int64_t and bool are IntType.
- Emit aten::type_as, prim::NumToTensor, and prim::TensorToNum nodes for tensor-number math. (see examples below)
- Erase NumberType,  prim::NumToTensor, and prim::TensorToNum for ONNX export

### Tensor/number math
```
import torch
@torch.jit.script
def fn(x):
    return x + 1
```
```
graph(%x : Dynamic) {
  %1 : int = prim::Constant[value={1}]()
  %2 : Dynamic = prim::NumToTensor(%1)
  %3 : Dynamic = aten::type_as(%2, %x)
  %4 : Dynamic = aten::add[alpha={1}](%x, %4)
  return (%5);
}
```

### Number/Number Math
```
import torch
@torch.jit.script
def fn(zero):
    c = 1 + 1
    return zero + c
```
```
graph(%zero : Dynamic) {
  %1 : int = prim::Constant[value={1}]()
  %2 : int = prim::Constant[value={1}]()
  %3 : Dynamic = prim::num_to_tensor(%1)
  %4 : Dynamic = prim::num_to_tensor(%2)
  %5 : Dynamic = aten::add[alpha={1}](%3, %4)
  %c : int = prim::TensorToNum(%6)  # this is the result of the addition
  ...
  return (%13);
}
```

List of squashed commits:

* Introduce Python Number types

Added: IntType, FloatType, NumberType with
IntType <: NumberType
FloatType <: NumberType

Changed aten_schema so arguments have corresponding types

* Emit a NumberType for python literals.

Also emit a NumberType for Scalar default values.

* Add prim::NumToTensor and prim::TensorToNum

* Add DynamicType -> NumberType implicit cast for bc

* Better ensureTensor error message

* Add ensureTensorOrNumber. Allow passing Number to some functions

Like the range() construct and slices

* Patch IntList to work.

IntList is still a DynamicType in the frontend: a tensor gets built from
a List[int].

Also, IntList[1] is a "union between int and IntList" the way it is
implemented. If the frontend sees an int being passed for an IntList[1]
arg, it converts it to a tensor as well.

* Enforce some order on schemas to avoid overload ambiguity

add(Tensor, Tensor) should appear earlier than add(Tensor, Scalar). This
matches the order in which python_arg_parser parses its arguments.

* Disable std_dim and var_dim tests.

With the new schema information, std(input, keepdim) and std(input, dim)
are ambiguous. This will need to be fixed at a later date.

* Add NumberType erasure pass.

This is used for ONNX export and to ensure that NumberType information
doesn't reach the interpreter

* Add support for mixed tensor/number math ops.

* Tests for new functionality.

Includes:
- Tensor/number math
- number/number math
- EraseNumberTypes pass test

* Patch tests

Update expect tests for:
- decompose_addmm
- loop unrolling tests

Because python numbers are now NumberType, they cannot be returned by
functions anymore. Work around this by using "torch.full", or by adding
a tensor([0]) (taken from FIXME_zerol()). Both approaches are used
because torch.full is more readable, but it is broken in some cases.

* Add erase_number_types to torch/CMakeLists.txt

* Move math back to emitSimpleExpr from emitSugaredExpr

* Remove some dead lines

* Renable some excluded script/trace tests that are fixed.

* Move some tests to expected failure

* Address some comments (more addressing to come)

* Erase relevant aten::type_as nodes in EraseNumberTypes

I also changed it so that EraseNumberTypes is only called for ONNX
export. It is no longer used to prevent
prim::NumToTensor/prim::TensorToNum from reaching shape_analysis or
interpreter.cpp.

shape_analysis infers the type of the output of these nodes to be the
same as their input.

intepreter.cpp treats both of these nodes as no-ops.

* Add reminder to fix std/var

* Call EraseNumberTypes only when exporting a script module

* Update expects after rebase
2018-06-21 15:43:38 -04:00
anderspapitto
48e90e3339 Build system changes (#8627)
* All changes needed to get rid of process_github.sh

* allow thnn_h_path
2018-06-20 17:45:26 -04:00
Teng Li
61c96811be
[c10d] NCCL python binding and CI test, with bug fixes (#8357)
* [c10d] NCCL python binding and CI test, with bug fixes

* Addressed comments and further bug fix

* Made NCCL build optional, made C10D libc10d.a only

* Fixed tests so that NCCL pg won't run when not neeeded

* Addressed comments
2018-06-19 13:02:39 -07:00
cpuhrsch
05c473b85c
Temporarily remove TBB (#8255) 2018-06-18 19:31:57 -04:00
Peter Goldsborough
372d1d6735
Create ATen tensors via TensorOptions (#7869)
* Created TensorOptions

Storing the type in TensorOptions to solve the Variable problem

Created convenience creation functions for TensorOptions and added tests

Converted zeros to TensorOptions

Converted rand to TensorOptions

Fix codegen for TensorOptions and multiple arguments

Put TensorOptions convenience functions into torch namespace too

All factory functions except *_like support TensorOptions

Integrated with recent JIT changes

Support *_like functions

Fix in place modification

Some cleanups and fixes

Support sparse_coo_tensor

Fix bug in Type.cpp

Fix .empty calls in C++ API

Fix bug in Type.cpp

Trying to fix device placement

Make AutoGPU CPU compatible

Remove some auto_gpu.h uses

Fixing some headers

Fix some remaining CUDA/AutoGPU issues

Fix some AutoGPU uses

Fixes to dispatch_tensor_conversion

Reset version of new variables to zero

Implemented parsing device strings

Random fixes to tests

Self review cleanups

flake8

Undo changes to variable.{h,cpp} because they fail on gcc7.2

Add [cuda] tag to tensor_options_cuda.cpp

Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks

Fix linker error in AutoGPU.cpp

Fix bad merge conflict in native_functions.yaml

Fixed caffe2/contrib/aten

Fix new window functions added to TensorFactories.cpp

* Removed torch::TensorOptions

Added code to generate wrapper functions for factory methods

Add implicit constructor from Backend to TensorOptions

Remove Var() from C++ API and use torch:: functions

Use torch:: functions more subtly in C++ API

Make AutoGPU::set_device more exception safe

Check status directly in DynamicCUDAHooksInterface

Rename AutoGPU to DeviceGuard

Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad

remove python_default_init: self.type()

Add back original factory functions, but with deprecation warnings

Disable DeviceGuard for a couple functions in ATen

Remove print statement

Fix DeviceGuard construction from undefined tensor

Fixing CUDA device compiler issues

Moved as many methods as possible into header files

Dont generate python functions for deprecated factories

Remove merge conflict artefact

Fix tensor_options_cuda.cpp

Fix set_requires_grad not being checked

Fix tensor_new.h

TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac

Fix bug in DeviceGuard.h

Missing includes

TEMPORARILY moving a few more methods into .cpp to see if it fixes windows

Fixing linker errors

* Fix up SummaryOps to use new factories

Undo device agnostic behavior of DeviceGuard

Use -1 instead of optional for default device index

Also move DeviceGuard methods into header

Fixes around device index after optional -> int32_t switch

Fix use of DeviceGuard in new_with_tensor_copy

Fix tensor_options.cpp

* Fix Type::copy(

* Remove test_non_float_params from ONNX tests

* Set requires_grad=False in ONNX tests that use ints

* Put layout/dtype/device on Tensor

* Post merge fixes

* Change behavior of DeviceGuard to match AutoGPU

* Fix C++ API integration tests

* Fix flip functions
2018-06-16 00:40:35 -07:00
Tongzhou Wang
c537fd7432 fix lint (#8567) 2018-06-15 17:34:39 -04:00
Soumith Chintala
dc186cc9fe
Remove NO_* and WITH_* across codebase, except in setup.py (#8555)
* remove legacy options from CMakeLists

* codemod WITH_ to USE_ for WITH_CUDA, WITH_CUDNN, WITH_DISTRIBUTED, WITH_DISTRIBUTED_MW, WITH_GLOO_IBVERBS, WITH_NCCL, WITH_ROCM, WITH_NUMPY

* cover SYSTEM_NCCL, MKLDNN, NNPACK, C10D, NINJA

* removed NO_* variables and hotpatch them only in setup.py

* fix lint
2018-06-15 12:29:48 -04:00
Orion Reblitz-Richardson
edd4e2c5d1
Expose proto utils and ONNX (#8073)
* Expose proto utils and ONNX from PyTorch libcaffe2.so

* Try to use protobuf from _C.so

* Fix ONNX proto header include

* Adjust order of imports for ONNX until nanopb goes away

* Set and use ONNX_NAMESPACE for PyTorch builds

* Show protobuf summary for all builds

* Add ONNX_NAMESPACE for cpp_build

* Statically link libprotobuf.a into libtorch.so

* Set ONNX_NAMESPACE on Windows build

* Move core/dispatch up as well

* Add /MD flag for Windows build of _C

* Potential Windows fix for ONNX and protobuf

* Add direct linkage from _C to ONNX on Windows

* Only include protobuf wrapper for PyTorch

* Pass extra_compile_args to _nvrtc ext build

* Remove installation of .a files
2018-06-13 10:25:32 -07:00
Jorghi12
81b92f7515 Get ROCm building again on master (#8343)
Billing of changes:

