Fixes https://github.com/pytorch/pytorch/issues/119607 for 3.11+.
In 3.11+, `_PyFrame_FastToLocalsWithError` could implicity run `COPY_FREE_VARS` on the original frame, leading to double incref's since the dynamo shadow frame can rerun `COPY_FREE_VARS`. So the solution is to skip the first `COPY_FREE_VARS` instruction in the shadow frame if it was already executed in the original frame.
Also move the location for clearing the original frame in 3.12 to handle error cases more thoroughly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124238
Approved by: https://github.com/jansel
Speeds up the guard-overhead microbenchmark by around 10% normalized to main-branch CPP guards
~~~
import torch
@torch.compile(backend="eager")
def fn(x, lst):
for l in lst:
x = x + l
return x
n = 1000
lst = [i for i in range(n)]
x = torch.randn(4)
print(fn(x, lst))
print("Sucess")
~~~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123396
Approved by: https://github.com/jansel
ghstack dependencies: #123285, #123302, #123303
Reset guard at the end of RootGuardManager, even if the result is true. Earlier we reset only when result was False. But this causes extra bookkeeping in each guard. This PR gives a tiny bit improvement.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123046
Approved by: https://github.com/jansel
Python 3.12 changed a few things with how `_PyInterpreterFrame`s are allocated and freed:
- Frames are now required to be placed on the Python frame stack. In 3.11, we could allocate frames anywhere in memory. In 3.12, we now need to use `THP_PyThreadState_BumpFramePointerSlow`/`push_chunk`/`allocate_chunk`. This method of allocating/freeing frames is also compatible with 3.11.
- The eval frame function is now responsible for clearing the frame (see https://docs.python.org/3/whatsnew/changelog.html#id128, the point about "...which now clear the frame.")
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122146
Approved by: https://github.com/jansel
- Adds support for custom ops backed by c++ custom autograd functions, e.g. fbgemm
- Include files more granularly to avoid namespace pollution and circular imports
limitations:
- requires user to audit their code and opt-in their custom autograd::Function via autograd::Function::is_traceable and maybe additional compiled_args + apply_with_saved implementation. this was the only way I can think of for soundness
- will throw if we can't hash the saved_data i.e. for any non implemented type other than list and dict in at::IValue::hash b0cfa96e82/aten/src/ATen/core/ivalue.cpp (L364)
- can technically silently fail if both the typeid hash and the typeid string name of the custom autograd::Function collide at the same time, and an identical autograd graph containing a different custom autograd::Function, yet that has an identical implementation, is called. this case seems extremely unlikely, and the only alternative to hash collision i can think of is compiling with reflection
- tensors not saved via save_variables are not lifted, and are specialized on TensorImpl*'s hash (treated as a memory address). if needed, we can lift them.
Differential Revision: [D54818488](https://our.internmc.facebook.com/intern/diff/D54818488)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120681
Approved by: https://github.com/jansel
- Adds support for custom ops backed by c++ custom autograd functions, e.g. fbgemm
- Include files more granularly to avoid namespace pollution and circular imports
limitations:
- requires user to audit their code and opt-in their custom autograd::Function via autograd::Function::is_traceable and maybe additional compiled_args + apply_with_saved implementation. this was the only way I can think of for soundness
- will throw if we can't hash the saved_data i.e. for any non implemented type other than list and dict in at::IValue::hash b0cfa96e82/aten/src/ATen/core/ivalue.cpp (L364)
- can technically silently fail if both the typeid hash and the typeid string name of the custom autograd::Function collide at the same time, and an identical autograd graph containing a different custom autograd::Function, yet that has an identical implementation, is called. this case seems extremely unlikely, and the only alternative to hash collision i can think of is compiling with reflection
- tensors not saved via save_variables are not lifted, and are specialized on TensorImpl*'s hash (treated as a memory address). if needed, we can lift them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120681
Approved by: https://github.com/jansel
- Adds support for custom ops backed by c++ custom autograd functions, e.g. fbgemm
- Include files more granularly to avoid namespace pollution and circular imports
limitations:
- requires user to audit their code and opt-in their custom autograd::Function via autograd::Function::is_traceable and maybe additional compiled_args + apply_with_saved implementation. this was the only way I can think of for soundness
- will throw if we can't hash the saved_data i.e. for any non implemented type other than list and dict in at::IValue::hash b0cfa96e82/aten/src/ATen/core/ivalue.cpp (L364)
- can technically silently fail if both the typeid hash and the typeid string name of the custom autograd::Function collide at the same time, and an identical autograd graph containing a different custom autograd::Function, yet that has an identical implementation, is called. this case seems extremely unlikely, and the only alternative to hash collision i can think of is compiling with reflection
- tensors not saved via save_variables are not lifted, and are specialized on TensorImpl*'s hash (treated as a memory address). if needed, we can lift them.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120681
Approved by: https://github.com/jansel
VariableInfo is used by both `custom_function.h` (in a templated class) and `compiled_autograd.h` (in a class with some templated methods). Another way could have been to make a `compiled_autograd.cpp` and forward declare VariableInfo, but this VariableInfo was also being used in other nodes like PyNode so it felt cleaner to do it this way.
Differential Revision: [D54287007](https://our.internmc.facebook.com/intern/diff/D54287007)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120732
Approved by: https://github.com/jansel
This adds support for backwards hooks that are *both*:
1) Interior to the graph; and
2) Dynamically generated (e.g. lambdas)
We do this by creating a BackwardState object that is used to register the hooks in the forward, then populated by dynamo *after* the forwards runs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120382
Approved by: https://github.com/xmfan