Summary:
For motivation behind the overall stack of diffs see D56218385 summary.
This particular diff makes cpp_dumper take a custom printer function to log callstacks one-group-at-a-time and as such no longer running into 30K characters limit of `LOG(INFO)`.
Test Plan:
```
[romanmal@46150.od /data/sandcastle/boxes/fbsource/fbcode (520a7b7b5)]$ buck2 test //caffe2/torch/csrc/distributed/c10d/...
File changed: fbcode//common/base/ThreadStackTrace.cpp
File changed: fbsource//xplat/caffe2/torch/csrc/distributed/c10d/fb/TraceUtils.cpp
File changed: fbcode//caffe2/torch/csrc/distributed/c10d/ProcessGroupNCCL.hpp
4 additional file change events
Buck UI: https://www.internalfb.com/buck2/d8ceae86-7d6f-4779-ad0c-8e37eddcff98
Network: Up: 0B Down: 0B
Jobs completed: 2. Time elapsed: 1.5s.
Tests finished: Pass 0. Fail 0. Fatal 0. Skip 0. Build failure 0
NO TESTS RAN
[romanmal@46150.od /data/sandcastle/boxes/fbsource/fbcode (520a7b7b5)]$
```
Tested to print the stack trace:
P1220109730
Differential Revision: D56218360
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124628
Approved by: https://github.com/wconstab
Following the example of PyTorch supporting a preferred Linalg library (cusolver or magma), this PR introduces a preferred blas library selector of either cublas or cublaslt for CUDA and hipblas or hipblaslt for ROCm via normal hipification of sources.
The default blas implementation remains cublas or hipblas. cublaslt or hipblaslt can be enabled using environment variable TORCH_BLAS_PREFER_CUBLASLT=1 (or TORCH_BLAS_PREFER_HIPBLASLT=1 as an alias) or by calling `torch.backends.cuda.preferred_blas_library(backend="cublaslt")` or as an alias `backend="hipblaslt"`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122106
Approved by: https://github.com/lezcano
This PR unifies the CUDA, XPU and PrivateUse1 in the torch profiler. Now CUDA, XPU and PrivateUse1 can together use string object `use_device` to distinguish each other and share one device path for calculating kineto time durations and memory statistics for post processing.
#suppress-api-compatibility-check
Co-authored-by: Aaron Enye Shi <enye.shi@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123247
Approved by: https://github.com/aaronenyeshi
Update ruff to 0.4.1 .
This version fixes a lot false negatives/false positives, is 20-40% faster, and has various other bug fixes.
Below is a before and after table showing the execution time of ruff lint and ruff format in milliseconds courtesy of https://astral.sh/blog/ruff-v0.4.0
| Repository | Linter (v0.3) | Linter (v0.4) | Formatter (v0.3) | Formatter (v0.4) |
|----------------------------------------------------|---------------|---------------|------------------|------------------|
| [pytorch/pytorch](https://github.com/pytorch/pytorch) | 328.7 | 251.8 | 351.1 | 274.9 |
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124549
Approved by: https://github.com/ezyang
Summary: This is actually quite noisy and my logs are full of this soft assertion msg. Maybe making it log once?
Test Plan:
On AMD GPU side, I got a lot of those warnings:
```
W0415 01:40:45.109864 917160 collection.cpp:602] Warning: Memcpy ? (? -> ?) (function operator())”
```
So just suppress the excessive logs
Reviewed By: aaronenyeshi, yoyoyocmu
Differential Revision: D55602788
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124469
Approved by: https://github.com/aaronenyeshi
We override the `__call__` method and register fake, functional, proxy default dispatch mode implementation in its python_key_mode_table.
The idea is:
1. when inputs contains FakeScriptObject, we dispatch it through _get_dispatch mechanism. We implement dispatch mode keys automatically in the operator's constructor.
2. when inputs are not fakified, we dispatch through the original c++ dispatcher.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123367
Approved by: https://github.com/zou3519
Summary:
```
ncclGroupStart()
ncclCommInit(..)
ncclGroupEnd()
```
above pattern is only needed when we have *single-thread* to manage multiple GPUs
in our case, we always have 1 process managing 1 GPU, we don't need group operation.
Test Plan: CI
Differential Revision: D56274975
Co-authored-by: Cen Zhao <cenzhao@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124416
Approved by: https://github.com/shuqiangzhang
This PR unifies the CUDA, XPU and PrivateUse1 in the torch profiler. Now CUDA, XPU and PrivateUse1 can together use string object `use_device` to distinguish each other and share one device path for calculating kineto time durations and memory statistics for post processing.