- New Jenkins script for building on rocm. For now it is a bit hacked together, but we can improve it once CI is running
- New ROCM docker image for nightly HIP, and also some legacy packages that we need temporarily
- New enabled config py2-clang3.8-rocmnightly-ubuntu16.04-build based off of the existing Caffe2 image (not built yet)
- A big pile of cmake fixes, mostly to turn bits on/off when ROCM build is involved
- Switch from hiprng to hcrng
- Apply some patches directly in code, eliminating the patches
- Use __hdiv instead of hdiv, it's more portable
- THCNumerics<T>::gt doesn't work in HIP, so simulate it with sub
- Add a few more overloads HIP needs
- Turn off use of hcc to link (we plan to turn this back on to get tests running)
- Search for hiprand, hiprng, hipblas, hipsparse
- Better Python 2 portability
2018-06-12 23:05:21 -04:00
albanD
78e3259bbe Add autograd automatic anomaly detection (#7677)
* add autograd automatic anomaly detection

* python 3 string support

* Fix non python build

* fix typo in doc

* better test and naming fix

* fix no python build and python object handling

* fix missing checks

* clean NO_PYTHON build

* Remove unwanted changes
2018-06-11 21:26:17 -04:00
Pieter Noordhuis
695d40efc2
Create initial Python bindings for c10d (#8119)
* Build and install c10d from tools/build_pytorch_libs.sh

* Create initial Python bindings for c10d

* clang-format

* Switch link order to include more symbols

* Add bindings and tests for ProcessGroupGloo

* Add broadcast test

* Separate build flag for c10d

* Explicit PIC property

* Skip c10d tests if not available

* Remove c10d from Windows blacklist

Let it skip by itself because it won't be available anyway.

* Make lint happy

* Comments

* Move c10d module into torch.distributed

* Close tempfile such that it is deleted
2018-06-08 12:59:51 -07:00
Soumith Chintala
5e372c7106 fix lint 2018-06-06 12:53:58 -04:00
Paul Jesse Hellemn
8e6f7a1382
[Caffe2] Merging setup.py with setup_caffe2.py (#8129)
* Mergine setup.pys, torch works, caffe2 works up to other KP

* Fix to super call for python 2

* Works on python2 on mac

* Consolidating Caffe2 flags
2018-06-06 08:31:31 -07:00
Adam Paszke
f45a3d5558
Add a loop unrolling pass to PyTorch JIT (#7672) 2018-06-06 09:36:12 +02:00
Zachary DeVito
23dd033b51 Factor python dependency out of interpreter (#7970)
* Factor python dependency out of interpreter

* Remove NO_PYTHON for the autograd engine

If there is no python bindings, then a default Engine is constructed
the first time it is requested.

If the python libraries are loaded, then they override the default
accessor and the default engine becomes a python Engine.

Note: it is possible for two engines to be generated if a non-python
one gets created before the python bindings are loaded. This case
is rare, and just results in additional threads being spawned.

* Fixing AlexNet test which is skipped in CI
2018-06-01 16:07:21 -04:00
James Reed
1f94a6eab3 [JIT] Fission and fusion passes for addmm (#7938)
* Addmm decomposition pass

* Addmm peephole pass

* Fix handling of output shape in fusion pass

* Add DCE to the peephole passes

* add comments

* maybe bugfix?

* Fix GPU tests

* fix py2/3 test issue
2018-05-30 18:06:58 -04:00
Orion Reblitz-Richardson
4bf0202cac
[build] Have PyTorch depend on minimal libcaffe2.so instead of libATen.so (#7399)
* Have PyTorch depend on minimal libcaffe2.so instead of libATen.so

* Build ATen tests as a part of Caffe2 build

* Hopefully cufft and nvcc fPIC fixes

* Make ATen install components optional

* Add tests back for ATen and fix TH build

* Fixes for test_install.sh script

* Fixes for cpp_build/build_all.sh

* Fixes for aten/tools/run_tests.sh

* Switch ATen cmake calls to USE_CUDA instead of NO_CUDA

* Attempt at fix for aten/tools/run_tests.sh

* Fix typo in last commit

* Fix valgrind call after pushd

* Be forgiving about USE_CUDA disable like PyTorch

* More fixes on the install side

* Link all libcaffe2 during test run

* Make cuDNN optional for ATen right now

* Potential fix for non-CUDA builds

* Use NCCL_ROOT_DIR environment variable

* Pass -fPIC through nvcc to base compiler/linker

* Remove THCUNN.h requirement for libtorch gen

* Add Mac test for -Wmaybe-uninitialized

* Potential Windows and Mac fixes

* Move MSVC target props to shared function

* Disable cpp_build/libtorch tests on Mac

* Disable sleef for Windows builds

* Move protos under BUILD_CAFFE2

* Remove space from linker flags passed with -Wl

* Remove ATen from Caffe2 dep libs since directly included

* Potential Windows fixes

* Preserve options while sleef builds

* Force BUILD_SHARED_LIBS flag for Caffe2 builds

* Set DYLD_LIBRARY_PATH and LD_LIBRARY_PATH for Mac testing

* Pass TORCH_CUDA_ARCH_LIST directly in cuda.cmake

* Fixes for the last two changes

* Potential fix for Mac build failure

* Switch Caffe2 to build_caffe2 dir to not conflict

* Cleanup FindMKL.cmake

* Another attempt at Mac cpp_build fix

* Clear cpp-build directory for Mac builds

* Disable test in Mac build/test to match cmake
2018-05-24 07:47:27 -07:00
Zachary DeVito
286cd04a20
JIT cleanup (#7631)
Cleans up dead code in the JIT:

* Remove interpreter_autograd_function
* Remove Handles
* Remove HandleBuilder
* Remove creates_handles, and tracing_autograd_python_function flags
* Remove unused var_args
* Fix submodules
2018-05-21 10:06:29 -07:00
Adam Paszke
b45f2ff1ae
Remove CompiledFunction + clean up JIT tests (#7421) 2018-05-16 20:03:04 +02:00
Jorghi12
cd86d4c554
PyTorch AMD Build Scripts (#6625)
* PyTorch AMD Build Script.

* Python invocation for hipify

* Adding individual hip fles.

* Updating CWD

Use the actual path for the file instead of the current working directory, which depends on where the script is invoked.

* Updating folder path for amd_build

* Removing previous amd_build directory

* Updated setup.py to support WITH_ROCM

* Renaming the files for CuDNN BatchNorm & Conv since having two .cpp files with the same name results in a linking error in the HCC compiler used for ROCm/AMD.

* Removing old BatchNorm & Conv files since they've been renamed.

* Updating build path to handle ROCM

* Cleaned up the build path and created a FindHIP cmake file for setting up relevant hip paths.

* Seperated the individual patch files to make it easier to detect issues while building.

* Removed CMakeLists hip files and fixed directory structure

* Adding build pytorch amd script

* Merged setup patch into PyTorch setup.py & cleaned a few issues

* Added information on where to download the hipify-python script.

* Resolved linting issues inside of build_pytorch_amd.py

* Removing many unnecessary patch files. Removing unnecessary .hip files. Fixing up the build process.

* Refactored the PR for supporting HIP

* Minimizing the number of changes inside individual patches.

* Cleaned up patch files.

* Removed patch files.

* Updating patches

* Removing HIP change from file.

* Cleaned up patches

* Added AVX/SSE avoidance due to bug with ROCms stack. Just temporary for now.

* Removing the other HIP file

* Removed patch file + merged ROCm into Aten/test

* Removed ATen tests patch file and updated disbale_features yaml to remove headers that don't exist on the HIP stack.

* Reduced the number of patches down to 14 after Edward's suggestions.

* Transferred deletion of certain functions from patch to yaml file.

* Set default Thrust path

* Fixed aten files so we now use the templated pow/abs instead of std:: directly.

* Removed error from aten/src/THCUNN/Abs.cu

* Updated the locations of the cmake build files. Moved THCTensorRandom from a hip to a patch file. Added executable/library commands that can successfully handle either CUDA or HIP.

* Removed hip extraction from the build script and removed the old hip file.

* Replaced MACRO with function in upper level cmake.

* Added empty ELSE() block to prevent the loading of a command without CUDA or HIP. Also added IF guards around torch_cuda_based_add_executable in Aten tests.

* Updated aten tests.

* Removed the hip include from the ATen header.

* Can't throw exceptions on C++ AMP, using abort

* Missing IF guards for cuda/hip executables in aten tests.

* Removed a series of patch files.

* Added template keyword to help out the HCC compiler.

* Rebased the specific files displayed in the PR

* Fixing typo.

* Change flag from "WITH_CUDA" to "NOT NO_CUDA"

Replacing "WITH_CUDA" with "NOT NO_CUDA" after the rebase.

