List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
`unimplemented` is a function that raises an error, so
`raise unimplemented(...)` never reaches the `raise`.
Another related issue is that `raise unimplemented(...) from e`
doesn't attach the exception cause correctly. I fix this by adding
a `from_exc` argument to `unimplemented`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122136
Approved by: https://github.com/lezcano
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
* `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
* This ops is implemented on the Python side using torch.library so we can return a subclass instance
* `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
* The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
* `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
* `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
* Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)
With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.
Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
Summary: Special kwargs like `num_warps`, `num_stages`, and `num_ctas` can be passed to the Triton kernel call as kwargs. These kwargs are handled in a special way, not being passed to the underlying kernel function directly. In this PR, we move those special kwargs from `kwargs` of the `TritonKernelVariable` in dynamo to `Autotuner`'s `Config` instances (either already existing or newly created for this purpose). As a result, the special kwargs can be codegened correctly as a part of `Config`, not as direct arguments to the kernel `.run`.
Test Plan:
```
python test/inductor/test_triton_kernels.py -k test_triton_kernel_special_kwargs
...
----------------------------------------------------------------------
Ran 6 tests in 6.783s
OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122280
Approved by: https://github.com/oulgen
`torchxla_trace_once ` and `aot_torchxla_trivial ` should be removed.
In our internal(hopefully dashboard can be open source soon) torchbench daily runs, `openxla` backend has much higher passing rate and similar perfomrance as the `openxla_eval`(non-aot-auto-grad backend). We still use `openxla_eval` in llama2 example but I think we should move user to `openxla` backend going forward.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122128
Approved by: https://github.com/alanwaketan, https://github.com/jansel
This PR:
* Introduces an ATen op for creating true jagged views from a dense values buffer
* `_nested_view_from_jagged(values, offsets, lengths, ragged_idx, dummy)`
* This ops is implemented on the Python side using torch.library so we can return a subclass instance
* `jagged_from_list()` now uses this instead of the old autograd.Function `NestedViewFromBuffer`
* The latter op is used for non-contiguous JTs returned via `torch.nested.narrow()`
* `dummy` is an awful hack to ensure that `NestedTensor.__torch_dispatch__()` is invoked for our view
* Introduces an ATen op for accessing the `values` component of an NT via a view
* `_nested_get_values(nt)`
* **Removes** the autograd.Functions `ViewNestedFromBuffer` and `ViewBufferFromNested` in favor of `nested_from_values_offsets()` / `nested_from_values_offsets_lengths()` and `nt.values()`, respectively.
* Changes test code to prefer `as_nested_tensor()` over `jagged_from_list()` directly
* Similarly, avoid `buffer_from_jagged()`, preferring `values()`
* Depends on general subclass view fake-ification on the PT2 side (handled solely in previous PRs in the stack)
With these changes, the semantics of jagged layout NTs are such that they are considered a true view of the underlying `values` buffer. This means views of jagged NTs are views of the underlying buffer as well, simplifying some handling.
Differential Revision: [D54269922](https://our.internmc.facebook.com/intern/diff/D54269922)
Co-authored-by: voznesenskym <voznesenskym@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113279
Approved by: https://github.com/ezyang
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
@ezyang mentioned that we should not put constant args on the graph. Especially when there are args that would be trickier to put on the graph. E.g. next PR needs `triton.language.dtype` as an argument on the graph.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122140
Approved by: https://github.com/jansel
Fixes#114844
In the linked issue we have
```
compiled_module = torch.compile(module)
compiled_module.x = ...
compiled_module(...) # Mutates self.x
```
Where since the module mutates `self.x` you would expect `compiled_module.x`
to be updated but actually `compiled_module.x = ...` sets an attribute "x"
on the `OptimizedModule` object while the forward method of the module mutates
`module.x`.
This gives the expected behavior by forwarding `compiled_module.__setattr__`
down to `module.__setattr__`. There is already a corresponding `__getattr__`
so now `compiled_module.x` becomes an alias for `module.x`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122098
Approved by: https://github.com/ezyang, https://github.com/lezcano
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
This removes the duplicate handling of comparison ops between symbolic_convert and bultin and refactors the handling to use the binop infrastructure. This change regresses overheads a bit, but this is fixed in the next PR.