#suppress-api-compatibility-check
Co-authored-by: Aaron Enye Shi <enye.shi@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123247
Approved by: https://github.com/aaronenyeshi, https://github.com/gujinghui
Also partially fixes#122109
This PR:
- We add a C++ flag (only_lift_cpu_tensors) to toggle the
torch.tensor(1, device='cuda') ctor strategy.
When false (default), it does the current PyTorch behavior
of unconditionally constructing a concrete CUDA tensor then calling
lift_fresh on it. When true, we instead construct a concrete CPU
tensor, call lift_fresh, and then call Tensor.to(device) (under any ambient
modes).
- FakeTensorMode flips this flag depending on if CUDA is available or
not. We don't unconditionally set the flag to True because that is
likely BC-breaking.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124413
Approved by: https://github.com/eellison
This adds a templated version of the ring attention forwards function as well as tests it with memory efficient attention. This doesn't add support for memory efficient attention in DTensor. That will be added in a follow up PR.
This templating is also a POC of how to support other attention ops such as Jagged/nested tensor and as well how to implement striped attention in a scalable way.
Misc changes:
* Fixes all_to_all_single autograd implementation with CUDA + adds NCCL test
* Adds compile support to the ring attention implementations (required some tweaks to process groups)
Test plan:
```
pytest test/distributed/_tensor/test_attention.py
pytest test/distributed/test_functional_api.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124215
Approved by: https://github.com/wanchaol
Summary:
This ENV was introduced to safely rollout the behavior change in destroy
process group (e.g., call ncclCommsAbort). Now that this behavior change
were already rolled out, we no longer need this env and we should clean
up it to keep our code cleaner
Test Plan:
Modified/existing ut pass
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124334
Approved by: https://github.com/wconstab
MTIA device has its own Module in PyTorch now.
torch.mtia has following APIs similar to other backends. The lazy_init is also supported.
```
__all__ = [
"init",
"is_available",
"synchronize",
"device_count",
"current_device",
"current_stream",
"default_stream",
"set_stream",
"stream",
"device",
]
```
------------
For device management. We expand AccleratorHooksInterface to support generic device management and it can be used in both C++ and PyThon.
```
def _accelerator_hooks_device_count() -> _int: ...
def _accelerator_hooks_set_current_device(device_index: _int) -> None: ...
def _accelerator_hooks_get_current_device() -> _int : ...
def _accelerator_hooks_exchange_device(device_index: _int) -> _int : ...
def _accelerator_hooks_maybe_exchange_device(device_index: _int) -> _int : ...
```
---------
Adding get_device_module API to retrieve device modules for different device types.
```
def get_device_module(device: Optional[Union[torch.device, str]] = None)
```
---------
@exported-using-ghexport
Differential Revision: [D52923602](https://our.internmc.facebook.com/intern/diff/D52923602/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123612
Approved by: https://github.com/albanD
ghstack dependencies: #123611
This diff intends to build device generic torch.Stream and torch.Event for newly added accelerators in PyTorch.
------------
**torch.Stream APIs**
```
# Defined in torch/csrc/Stream.cpp
class Stream(_StreamBase):
stream_id: _int # Stream id
device_index: _int
device_type: _int
device: _device # The device of the stream
@overload
def __new__(self, device: Optional[DeviceLikeType] = None, priority: _int = 0) -> Stream: ...
@overload
def __new__(self, stream_id: _int, device_index: _int, device_type: _int, priority: _int = 0) -> Stream: ...
def query(self) -> _bool: ...
def synchronize(self) -> None: ...
def wait_event(self, event: Event) -> None: ...
def wait_stream(self, other: Stream) -> None: ...
def record_event(self, event: Optional[Event] = None) -> Event: ...
def query(self) -> None: ...
def synchronize(self) -> None: ...
def __hash__(self) -> _int: ...
def __repr__(self) -> str: ...
def __eq__(self, other: object) -> _bool: ...
```
------------------
**torch.Event APIs**:
- IPC related APIs are not implemented, since many device backends don't support it, but we leave interfaces there for future adaption of torch.cuda.Stream.
- currently only the enable_timing is supported, since it is the most common one used in other device backends. We have to refactor the event flag system in PyTorch to support more fancy flag.
- elapsedTime API is added to c10::Event
```
# Defined in torch/csrc/Event.cpp
class Event(_EventBase):
device: _device # The device of the Event
event_id: _int # The raw event created by device backend
def __new__(self,
device: Optional[DeviceLikeType] = None,
enable_timing: _bool = False,
blocking: _bool = False,
interprocess: _bool = False) -> Event: ...