* Fix LoadHIP path

* Updating build files after rebasing.

* Reorganization after cpu/gpu separation.

* Removed HIPCC from setup.py & removed -shared extra linking args.

* Updated CMake / Setup build to correctly link when under ROCm stack.

* Removed the unnecessary argument from Extension constructor.

* Adding another test to be included with ROCm building.

* Updated the setup_helpers scripts in order to get around linter error

* Fix syntax issue

* Solving lint issue: line too long
2018-05-15 18:38:01 -07:00
Zachary DeVito
ce69d3110b
Improve script builtin checking using schema (#7311)
Improve script builtin checking using schema

* This add aten_schema.h which provides a barebones amount of type and
  argument information about each builtin operator
* emitBuiltinCall is updated to use this information rather than
  aten_dispatch to ensure the operator is correct.
* handling of keyword and position arguments now matches python behavior
* There is no longer a requirement that kwargs be constant or that the
  attributes of an op must be entirely constant or non-constant
* compiler now constructs a non-attributed version of the op first and
  then turns it into the constant-attribute version if all attributes
  are constants.
* default arguments for builtins now work
* SugaredValue::call and similar functions now have SourceRange information
  for their arguments so that error reporting is more accurate

Notes:
* This does not try to merge the builtin checking with python arg parser.
  Given that we will eventually have C10 schema which will replace aten_schema,
  we will eventually have a C++ description of the schema and working of that
  description directly will be the easiest form to understand.
* python function calls and script method calls do not support keyword arguments yet.
  When we add this support we should refactor the handling in tryEmitSchema
  that resolves keywords into a common function.

* default arguments work
* keyword arguments to builtins work (still need to extend to calling python and other script methods)
* much better error reporting for incorrect builtins

Lift any constants to attributes on nodes when possible

* Schema  is usable internally in the compiler as
  the function signatures of script functions as well as for builtin
  operators.
* Adds a List[T] class to better represent the arguments to cat/stack
  as a type rather than with custom checking.
* Support kwargs for calls of script methods

A future commit will be needed to add support for:
* calls to script _functions_ which are currently are GraphExecutors without schema info.
* kwargs to python functions, which will require refactoring python op
2018-05-14 14:46:36 -07:00
Zachary DeVito
93eb50c103
Mark expand nodes as implicit/explicit in trace (#7303)
When tracing we record expand nodes. This is useful in some cases because
it makes it clear a broadcast happened. However, in future runs
the broadcast may be different or not needed. This change adds an
attribute to expand to track if it was implicitly added. This
takes the form of an unused input to expand with a default value.

The execution engine then removes implicit expands before execution.
Note that shape_analysis will re-add expands when it can prove by
shape analysis that they will exist and this is useful for the fuser,
so this change should not affect fusion passes.
2018-05-10 10:47:43 -07:00
Edward Z. Yang
64834f6fb8
Split libATen.so into libATen_cpu.so and libATen_cuda.so (#7275)
* Split libATen.so into libATen_cpu.so and libATen_cuda.so

Previously, ATen could be built with either CPU-only support, or
CPU/CUDA support, but only via a compile-time flag, requiring
two separate builds.  This means that if you have a program which
indirectly uses a CPU-only build of ATen, and a CPU/CUDA-build of
ATen, you're gonna have a bad time.  And you might want a CPU-only
build of ATen, because it is 15M (versus the 300M of a CUDA build).

This commit splits libATen.so into two libraries, CPU/CUDA, so
that it's not necessary to do a full rebuild to get CPU-only
support; instead, if you link against libATen_cpu.so only, you
are CPU-only; if you additionally link/dlopen libATen_cuda.so,
this enables CUDA support.  This brings ATen's dynamic library
structure more similar to Caffe2's.  libATen.so is no more
(this is BC BREAKING)

The general principle for how this works is that we introduce
a *hooks* interface, which introduces a dynamic dispatch indirection
between a call site and implementation site of CUDA functionality,
mediated by a static initialization registry.  This means that we can continue
to, for example, lazily initialize CUDA from Context (a core, CPU class) without
having a direct dependency on the CUDA bits.  Instead, we look up
in the registry if, e.g., CUDA hooks have been loaded (this loading
process happens at static initialization time), and if they
have been we dynamic dispatch to this class.  We similarly use
the hooks interface to handle Variable registration.

We introduce a new invariant: if the backend of a type has not
been initialized (e.g., it's library has not been dlopened; for
CUDA, this also includes CUDA initialization), then the Type
pointers in the context registry are NULL.  If you access the
registry directly you must maintain this invariant.

There are a few potholes along the way.  I document them here:

- Previously, PyTorch maintained a separate registry for variable
  types, because no provision for them was made in the Context's
  type_registry.  Now that we have the hooks mechanism, we can easily
  have PyTorch register variables in the main registry.  The code
  has been refactored accordingly.

- There is a subtle ordering issue between Variable and CUDA.
  We permit libATen_cuda.so and PyTorch to be loaded in either
  order (in practice, CUDA is always loaded "after" PyTorch, because
  it is lazily initialized.)  This means that, when CUDA types are
  loaded, we must subsequently also initialize their Variable equivalents.
  Appropriate hooks were added to VariableHooks to make this possible;
  similarly, getVariableHooks() is not referentially transparent, and
  will change behavior after Variables are loaded.  (This is different
  to CUDAHooks, which is "burned in" after you try to initialize CUDA.)

- The cmake is adjusted to separate dependencies into either CPU
  or CUDA dependencies.  The generator scripts are adjusted to either
  generate a file as a CUDA (cuda_file_manager) or CPU file (file_manager).

- I changed all native functions which were CUDA-only (the cudnn functions)
  to have dispatches for CUDA only (making it permissible to not specify
  all dispatch options.)  This uncovered a bug in how we were handling
  native functions which dispatch on a Type argument; I introduced a new
  self_ty keyword to handle this case.  I'm not 100% happy about it
  but it fixed my problem.

  This also exposed the fact that set_history incompletely handles
  heterogenous return tuples combining Tensor and TensorList.  I
  swapped this codegen to use flatten() (at the possible cost of
  a slight perf regression, since we're allocating another vector now
  in this code path).

- thc_state is no longer a public member of Context; use getTHCState() instead

- This PR comes with Registry from Caffe2, for handling static initialization.
  I needed to make a bunch of fixes to Registry to make it more portable

  - No more ##__VA_ARGS__ token pasting; instead, it is mandatory to pass at
    least one argument to the var-args. CUDAHooks and VariableHooks pass a nullary
    struct CUDAHooksArgs/VariableHooksArgs to solve the problem. We must get rid of
    token pasting because it does not work with MSVC.

  - It seems MSVC is not willing to generate code for constructors of template
    classes at use sites which cross DLL boundaries. So we explicitly instantiate
    the class to get around the problem. This involved tweaks to the boilerplate
    generating macros, and also required us to shuffle around namespaces a bit,
    because you can't specialize a template unless you are in the same namespace as
    the template.
  - Insertion of AT_API to appropriate places where the registry must be exported

- We have a general problem which is that on recent Ubuntu distributions,
  --as-needed is enabled for shared libraries, which is (cc @apaszke who was
  worrying about this in #7160 see also #7160 (comment)). For now, I've hacked
  this up in the PR to pass -Wl,--no-as-needed to all of the spots necessary to
  make CI work, but a more sustainable solution is to attempt to dlopen
  libATen_cuda.so when CUDA functionality is requested.

    - The JIT tests somehow manage to try to touch CUDA without loading libATen_cuda.so. So
      we pass -Wl,--no-as-needed when linking libATen_cuda.so to _C.so

- There is a very subtle linking issue with lapack, which is solved by making sure libATen_cuda.so links against LAPACK. There's a comment in aten/src/ATen/CMakeLists.txt about htis as well as a follow up bug at #7353

- autogradpp used AT_CUDA_ENABLED directly. We've expunged these uses and added
  a few more things to CUDAHooks (getNumGPUs)

- Added manualSeedAll to Generator so that we can invoke it polymorphically (it
  only does something different for CUDAGenerator)

- There's a new cuda/CUDAConfig.h header for CUDA-only ifdef macros (AT_CUDNN_ENABLED, most prominently)

- CUDAHooks/VariableHooks structs live in at namespace because Registry's
  namespace support is not good enough to handle it otherwise (see Registry
  changes above)

- There's some modest moving around of native functions in ReduceOps and
  UnaryOps to get the CUDA-only function implementations into separate files, so
  they are only compiled into libATen_cuda.so. sspaddmm needed a separate CUDA
  function due to object linkage boundaries.

- Some direct uses of native functions in CUDA code has to go away, since these
  functions are not exported, so you have to go through the dispatcher
  (at::native::empty_like to at::empty_like)

- Code in THC/THCS/THCUNN now properly use THC_API macro instead of TH_API
  (which matters now that TH and THC are not in the same library)

- Added code debt in torch/_thnn/utils.py and other THNN parsing code to handle
  both TH_API and THC_API

- TensorUtils.h is now properly exported with AT_API

- Dead uses of TH_EXPORTS and co expunged; we now use ATen_cpu_exports and
  ATen_cuda_exports (new, in ATenCUDAGeneral.h) consistently

- Fix some incorrect type annotations on _cudnn_rnn_backward, where we didn't
  declare a type as possibly undefined when we should have. We didn't catch this
  previously because optional annotations are not tested on "pass-through" native
  ATen ops (which don't have dispatch). Upstream issue at #7316

- There's a new cmake macro aten_compile_options for applying all of our
  per-target compile time options. We use this on the cpu and cuda libraries.

- test/test_cpp_extensions.py can be run directly by invoking in Python,
  assuming you've setup your PYTHONPATH setup correctly

- type_from_string does some new funny business to only query for all valid CUDA
  types (which causes CUDA initialization) when we see "torch.cuda." in the
  requested string

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Last mile libtorch fixes

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* pedantic fix

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2018-05-10 10:28:33 -07:00
Peter Goldsborough
54a4867675
Bring back C++ extension torch.h (#7310)
* Bring back C++ extension torch.h

* Fix python.h include in python_tensor.cpp
2018-05-05 14:06:27 -07:00
Peter Goldsborough
feb64b5291
Add -Wno-unknown-pragmas (#7291) 2018-05-04 13:44:13 -07:00
Peter Goldsborough
67d0d14908
Rename autograd namespace to torch and change torch.h into python.h (#7267)
* Rename autograd namespace to torch and change torch.h into python.h

* Include torch.h instead of python.h in test/cpp/api

* Change some mentions of torch.h to python.h in C++ extensions

* Set paths directly, without find_path
2018-05-04 08:04:57 -07:00
Soumith Chintala
92f54e1f01
remove static libstdc++ linking and PYTORCH_BINARY_BUILD env variable (#7259) 2018-05-03 12:32:57 -07:00
Luca Antiga
5d3c3c53aa
Add raw IR serialization/deserialization (#6392) 2018-05-01 20:21:29 +02:00
Luca Antiga
0703357723 Don't build THD/master_worker if not explicitly requested (#7081) 2018-04-29 13:17:09 -04:00
James Reed
4667983f0f
Fixes for interpreter and ONNX export for translation (#7044)
Fixes for interpreter and ONNX export for translation

Address comments
2018-04-27 22:23:57 -07:00
Peter Goldsborough
7b09bc72a5
[WIP] Enable WERROR in tests (#6539)
* Enable WERROR in tests

* Also set WERROR=1 for cpp_build in CI

* Enable Werror after the compiler checks

* Remove -DWERROR because its picked up from the env var

* Had to fix some errors in aten/contrib/data

* Allow an uninitialized variable in ReduceOpsKernel.cpp

* Use CUDNN_DATA_UINT8 in cuDNN type string conversion

* Fixes and use target_compile_options

* Fix uninitialized variables in THNN

* Include Python.h earlier in tensor_types.cpp

* Use CUDNN_VERSION 7100 instead of 7000?

* More Python.h includes

* Make switch case in common_subexpression_elimination.cpp exhaustive

* Build with WERROR=0 just to see all the warnings

* Remove some Python includes

* Enable WERROR=1 again

* Bring back switch case default
2018-04-28 01:51:16 +01:00
Soumith Chintala
bd14d8e8f8
add additional caffe/caffe2 paths to exclude list in pytorch setup.py (#6891) 2018-04-25 22:10:38 -04:00
Orion Reblitz-Richardson
dec5e99e99 [aten] Move submodules to third_party (#6866)
* [aten] Move submodules to third_party

* [aten] Update aten_mirror.sh script for third_party

* [aten] Move ATen submodules def to root and rename

* [aten] Update cpuinfo cmake build

* [aten] Fix cpuinfo cmake build

* Update third_party/cpuinfo to d03d5d296063063c66877fb559cf34469734e3e1

* [aten] Fix JIT test reference to catch
2018-04-24 23:33:46 -04:00
gchanan
1c7b0c1020 Update version string to 0.5. (#6795) 2018-04-22 13:57:48 -04:00
bddppq
c43c911662
Export onnx protobuf bindings to python (#6651)
* Export onnx protobuf bindings to python

* rename native onnx module to _onnx
2018-04-17 16:38:57 -07:00
srib
53d2612b55 Fix a typo in the setup.py script (#6632) 2018-04-16 15:29:45 -04:00
Zachary DeVito
825ce7f196
[jit][script] Allow tuples to be re-assigned (#6538)
* Allow tuples to be re-assigned

This commit improves our support of tuples by making them more first-class.
In particular, it allows tuples to be re-assigned across loops and ifs.
It does this by making them first-class values in the Graph IR, and then
removing the tuples in a LowerTuples pass.

An alternative approach would have added more support for desugaring tuples
in the Environment object as they were emitted. Instead,
the current approach was chosen anticipating a future when tuples are
fully supported (including the interpreter). In that future, the current
code can be completly reused with the LowerTuples pass just becoming
a optimization that removes unneeded tuple allocations.
2018-04-13 17:34:50 -07:00
Peter Goldsborough
e4f1d3b538
Better warnings (#6428)
* Better warnings

* Remove -Wc++14-extensions because gcc does not know it

* Warning fix in input_buffer.cpp

* Remove pedantic for torch/csrc/

* Also use Wextra and Wall for ATen

* Use check_env_flag

* Undo changes in shape_analysis.cpp

* Remove C linkage flag
2018-04-10 23:34:25 -07:00
peterjc123
5651695a99 Fixes #6386, Use copies instead of symbolic files (#6396)
* Use copies instead of symbolic files

* bug fix

* Remove useless item
2018-04-09 13:54:10 -04:00
Soumith Chintala
108f5c197f
[pytorch] add static linkage support for CuDNN and NCCL (#6410)
* when linking static CUDA libs, additional dep on culibos.a

* add USE_STATIC_NCCL option

* add USE_STATIC_CUDNN option

* remove libATen soversion

* add caffe, caffe2 folders to setup.py exclude list
2018-04-08 22:54:18 -04:00
Ben
119ea39021 add cuda headers (#6401) 2018-04-08 10:50:20 -04:00
gchanan
87e369111a
Add string-style devices to all tensors. (#6283)
* Add string-style devices to all tensors.

Previously, tensors only had a 'get_device' method which would throw an exception on a CPU tensor.   This made it necessary to if/else code that
was meant to be device agnostic.

This PR implements the following:
1) Adds a 'device' property to all tensors that returns a string representation of the device for all tensors.
For cpu tensors this is 'cpu'.  For cuda tensors this is 'cuda:X', where X is the cuda device ordinal.

2) Adds a DeviceSpec class.  This is just a helper class for separating device_type and device_index specification and to allow partial specification.
For example, you can call DeviceSpec('cuda'), DeviceSpec('cuda:0'), DeviceSpec('cuda', 1).
Also has backwards compatibility support for specifying integers, which are treated as cuda devices.

DeviceSpecs have the following properties:
a) device_type: string representation of the device type (i.e. 'cpu' or 'cuda')
b) device_index: integer for the device index (None if not specified)
c) cuda_device_index: for backwards compatibility; behaves roughly like `get_device` did previously.  I.e. if a function previously took integers for cuda devices,
it can now take DeviceSpecs (or strings), and can maintain the old functionality by calling `old_index = DeviceSpec(old).cuda_device_index`.

3) tensor methods and torch. functions that took integer devices can now take integers, strings, or DeviceSpecs.  For example:
torch.randn((2,3), dtype=torch.cuda.float32, device='cuda:1')

TODO in future PRs:
A) Split out cuda from dtype so you don't need to overspecify cuda-ness
B) We currently only support strings/DeviceSpecs in tensor methods and torch. functions.  We should have equivalents torch.cuda.device(...), torch.cuda.device_of, etc.
at the torch. level that work on strings/DeviceSpecs

* Add deviceInt64 to python arg parser.

* device_str.

* Remove device_str.

* remove device prefix from attributes.

* Use const char * instead of string.

* Move autogpu index out of Device.

* comment on is_default.

* Rename torch.DeviceSpec to torch.device.

* comment.

* Fix tests.

* Fix flake8.

* Fix sparse_coo_tensor parameter name.

* Improve error message.

* Remove device_ prefix from C++ device object.

* Allocate static strings.

* Return not implemented from rich compare.

* Move torch::Device to THPDevice.

* Remove cuda index.

* Py_RETURN_NOTIMPLEMENTED doesn't exist in python2.
2018-04-06 15:12:05 -04:00
Sam Gross
6b3a4637d6
Make the tensor type torch.Tensor instead of torch.autograd.Variable (#5785)
This changes type(tensor) to return `torch.Tensor` instead of
`torch.autograd.Variable`.