@classmethod
def from_ipc_handle(self, device: DeviceLikeType, ipc_handle: bytes) -> Event: ...
def record(self, stream: Optional[Stream] = None) -> None: ...
def wait(self, stream: Optional[Stream] = None) -> None: ...
def query(self) -> _bool: ...
def elapsed_time(self, other: Event) -> _float: ...
def synchronize(self) -> None: ...
def ipc_handle(self) -> bytes: ...
def __repr__(self) -> str: ...
```
-----------
c10::Event provides new APIs
- calculate **elapsedTime**.
- Get raw event id
- Synchronize event.
```
double elapsedTime(const Event& event) const {
return impl_.elapsedTime(event.impl_);
}
void* eventId() const {
return impl_.eventId();
}
void synchronize() const {
return impl_.synchronize();
}
```
----------
TODO: need to find a good way to test them in PyTorch with API mocks.
Differential Revision: [D55351839](https://our.internmc.facebook.com/intern/diff/D55351839/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123611
Approved by: https://github.com/albanD
A kernel has "dispatcher convention" if there is an additional keyset
arg at the beginning of the argument list. This PR:
- adds a way to register kernels with dispatcher_convention using
Library.impl (pass dispatcher_convention = True)
- adds OpOverload.redispatch
We use both of the above in the new custom ops API: we register the
autograd kernel in dispatcher convention so that we can actually call
redispatch like how pytorch built-in ops do it.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124089
Approved by: https://github.com/albanD
ghstack dependencies: #123937, #124064, #124065, #124066, #124071
Fixes https://github.com/pytorch/pytorch/issues/119607 for 3.11+.
In 3.11+, `_PyFrame_FastToLocalsWithError` could implicity run `COPY_FREE_VARS` on the original frame, leading to double incref's since the dynamo shadow frame can rerun `COPY_FREE_VARS`. So the solution is to skip the first `COPY_FREE_VARS` instruction in the shadow frame if it was already executed in the original frame.
Also move the location for clearing the original frame in 3.12 to handle error cases more thoroughly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124238
Approved by: https://github.com/jansel
This PR:
- adds a new torch.library.register_fake and deprecates
torch.library.impl_abstract. The motivation is that we have a lot of
confusion around the naming so we are going to align the naming with
the actual subsystem (FakeTensor).
- renames `m.impl_abstract_pystub("fbgemm_gpu.sparse_ops")` to
`m.has_python_registration("fbgemm_gpu.sparse_ops")`. No deprecation
here yet; I need to test how this works with static initialization.
- Renames a bunch of internals to match (e.g. abstractimplpystub ->
pystub)
I'm scared to rename the Python-side internal APIs (e.g.
torch._library.abstract_impl) because of torch.package concerns. I'll do
that in its own isolated PR next just in case it causes problems.
DEPRECATION NOTE: torch.library.impl_abstract was renamed to to
torch.library.register_fake. Please use register_fake. We'll delete
impl_abstract in a future version of PyTorch.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123937
Approved by: https://github.com/albanD
Summary:
Pass Process Group Name and Desc to NCCL communicator in order to access pg information in NCCL layer.
The information is passed as commDesc string(i.e. "<pg_desc>:<pg_name>")
Function only valid when NCCL_COMM_DESCRIPTION is defined.
Differential Revision: D55703310
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124149
Approved by: https://github.com/shuqiangzhang
Summary: With the merge of D55925068, we have introduced an overflow issue when recording a trace using dyno gputrace. This is because it is possible for TorchOPs to be enumerated but not have an end time since they were running as the recording ended. By default these events have an end time set to INT_MIN. When finding the duration() for such events using end-start, we get an overflow resulting in a very long duration. This was avoided before because we were dividing the INT_MIN by 1000 because we were trying to convert uS to nS. This change introduces a patch for TorchOps and a future PR will be added to create a more universal guard in kineto.
Test Plan:
Trace recorded using resnet test.
Trace:
https://www.internalfb.com/intern/perfdoctor/trace_view?filepath=tree/traces/dynocli/0/1713199267/localhost/libkineto_activities_2247224.json.gz&bucket=gpu_traces
Differential Revision: D56144914
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124080
Approved by: https://github.com/aaronenyeshi
Summary:
As part of the work of unifying process group identifier, log <group_name, group_desc>, instead of pg uid in profiler.
- group_name remains as the unique identifier, e.g. “0”, "1"
- group_desc will be the user specified name, e.g. "fsdp".