This requires a few implementation changes:

 - torch.Tensor is now a regular Python class instead of a
   pseudo-factory like torch.FloatTensor/torch.DoubleTensor
 - torch.autograd.Variable is just a shell with a __new__ function.
   Since no instanes are constructed it doesn't have any methods.
 - Adds torch.get_default_dtype() since torch.Tensor.dtype returns
   <attribute 'dtype' of 'torch._C._TensorBase' objects>
2018-04-03 16:29:25 -04:00
gchanan
4c81282c33
Introduce torch.layout and split layout from dtypes. (#6145)
* Introduce torch.layout and split layout from dtypes.

Tensors (and tensor types) now have a 'layout' attribute that returns either 'torch.strided' or 'torch.sparse_coo'.

Previously, dtypes were 1-to-1 with ATen types/PyTensorTypes; the impetus behind this decision was to make things easy in the common case
(i.e. specifying a type in a factory function).  But this doesn't really follow for sparity, which isn't a common case.

It also doesn't properly represent the concept or a dtype, which in numpy are proper scalar types (i.e. roughly the type returned from indexing the
last dimension of an n-d array).  But this should be the same whether or not the tensor is represented via strides, sparsity, etc.

This is accomplished by:
1) having the dtype of tensor return the (device-type, scalar-type) combination, i.e. torch.cuda.float32, so both
   torch.cuda.FloatTensor and torch.cuda.sparse.FloatTensor have the same dtype
2) Adding a layout parameter to python functions, where the combination of (dtype, layout) maps to an ATen type that is used for dispatch.

* Formatting, make init throw python_error.

* Fix cuda not enabled error message.

* Fix test.
2018-04-02 14:07:50 -04:00
peterjc123
63af898d46 Fix extension test on Windows (#5548)
* Change cpp_extensions.py to make it work on Windows

* Fix linting

* Show python paths

* Debug

* Debug 1

* set PYTHONPATH

* Add ATen into library

* expose essential libs and functions, and copy _C.lib

* Specify dir in header

* Update check_abi for MSVC

* Activate cl environment to compile cpp extensions

* change version string

* Redirect stderr to stdout

* Add monkey patch for windows

* Remove unnecessary self

* Fix various issues

* Append necessary flags

* add /MD flag to cuda

* Install ninja

* Use THP_API instead of THP_CLASS

* Beautify the paths

* Revert "Use THP_API instead of THP_CLASS"

This reverts commit dd7e74c44db48e4c5f85bb8e3c698ff9de71ba2d.

* Use THP_API instead of THP_CLASS(new)
2018-04-02 13:53:25 -04:00
Richard Zou
7355f5cd8d Tell source users about TORCH_CUDA_ARCH_LIST (#6185)
Put it into the comments about env vars in setup.py.
Also put in a line in the README about where to find this info.
2018-04-02 13:35:14 -04:00
Ma Mingfei
f8270c0225 Enable MKLDNN convolution forward and backward (#6062)
* Enable MKLDNN convolution forward and backward

* minor change

* fix mkldnn build error when building ATen standalone
2018-03-29 15:25:07 -07:00
Simeon Monov
a90aa5d818 Fix small typo in setup.py (#6091)
Fixed small typo in setup.py
2018-03-28 16:51:08 -07:00
Edward Z. Yang
eb18a2f26c
Reorganize third-party libraries into top-level third_party directory (#6025)
- gloo, pybind11, nanopb and nccl now live in third_party.
- ATen builds in aten/build rather than torch/lib/build/aten
- A bit of faffing about in the scripts was necessary, because they used to assume that everything lived in the same directory. Now you are expected to cd into the correct directory before calling one of the build functions. The actual builder script lives in tools
- Lint now just unconditionally ignores third_party, rather than enumerating folders explicitly
2018-03-27 22:09:20 -04:00
peterjc123
1ab248d09e Fixes #5973: Stop printing verbose warnings for MSVC (#6001)
* Stop printing verbose warnings

* Add missing options

* Fix for misspelling
2018-03-26 09:40:30 -04:00
Simeon Monov
c4ee2b7067 Moved torch headers copy to build_deps (#5772)
* Moved torch headers copy to build_deps

PR #5706 initially moved headers under build_ext to fix bdist_wheel and
build develop. This broke install and #5755 moved them back to install
which broke bdist_wheel and build develop. Looks like build_ext is called
from install after it already tried to copy the headers to the python install
dir and the headers were not installed correctly. Using build_deps works
correct with all setup.py install, bdist_wheel and build develop.

* Comment about the auto-generated files

Added comment that the current solution will not include auto-generated
files which may be a problem if somebody needs to use them
2018-03-23 11:34:27 -04:00
Jon Malmaud
add04c56bf Verify that 'catch' submodule has been checked out before attempting build. (#5941) 2018-03-22 11:28:04 -04:00
gchanan
c474136ee1
[REDO] Add torch.sparse_coo_tensor factory. (#5781)
* Add torch.sparse_coo_tensor factory.

Notes:
1) I didn't add Tensor.new_sparse_coo_tensor; it didn't seem particularly useful, but it's easy to add
2) This doesn't do the type inference, i.e. torch.sparse_coo_tensor(indices=LongTensor, values=IntTensor)
will return a sparse tensor corresponding to the default type rather than a sparse IntTensor.  We can add
type inference later when we add it to other factories.

* Fix merge.

* Use type_conversion function from python_variable_methods.
2018-03-16 13:58:02 -04:00
cpuhrsch
5fa3aac610 ATen ReduceOps (#5776)
#5481 was reverted due to a strange test bug. This PR attempts to fix that.

This diff adds vectorization to ATen. It uses intel intrinsics to build a general vec256 class, that represents types of 256bit width. These can then be treated like regular variables. Using those it implements torch.sum() for the contiguous case. It uses Intel TBB for multithreading, which allows workstealing and chunks the reduction operations based on a experimentally chosen value (_THRESHOLD). It uses cpuinfo to pick the right code depending on the host's capabilities.

The kernels are implemented under native/cpu. Each .cpp file is compiled with -avx, -avx2 and no additional flags. A macro is used to append AVX, AVX2 or NONE to the function name. The header then needs to define the functions three times, one for each capability. This could be improved by either changing the cmake file a bit or possibly generating source code using a Python script etc.

For the non-contiguous case this defaults to the current implementation within TH. For CUDA is entirely defaults to the implementation within THC.

There probably needs to be a bit of a debate around the design decisions here, the additional dependencies, parallelization strategy, clarity, etc. The numerical results also diverge from numpy with larger tensors, which is expected since we're summing, for example, 8 numbers and then adding the result to the running sum, instead of each number one by one. But there might be something to be said about accumulating into a double for floats or the degree of divergence, the behavior with respect to CUDA, etc.

I wrote a [small Python script]( https://github.com/cpuhrsch/benchmark/blob/sumall/benchmarks/sum_bench.py) to compare the results with numpy numerically as well as on timing. I ran this script to create timings both on master and this branch.

Here is the command for 1 core
`OMP_NUM_THREAD=1 taskset -c 0 python sum_bench.py --enable_numpy 200`

Here is the command for all cores
`python sum_bench.py --enable_numpy 200`

Here are the results of each:

[Master, 1 core](https://paste.fedoraproject.org/paste/Nho9JzHpPVK9av8a6mByjQ)

[This branch, 1 core](https://paste.fedoraproject.org/paste/6xLHkYvcVJx9z~5MoHxN4w)

[Master, all cores](https://paste.fedoraproject.org/paste/5l3V1d5zGqvJcMXIUteMRw)

[This branch, all cores](https://paste.fedoraproject.org/paste/J4RuDU-0Drz0aZwtphQwEA)

To test the command is
`python sum_bench.py --test 200`

[This branch, test results](https://paste.fedoraproject.org/paste/kTEoUC~oWgXA6XWMAfNfNw)

For this test we look at the average absolute value of the differences. This does not take into account the relative magnitude of the numbers. The numbers are sampled from a standard normal distribution. 

In terms of performance this diff should bring PyTorch on par with Numpy and usually exceed it by 1.5 to 2x.
2018-03-15 12:09:28 -04:00
peterjc123
abd6f82709 Fix debug build failure on Windows (#5771) 2018-03-15 11:42:44 -04:00
Edward Z. Yang
cadeb0cb17
Revert "ATen ReduceOps (#5481)" (#5765)
* Revert "ATen ReduceOps (#5481)"

This reverts commit 310c3735b9.

* Revert "Check that new cpuinfo and tbb submodules exist (#5714)"

This reverts commit 1a23c9901d.
2018-03-13 23:50:16 -04:00
Peter Goldsborough
bab0f8484b Put torch header install back into the install command (#5755) 2018-03-13 19:23:02 -04:00
Sam Gross
1a23c9901d
Check that new cpuinfo and tbb submodules exist (#5714) 2018-03-12 15:44:10 -04:00
Zachary DeVito
41285edbb6 [jit] add a compiled script module (#5630)
Add script::Module C++ class to represent script modules
switch AST -> IR conversion to work on Modules/Methods rather than raw graphs
function-only AST -> IR conversion is just a simplified case where there is
only one module with a single method and no parameters.
introduce SugaredValue in compiler.h to represent values in scope in a script
function that are not first-class and that get desugared. This is used to
represent the module's self parameter, as well as python function calls,
and method calls on tensor
provide a Python ScriptModule that provides a nice API on top of script::Module
allowing for the definition of script modules with methods, parameters,
and submodules
Not in this PR but intended for the future:

ScriptModule actually subclasses nn.Module, with most methods implemented
Unification of tracedmodule and script module functionality into one container class.