Reviewed By: aaronenyeshi, kwen2501
Differential Revision: D55610682
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124035
Approved by: https://github.com/aaronenyeshi
Fixes#121200
This PR introduces AcceleratorOutOfMemoryError for all privateuse1 backend. For python, there is a PyError object which will be set only when privateuse1 is registered. All privateuse1 backend then can use this error for memory errors. Maybe more error types in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121702
Approved by: https://github.com/guangyey, https://github.com/albanD
Fix: #120336
This PR fixes an issue on AOTAutograd, specifically on backends that don't support views
by themselves (e.g. XLA). Previously, AOTAutograd tried to reconstruct output views by
calling `as_strided` on the concrete bases using sizes and strides of the outputs that
aliased them. Since backends such as XLA doesn't support tensor aliasing, the sizes and
strides would be that of a contiguous tensor (not a view tensor). Because of that, calling
`as_strided` would error, since the output tensor would be bigger than its base. Instead,
this PR applies the sequence of `ViewMeta` gathered for each output during the
functionalization phase.
**Note:** we intentionally don't support base tensors that went through metadata mutation,
i.e. in-place view operations.
In summary, this PR:
- Introduces one `FunctionalTensorWrapper` member function alongside its Python APIs
- `apply_view_metas(base)`: applies the `ViewMeta` sequence of the given instance onto
another base
- Introduces a `OutputAliasInfo.functional_tensor` field
- Saves the `FunctionalTensorWrapper` instance collected by the functionalization phase
- Wraps it with a new `FunctionalTensorMetadataEq` class for comparing only the
metadata of the tensors
- Plumbs `OutputAliasInfo.functional_tensor` to `gen_alias_from_base` function
- Applies the `ViewMeta` sequence of the saved `FunctionalTensor` onto `aliased_base_tensor`
- Propagates `OutputAliasInfo.functional_tensor` when updating `fw_metadata`
(this PR description was updated in order to reflect the most recent changes)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121007
Approved by: https://github.com/bdhirsh
Summary:
1.Package public headers of kineto if USE_KINETO so that they can be used by PrivateUse1 user.
2.Add PrivateUse1 key to ActivityType.
3. Support PrivateUse1 key in function deviceTypeFromActivity and _supported_activities.
4. Fix some bugs when processing profiler results.
Co-authored-by: albanD <desmaison.alban@gmail.com>
Co-authored-by: Aaron Shi <enye.shi@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120556
Approved by: https://github.com/aaronenyeshi
Summary:
We need a way to allow user set a customized description for a process group, e.g. FSDP, PP.
Here are several use cases of user specified group_desc:
- Logging: we can easily match a log line and understand what's this collective/pg is used to.
- Pytorch traces (e.g. Kineto, Execution Trace) can benefit from the PG desc since trace analysis, benchmarks will be able to easily differentiate PG purpose like FSDP, PP.
- Lower layer collectives(e.g. NCCL) debug: we will be able to expose PG desc to NCCL communicator so NCCL layer operations can be easily correlated to a PG.
Solution: Add a group_desc field to c10d
Differential Revision: D55781850
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123472
Approved by: https://github.com/kwen2501
This adds the differentiable collective -- all_to_all_single_grad. This is the initial proof of concept PR and I will be adding the remaining collectives in follow up PRs.
This adds a new function called `all_to_all_single_autograd` which is the autograd variant of `all_to_all_single`. For backwards compatibility + initial testing we wanted to make the autograd variant separate to avoid regressions.
This uses `autograd::Function` to register an Autograd op that calls the original `_c10d_functional::all_to_all_single` via the dispatcher. This works with compile and inductor as opposed to the previous Python implementation that had issues. As this uses the existing `_c10d_functional` ops we don't need to register any meta functions or lowering.
To avoid cudaStream issues this explicitly calls `wait_tensor` in the backward method to ensure it runs under the same stream as the async operation. This hurts performance but can be alleviated potentially using `compile`.
Related work: https://github.com/pytorch/torchrec/blob/main/torchrec/distributed/comm_ops.py
Test plan:
```
pytest test/distributed/test_functional_api.py -k test_all_to_all_single_compile
pytest test/distributed/test_functional_api.py
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123599
Approved by: https://github.com/yifuwang
Fixes https://github.com/pytorch/pytorch/issues/104505
I was originally going to ban all usages of as_strided + mutation in functionalization. But I'm pretty sure that as_strided + mutation is fine when we are calling as_strided on a base tensor.