Detailed changelog:

* Switch compiler over to using Module, but don't
use them yet.

* Remove intermediate attribute encoding in compiler

* Create SugaredValue object to handle resolution
of compiled module.

* switch to_ir to modules, implement Select

* hacky python wrappers

* Private ScriptModule

* Add `define` to script module

* Attributes use TK_LIST_LITERAL

this anticipates adding a real list literal expression to the language.

* Add a metaclass to make sure script stubs are registered

* Add a test

* Doc createResolutionCallback

* Docs and minor editing

* Address PR comments

* Document

* Fix unicode issue
2018-03-12 09:52:40 -04:00
Simeon Monov
dede63689f Moved headers files copy for C++ extensions to build_ext in setup.py (#5706)
The header files needed for the C++ extensions were copied to
torch/lib/include under install. In case of bdist_wheel or build develop
for example, the files are not copied and cpp_extensions test is failing:

```
Running test_cpp_extensions.py ...
running install
running build
running build_ext
/home/moni/src/ibm/AI/pytorch/torch/utils/cpp_extension.py:79: UserWarning:
Your compiler (g++) may be ABI-incompatible with PyTorch.
Please use a compiler that is ABI-compatible with GCC 4.9 and above.
See https://gcc.gnu.org/onlinedocs/libstdc++/manual/abi.html.
  warnings.warn(ABI_INCOMPATIBILITY_WARNING.format(compiler))
building 'torch_test_cpp_extension' extension
creating build
creating build/temp.linux-x86_64-3.6
gcc -pthread -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -fPIC -I/home/moni/src/ibm/AI/pytorch/torch/lib/include -I/home/moni/src/ibm/AI/pytorch/torch/lib/include/TH -I/home/moni/src/ibm/AI/pytorch/torch/lib/include/THC -I/home/moni/miniconda3/envs/pytorch/include/python3.6m -c extension.cpp -o build/temp.linux-x86_64-3.6/extension.o -g -DTORCH_EXTENSION_NAME=torch_test_cpp_extension -std=c++11
cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++
extension.cpp:1:25: fatal error: torch/torch.h: No such file or directory
 #include <torch/torch.h>
                         ^
compilation terminated.
error: command 'gcc' failed with exit status 1
```
2018-03-12 14:07:45 +01:00
Richard Zou
03f2ad9029 Add check for python build deps to setup.py (#5618)
* Add check for python build deps to setup.py

* Address comments

* Remove install_requires line
2018-03-09 23:49:18 -05:00
Peter Goldsborough
7391dae709 Fix Variable conversion on the way to/from Python (#5581)
* PyObject* <--> at::Tensor no longer unwraps variables, instead we expect end uses to always work with variable types, and we will only unwrap the variables when we optimize.
* Add torch::CPU, torch::CUDA and torch::getType
* at::CPU -> torch::CPU in extensions
2018-03-09 14:31:05 -08:00
Sam Gross
5dedc648bb Compile DataLoader.cpp separately (#5507)
Don't #include DataLoader.cpp in Module.cpp
2018-03-02 05:54:33 -05:00
Peter Goldsborough
b10fcca5f0 Install cuda headers in ATen build (#5474) 2018-02-28 19:36:41 -08:00
peterjc123
377d896969 better solution for the linking error related to lazy_init for MSVC (#5375)
* Revert "Fix wrong argument name (#5366)"

This reverts commit cc9d3b265d.

* Fix wrong argument naming

* Revert "Wrap torch::cuda::lazy_init with WITH_CUDA flag"

This reverts commit a8fa37f8fac5aef09eb7fe54d84de6126618c262.

* Revert "Solves the linking error related to lazy_init for MSVC"

This reverts commit 63913a102f274865a76e7c40ffdf6b40c277d5ff.

* better solution for the linking error related to lazy_init for MSVC

* Naming changes

* Namespace changes and further comment

* Rebasing onto current master

* Remove code that is useless

* Fix linting

* Remove rebasing bugs
2018-02-28 17:34:34 -05:00
Sam Gross
48a3349c29
Delete dead Tensor code paths (#5417)
This deletes most of the dead Tensor code paths, including the TensorMethods cwrap and generic/Tensor.cpp.

This also moves the THNN.cwrap/.cpp generation to generate_code which can use ninja if installed.
2018-02-27 17:58:09 -05:00
gchanan
d5038309a1
Remove WITH_SCALARS, as it's enabled by default now. (#5437) 2018-02-27 14:51:11 -05:00
Soumith Chintala
d2f71cbdeb
make CuDNN finders respect library major version (#5399) 2018-02-24 19:37:00 -05:00
Sam Gross
30ec06c140
Merge Variable and Tensor classes (#5225)
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.

To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.

There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:

 https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
2018-02-23 18:03:31 -05:00
peterjc123
6c587e9e67 Solves the linking error related to lazy_init for MSVC (#5368)
* Revert "Fix wrong argument name (#5366)"

This reverts commit cc9d3b265d.

* Solves the linking error related to lazy_init for MSVC

* Fix wrong argument naming

* Wrap torch::cuda::lazy_init with WITH_CUDA flag
2018-02-23 11:08:20 -05:00
Peter Goldsborough
008ba18c5b Improve CUDA extension support (#5324)
* Also pass torch includes to nvcc build

* Export ATen/cuda headers with install

* Refactor flags common to C++ and CUDA

* Improve tests for C++/CUDA extensions

* Export .cuh files under THC

* Refactor and clean cpp_extension.py slightly

* Include ATen in cuda extension test

* Clarifying comment in cuda_extension.cu

* Replace cuda_extension.cu with cuda_extension_kernel.cu in setup.py

* Copy compile args in C++ extension and add second kernel

* Conditionally add -std=c++11 to cuda_flags

* Also export cuDNN headers

* Add comment about deepcopy
2018-02-23 10:15:30 -05:00
peterjc123
cc9d3b265d Fix wrong argument name (#5366) 2018-02-23 00:37:02 -05:00
peterjc123
013ed5b88f Add lazy_init.h into build for Windows and refactor code (#5365)
* Add lazy_init.h into build for Windows and refactor code

* Remove minor bugs
2018-02-23 00:05:43 -05:00
Soumith Chintala
9388d35293
prioritize cudnn library dir in library_dirs order (#5345) 2018-02-21 22:51:04 -05:00
gchanan
0878c6d4d7
Various dtype improvements. (#5321)
* Various dtype improvements.

1) Add dtypes to the new data-based constructors: Variable.new_tensor and torch.autograd.variable.
2) In the python signatures, use Type instead of Dtype to match	the C++ signatures; the error messages still print as dtype.
3) Handle / add a better error message when a dtype is used when ATen was not compiled with that type (e.g. cuda types).
4) Move cuda_lazy_init to its own file.

A later commit will add support to the legacy constructors as well.

* Move implementation of lazy_init to cpp.

* Fix parsed_arg size.
2018-02-21 17:37:59 -05:00
Edward Z. Yang
031412a14b
setup.py and cmake improvements (#5269)
* Document env vars and properly propagate MAX_JOBS down.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Apply CFLAGS and LDFLAGS environment variables to cmake builds.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Test that running built program works; fixes #5151.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* CMake CR.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2018-02-20 16:55:57 -05:00
gchanan
5edf6b2037
Add numpy-style dtypes to Variable factories. (#5245)
* Add numpy-style dtypes to Variable factories.

1) Add numpy-style dtypes corresponding to torch tensor types.  These are:
torch.float16, torch.float32, torch.float64, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64
as well as torch.cuda, torch.sparse, and torch.cuda.sparse equivalents.

2) Adds "legacy" names for the above dtypes that correspond more closely to existing tensor names.  These are:
torch.half, torch.float, torch.double, torch.short, torch.int, torch.long.
torch.byte and torch.char don't exist because they either don't match numpy semantics or differ on different architectures.

3) Adds a "dtype" parameter to Variable factories (e.g. zeros, ones) that allows the user to specify the type without changing the default tensor type.

4) Adds a "dtype" getter to Variables that return the canonical dtype from 1)

This PR is missing the following useful features that should be added in the future:
A) We only add the "dtype" parameter to auto-generated factories; hand-written factories like in tensor_new.cpp don't support this yet.

B) We don't allow type conversions to use dtypes; that should be added to type(param) or a new function.

C) We don't yet have a "device" parameter for these factories; right now, they will only create Variables on the default device.

* backend_to_string can be private.

* Define python binding argument indexes in a more simple way.

* add all_declared_types, still need to hook it up to THPDType.

* Fix all_declared_types for missing types (it's Sparse + Half).

* Ensure cuda dtypes are created even if compiled with NO_CUDA=1.

* Fix case where dtype is provided but dispatch is via namespace.

This happens in ones_like, empty_like, randn_like.

There is some question if we should do:
1) at::ones_like(tensor).toType(dtype)
2) at::ones_like(tensor.toType(dtype))

I did the former because this matches with the numpy documentation, i.e.:
"Overrides the data type of the result." and it's easier to implement.

Note that the above causes an extra copy, either of the input or output.
Here's a better implementation:
1) Make zeros_like, ones_like native functions that take an optional type (named dtype?).
2) Match the type argument with the dtype, so we don't have two different parameters.
3) Call at::zeros_like(input, type) -> at::native::zeros_like(input, type) -> type.zeros(input.sizes())

* Don't return from maybe_initialize_cuda.

* Don't leak DType name.

* Address cpp review comments.

* Share code between sparse and non-sparse test_dtypes.

* Rewrite _like functions as native function with explicit type parameter.

* Use type 'Type' instead of 'dtype' for consistency.

* Address review comments.

* Handle arg_idx when there is requires_grad but no dtype in python_binding_arguments.
2018-02-20 11:04:14 -05:00
Adam Paszke
cb2fd39fdd
Add Python frontend to the JIT (#5190) 2018-02-15 22:53:19 +01:00
Peter Goldsborough
2d5fbe6e0d Improve Variable interface (#5127)
* Improve Variable interface

* Address comments from @apaszke and @colesbury

* string ::operator= is not noexcept

* Remove ir.h from tracer_state.h to improve build times

* Make Variable a struct and pack SavedVariable fields

* Implement as_variable_ref

* grad_fn_ptr() -> grad_fn_unsafe()

* Reduce hackiness of set_type hack

* Include variable.h and edge.h in tracer_state.h because it uses them

* class Variable -> struct Variable because Windows cant even

* Make Variable::output_nr uint32_t instead of int

* Add comment about tracing state

* Replaced more static_cast<Variable&> and improve docs

* Remove SavedVariable destructor and construct members in init list

* Clarify docs for Variable

* Variable::set_version -> set_version_counter
2018-02-12 23:26:26 -05:00
gchanan
4b8bf73729
Enable scalars. (#5158)
* Enable scalars.

* Avoid variable name shadowing in list comprehension, because it rebinds in python2, but not python3.
2018-02-09 15:45:41 -05:00
bddppq
3e85613751 Experimental jit script (#5074) 2018-02-07 20:43:45 +01:00
Zachary DeVito
c308e03f3e
Initial GraphExecutor Implementation. (#4982)
This adds the initial implementation of graph executor for the new JIT design. It includes a few python tests ensuring that nograd, backward, and double-backward cases work for simple examples and some corner cases. More work needs to be done to performance optimize as there are many extra copies and places where we hold onto variables longer than we should. These are noted in the comments.
2018-02-02 17:45:59 -08:00
Peter Goldsborough
1475895c1d Use distutils.copy_tree/copy_file instead of shutil 2018-02-01 16:19:03 -08:00
Peter Goldsborough
1262fba8e7 [cpp extensions] Create torch.h and update setup.py 2018-02-01 16:19:03 -08:00
Zach DeVito
2d829d15af [JIT] Add simple shape analysis
This quick and dirty shape analysis just makes up fake tensors,
and runs them through ATen to do shape propagation.
2018-01-28 22:55:36 -08:00
Edward Z. Yang
b8ab7bee26
Use variadic templates instead of initializer lists and overloads. (#4772)
Suppose you are given a list of arguments, each of which may be Tensor or
TensorList.  How can you write a function that can treat these arguments
uniformly as a list of tensors?  This patch solves the problem using
variadic templates.

Why variadic templates?  Use of variadic templates means anyone working
with this code has to understand universal references, perfect
forwarding, parameter packs and some idioms of C++ template design.
However, I argue that variadic templates are the *right* tool for
supporting the implementation of functions which must take an
arbitrarily heterogenous set of inputs.  We were able to limp by
in old code because, for the most part, tensor inputs were homogenous,
but this is no longer the case for some non-primitively differentiable
functions; and with the upcoming cuDNN RNN in ATen PR, will no longer be
the case for primitively differentiable functions too.

There are two parts to the PR.

First, we add torch/csrc/utils/variadic.h, which defines a mix-in
IterArgs that takes any class which supports operator(), and augments
with a new variadic function apply() which calls operator() on each
argument passed to it.  In an original draft of the patch, I wrote the
recursion for each parameter pack from scratch for each function;
however, it turns out there are no fewer than seven instances where we
need this idiom, and the mix-in reduces the lines of code, and also
helps centralize the most important (and easy to forget) boilerplate
for perfect forwarding.

To verify that IterArgs is compiled away into an unrolled form per
call site, I inspected the assembly on some synthetic examples.

Next, we modify the following functions to make use of IterArgs:

  - compute_requires_grad
  - Function::flags (Variable and Tensor variants)
  - flatten
  - isTracing
  - count_tensors / count_variables

Finally, the tuple packer is rewritten to be variadic, although we
cannot make use of IterArgs (since we are given a tuple).  It might
make sense to refactor the code into a generic piece which invokes
a function with the arguments specified by a tuple, and then an
appropriate IterArgs, but we leave this for future work.

One thing to note: we cannot write a function with overloads for both
Tensor and Variable, because both ArrayRef<Variable> and Tensor have
implicit conversions from Variable, making such an overload ambiguous.
It may be interesting to remove the implicit conversion from ArrayRef.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2018-01-26 15:56:39 -05:00
Soumith Chintala
bb3bc969ca
fix binary version scheme to be PEP compliant (#4847) 2018-01-25 11:16:02 -05:00
Teng Li
1b3d6ab864 Enabling Infiniband support for Gloo data channel with auto IB detection (#4795) 2018-01-24 23:18:24 +01:00
Zachary DeVito
0ae5498079 [JIT] add create_autodiff_subgraphs (#4822)
This pass splits differentiable subgraphs into their own Node,
similar to a fusion group.

This initial implementation does not create optimal subgraphs, but
it works well in the case where most things are differentiable,
and has the building blocks (`mergeNodes`) to extend to the
better implementation.
2018-01-23 23:46:54 -05:00
gchanan
9bb6d33d35
Enable scalars if compiled with WITH_SCALAR environment variable. (#4806)
* Enable scalars if compiled with WITH_SCALAR environment variable.

We are pretty close to enabling scalars (0-dimensional arrays); this allows turning them on
for development purposes and to be able to write code that works both with and without scalars enabled.

WITH_SCALARS is currently broken with distributions, but should work for test_torch, test_autograd, test_nn.

* Fix unsqueeze.

* Fix wrap dim, wrapping with Scalar.
2018-01-23 15:44:11 -05:00
Adam Paszke
ad2edd8613 Check submodules only in build_deps (#4770) 2018-01-21 20:24:05 -08:00
Adam Paszke
816d5d8ff7 Scaffolding for source-to-source AD in the JIT 2018-01-20 17:34:08 +01:00
Adam Paszke
1061d7970d Move broadcast and broadcast_coalesced to C++ 2018-01-18 11:16:45 +01:00
Adam Paszke
de5f7b725e Base for pure C++ NCCL interface 2018-01-18 11:16:45 +01:00
Sam Gross
57549b7e44
Bind functions with out= arguments in VariableType (#4565)
This adds overrides in VariableType for the xxx_out ATen functions and
implements Python bindings. There is no support for automatic
differentiation. If any of the inputs (or outputs) requires grad, then the
function will throw an exception unless it's running in "no-grad" mode.

The bindings for calling torch.xxx functions on Variables are moved to a
different object. Previously, they were static method on VariableBase.
This change prevents users from accidentally calling static methods as if
they were instance methods.
2018-01-17 18:27:42 -05:00
Adam Paszke
1a02d3ae86
Implement MM fusion (MM with add reduction tree) (#4615)
Implement MM fusion (MM with add reduction tree)

A tree where leaves are matrix multiplies and inner
vertices are adds can be computed as a single mm.
Such subgraph often appear in backward if a single weight
is reused multiple times (e.g. in RNNs).