So in this PR I added a slightly more conservative check: if we see an as_strided + mutation, where the input to an as_strided was **another** view op, then I error loudly in functionalization and link to the github issue above (in case anyone runs into this in the real world)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122502
Approved by: https://github.com/ezyang, https://github.com/albanD
Previously, we'd just check `has_symbolic_sizes_strides()` to know whether a tensor has symbolic sizes or strides; if does, we skip some profiler logic. But sometimes `has_symbolic_sizes_strides()` returns false, but we do actually have symbolic sizes or strides.
So in this change, we add `may_have_symbolic_sizes_strides()` - which should never return false if the tensor has symbolic sizes and strides
Why not change `has_symbolic_sizes_strides()`? It seems like there's preexisting logic that assumes that "if has_symbolic_sizes_strides(), then we can assume that this tensor is guaranteed to have symbolic sizes or strides". In this case, we have python-implemented sizes or strides, which should follow a different code path.
Differential Revision: [D55947660](https://our.internmc.facebook.com/intern/diff/D55947660/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123696
Approved by: https://github.com/aaronenyeshi, https://github.com/soulitzer
Summary:
We seperated the FR dump logic from the desync debug logic,
so we no longer set collectiveDebugInfoMode_ to true when we just need FR
dump. That's why monitor thread did not sleep and try to kill the
process without waiting for the dump.
The fix is simple, we should sleep whenever shouldDump_ is true
Test Plan:
Existing unit tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123788
Approved by: https://github.com/wconstab
But appending them to the end of the shared library and mmaping afterwards
Disabled by default, but overridable by `config.aot_inductor.force_mmap_weights`
Implemented by adding `USE_MMAP_SELF` define to `inductor/aoti_runtime/model.h` which is defined when weights are appended to the binary. In that case, shared library name is determined by calling `dladdr`, mmaped and finally checked against random magic number embedded at the end of the weights as well as in const section of the library in question
Added unites to validate that it works as expected
TODO:
- Extend support to CUDA
- munmap region if the same library is reused
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123002
Approved by: https://github.com/jansel, https://github.com/desertfire, https://github.com/mikekgfb
Summary:
Kineto traces use microsecond level granularity because of chrome tracing defaults to that precision. Fix by adding preprocessor flag to TARGETS and BUCK files. Also remove any unnecessary ns to us conversions made in the profiler itself.
This diff contains profiler changes only. Libkineto changes found in D54964435.
Test Plan:
Check JSON and chrome tracing to make sure values are as expected. Tracing with flags enabled should have ns precision. Tracings without flags should be same as master.
Zoomer: https://www.internalfb.com/intern/zoomer/?profiling_run_fbid=796886748550189
Ran key_averages() to make sure FunctionEvent code working as expected:
-- ------------ ------------
Name Self CPU % Self CPU CPU total % CPU total CPU time avg Self CUDA Self CUDA % CUDA total CUDA time avg # of Calls
ProfilerStep* 0.74% 3.976ms 64.40% 346.613ms 69.323ms 0.000us 0.00% 61.710ms 12.342ms 5
Optimizer.zero_grad#SGD.zero_grad 0.76% 4.109ms 0.76% 4.109ms 821.743us 0.000us 0.00% 0.000us 0.000us 5
## forward ## 6.89% 37.057ms 27.19% 146.320ms 29.264ms 0.000us 0.00% 58.708ms 11.742ms 5
aten::conv2d 0.22% 1.176ms 7.74% 41.658ms 157.199us 0.000us 0.00% 27.550ms 103.962us 265
aten::convolution 0.79% 4.273ms 7.52% 40.482ms 152.762us 0.000us 0.00% 27.550ms 103.962us 265
aten::_convolution 0.69% 3.688ms 6.73% 36.209ms 136.637us 0.000us 0.00% 27.550ms 103.962us 265
aten::cudnn_convolution 6.04% 32.520ms 6.04% 32.520ms 122.719us 27.550ms 8.44% 27.550ms 103.962us 265
aten::add_ 2.42% 13.045ms 2.42% 13.045ms 30.694us 12.700ms 3.89% 12.700ms 29.882us 425
aten::batch_norm 0.19% 1.027ms 8.12% 43.717ms 164.971us 0.000us 0.00% 16.744ms 63.185us 265
aten::_batch_norm_impl_index 0.31% 1.646ms 7.93% 42.691ms 161.096us 0.000us 0.00% 16.744ms 63.185us 265
------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------ ------------
Differential Revision: D55925068
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123650
Approved by: https://github.com/aaronenyeshi