NOTE: this seems to be slightly slower on the GPU than the
naive implementation, but it's a huge win on the CPU
(think 100x lower overhead)
2018-01-17 21:36:21 +01:00
Jon Crall
94f439c07c Fixed setup.py to handle CUDNN_LIBRARY envvar with aten (#4597)
* Fixed setup.py to handle CUDNN_LIBRARY envvar with aten

* undo changes

* Added CUDNN_LIBRARY to bat file
2018-01-11 07:24:17 -05:00
Edward Z. Yang
dc76db349e Delete a pile of dead code (#4295)
* Delete obsolete basic ops.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* More deletion.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Delete some unused utilities.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Delete dead apply_fn

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Delete CppFunction symbolic support.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Delete ForwardFunction

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

* Batchnorm is 'working'

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2018-01-04 09:21:54 -05:00
peterjc123
b78a37a058 Enable ninja during python build process for MSVC (#3993) 2017-12-30 12:58:32 +01:00
Edward Z. Yang
8c9a22a88e Support NO_NNPACK environment variable (#4401)
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-12-29 16:33:01 +09:00
Edward Z. Yang
5b8fe5cbb5
Batchnorm in ATen (#4285)
* Batchnorm in ATen

This commit moves BatchNorm derivatives into ATen, eliminating
torch/csrc/autograd/functions/batch_normalization.cpp

Some refactoring along the way:

- Functions got renamed to remove _forward from their names
- CuDNN batchnorm forward was modified to return save_mean/save_std instead of
  take it as parameters. To avoid returning undefined Variables, these return
  (small) uninitialized tensors when they are not used.
- THNN batch normalization takes care of resizing save_mean and save_std on
  forward.
- There are some shenanigans re batchnorm backwards in eval mode. I'm tracking
  that in #4284
- I decided not to introduce buffers as a proper concept in ATen, which means
  that tensors like running_mean/running_var are variables in ATen.  This meant
  there needed to be some adjustments to how we *trace* such variables; the
  new strategy is if we can't find a Value for a variable, we look and see
  if we have a Value for the buffer pointed to by the variable, before
  finally falling back on constant.
- This PR finally reliably triggered OOM on Travis builds; I fixed this by reducing
  the number of parallel jobs.
- Stop using std::string when it's not necessary.
- Remove training parameter from cudnn_batch_norm_backward, because it
  doesn't make sense; cuDNN doesn't implement the math for evaluation mode
  batchnorm backwards.
- batchnorm_double_backward is now in an anonymous namespace, as it
  no longer needs to be called from torch/csrc

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-12-21 11:38:31 -05:00
Edward Z. Yang
a88a8ec827
Convolution derivatives in ATen (#4116)
* Convolution derivatives in ATen

This PR introduces ATen implementation of convolution, which dispatches to
THNN/CuDNN/nnpack based on input parameters. The general strategy is to compose
this function out of the various forward-backward pairs of specific
implementations, rather than write a monolithic function with backwards (which
is what we did before because the boilerplate of doing it otherwise would have
been very high.) The new API provides the following functions:

  - _convolution, which is a fully generic, native convolution implementation
    that dispatches to various other convolution implementations depending on
    input characteristics. This is prefixed with an underscore because it
    explicitly takes benchmark, deterministic and cudnn_enabled which are
    implementation details for CuDNN. The intent is to eventually provide a
    convolution that reads these parameters out of the context using #4104.
  - _convolution_nogroup is a convolution implementation for non-CuDNN
    algorithms which don't support group convolution natively.
  - _convolution_double_backward is the generic double-backwards implementation
    for convolution.

In more detail:

- Most functionality from torch/csrc/autograd/functions/convolution.cpp has been
  moved into aten/src/ATen/native/Convolution.cpp
- We continue to make use of ConvParams, but we now construct the parameters
  upon entry to a function from the function signature (which does not use
  ConvParams; having convolution take ConvParams directly would require teaching
  the code generator how to accept these as parameters, complicating ATen's API
  model) and destruct them when making subprocedure calls.
- I introduce a new idiom, input_r, which represents a const Tensor& reference,
  which will subsequently be assigned to a local Tensor input. This is helpful
  because a lot of the existing algorithms relied on being able to assign to
  locals, which is not permitted with a const reference.
- The native argument parser now supports std::array<bool,2> inputs (NB: there
  MUST NOT be a space; this is the same hack as is applied to derivatives.yaml)
- Native parser now supports Tensor? arguments, which indicates a nullable
  tensor. Previously this function was only used by NN methods.
- Documentation updates on THNN library
- I added an extra fgradInput argument to VolumetricConvolutionMM_updateOutput
  and VolumetricConvolutionMM_accGradParameters so that its buffer list lines up
  with the backward argument list. This makes it possible to write derivative
  for conv3d which previously was not supported (commented out in
  derivatives.yaml)
- Extra double_backward declarations for all convolution backwards functions was
  added.
- You can now use the syntax Tensor? in native_functions.yaml to indicate that a
  tensor argument is nullable.  There are adjustments to propagate this to the
  Python argument parser.
- NNPACK was ported to ATen, and ATen now builds and links against ATen if
  possible. New AT_NNPACK_ENABLED macro.  The nnpack functions are
  nnpack_spatial_convolution.
- Some modest CuDNN convolution refactoring to remove _forward from names.
- There's a new cudnn_convolution_backward function to deal with the fact that
  CuDNN convolution double backward requires you to have computed all gradients
  in one go.
- Variable set_flags now checks if the tensor is undefined, fixing a silent memory
  corruption.
- checkSameType updated to not raise an exception if called with Variable arguments
- "no ATen declaration found for" error message is improved to say what available declarations are
- make_variable now accepts undefined tensors, and returns an undefined tensor in this case.
2017-12-20 14:19:27 -05:00
peterjc123
77ea2f26d8 Add build support for Python 2.7 using MSVC (#4226) 2017-12-20 15:07:25 +01:00
Sam Gross
d605058212
Replace Variable.volatile with torch.no_grad() (#3970)
This removes volatile from Variable. The functionality is mostly
replaced by a global (thread-local) flag, which is controlled by
torch.set_grad_enabled() and the context manager torch.no_grad().

In C++, the flag is exposed through GradMode::is_enabled() and GradMode::set_enabled()

Fixes #3627
2017-12-18 15:46:13 -05:00
peterjc123
02317d9336 Enable ext build for Windows (#3935)
* Enable ext build for Windows

* Include the static libs to make the compiling of the extension easier
2017-12-18 02:23:34 -05:00
Sam Gross
bec0349280 Implement Variable.cuda and Variable.type using ATen (#4139)
* Implement Variable.cuda using ATen

This adds an optional async flag to Tensor::copy_, which attempts to do
a non-blocking copy if the one of the tensors is in pinned memory and
the other is a CUDA tensor.

* Perform cross-device copy in CopyBackwards

Also call torch.cuda._lazy_init() from Variable.cuda()

* Implement Variable.type via ATen

* Changes from review:

 - remove copy_out
 - remove unnecessary include
 - fix default device for .cuda()

* Combine if statements in dispatch_type
2017-12-18 01:54:35 -05:00
Edward Z. Yang
6d72c82985
Trace ATen native functions as themselves, not their implementations. (#4127)
* Trace ATen non-primitive functions as themselves, not their implementations.

Previously, if I invoked an ATen non-primitive function foo, which in turn
called subfoo, I would always see 'subfoo' in the trace (e.g., tracing
'inlines' all of these operations.)  Such inlining is bad for ONNX
(and can be bad for optimization) as it prevents high-level
optimizations from taking advantage of the structure.  It might
be right to inline, but give the optimizer a chance to work before
inlining happens!

The implementation here is surprisingly simple, because it uses
the "DCE trick".  Essentially, it doesn't matter if the constituent
calls perform tracing, because you can always trace it again, and
override the trace nodes associated with the returned variables.
The original trace becomes dead and can be DCE'd.

While implementing this, I also refactored how 'isTracing' and
'trace_outputs' works:

- isTracing was previously a single function with overloads for
  both Tensor and Variable arguments.  Unfortunately, such overloads
  are not safe, because of how C++ implicit conversions work.  You
  would think that C++ should never confuse an overload for
  Variable with ArrayRef<Tensor>, but this is exactly what can
  happen: Tensor is convertible to both Variable and ArrayRef<Tensor>,
  thus it's ambiguous and C++ doesn't like it.  The last time I ran
  into this problem, I applied initializer lists to everything and
  called it a day.  A more robust fix is to separate out the
  Variable and Tensor overloads, which I have done in this patch.

- trace_outputs was fed as an initializer list, which doesn't work
  when you have heterogenous inputs.  So instead we first feed
  everything through 'flatten', which has overloads for each of the
  argument patterns in ATen, which then goes on to the recordTrace
  (which takes an ArrayRef).  This is *no less efficient*, because
  we were allocating a vector anyway (to do the conversion from
  vector of Tensor to vector of Variable).

This fixes mean that 'index' can properly be traced... although the
JIT still does not support it.  A failing test case has been added to
this effect.

Some knock-on effects:

- The fuser now knows about chunk as well as split.  They're pretty
  similar so there is no problem.

- There is a new 'canonicalize' pass in the JIT which renumbers a graph
  so that all structurally equivalent graphs render the same.

- We run DCE before the fuser tests, to make sure dead nodes don't
  block fusion.

- There are new ONNX exports for the newly introduced higher level ATen
  operations.  This includes type_as (no-op case only), chunk, select.

Zach didn't like the extra use of 'native' in the new codegen, so
we've introduced a new concept, 'abstract'.  An abstract function
is one that is implemented in derived types (e.g., CPUDoubleType),
where as a concrete one is implemented in the base type (Type).

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2017-12-15 13:50:32 -05:00