New test skips are variants of `type(e) is np.ndarray` previously falling back to eager.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122043
Approved by: https://github.com/anijain2305
ghstack dependencies: #122039
**Summary:**
This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:
```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
aten.native_batch_norm ->
aten._native_batch_norm_legit (export only) ->
_batch_norm_legit_cpu/cuda (kernels, export only) ->
_batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```
Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.
Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:
```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```
The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:
```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```
Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.
Test Plan: `OpInfo` tests for `batch_norm_with_update`.
Reviewers: albanD, bdhirsh
Subscribers: albanD, bdhirsh, supriyar
Tasks: https://github.com/pytorch/pytorch/issues/111384
Differential Revision: [D54805279](https://our.internmc.facebook.com/intern/diff/D54805279)
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
`python benchmarks/dynamo/microbenchmarks/dynamo_microbenchmarks.py`
- Before: `symbolic_convert_overhead_stress_test: 10.7s`
- After: `symbolic_convert_overhead_stress_test: 8.6s`
`tx.step()` is a small part of that benchmark, so likely the speedup in that isolated function is larger than the top line.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121790
Approved by: https://github.com/oulgen
This PR fixes Issue #111279.
While #111279 reported the issue with `MultiheadAttention`, a minimal reproduction would be:
```python
class ToyModel(nn.Module):
def __init__(self,):
super().__init__()
self.linear = nn.Linear(128, 10)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.linear.forward(x) # Error
# return self.linear(x) # OK
```
Dynamo treats `self.linear(x)` as `call_module` while treating `self.linear.forward(x)` as a [`get_attr` and a `call_method`](https://github.com/pytorch/pytorch/blob/main/torch/_dynamo/variables/nn_module.py#L358-L378). However, existing DDPOptimizer assumes, for a `get_attr` node, `getattr(gm, node.target)` gives a tensor with the `requires_grad` attribute. Existing DDPOptimizer also does not support `call_method` nodes.
This PR adds support for `call_method` and check on `get_attr`. It also checks if a module's parameters have been added to a bucket to support multiple method calls from the same module.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121771
Approved by: https://github.com/yf225
Summary:
with a simple bench in TestDeserializer.test_basic function:
```
time_start = time.time()
for i in range(1000):
self.check_graph(MyModule(), inputs)
warnings.warn(f"time_taken: {time.time() - time_start}")
```
and forcing FakeTensorConfig.debug to True, record_stack_traces to True, logging level to debug, it shows that the the changed code is consistently ard 20 secs faster (~90s vs originally ~110s)
Test Plan:
test passed, see summary
compared debug trace before and after:
- exactly the same for fake tensor and proxy callsite https://www.internalfb.com/intern/diffing/?paste_number=1189883685
- slightly different for the user frame in proxy node https://www.internalfb.com/intern/diffing/?paste_number=1189884347
Differential Revision: D54237017
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121449
Approved by: https://github.com/angelayi
Putting this PR as an RFC since I have resorted to some horrible hacks in order to make this work.
```
(Pdb) p triton.language.float32
triton.language.fp32
(Pdb) p str(triton.language.float32)
'fp32'
(Pdb) p repr(triton.language.float32)
'triton.language.fp32'
```
This means that we need to "rewrite" them for fx graph and inductor execution.
This PR allows Mamba2 to work with `torch.compile`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121690
Approved by: https://github.com/Skylion007
Add these log to debug the regress of accuracy test for dm_nfnet_f0 model for training.
With these extra log when the accuracy check fail, we can verify if it's close to succeed or not. If yes that indicates there is no real issue but just flaky and we probably can tune the tolerance to fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121656
Approved by: https://github.com/jansel, https://github.com/Skylion007
Reduces the `torch.compile(backend="eager")` for this code
~~~
def fn(x):
for _ in range(10000):
# x = torch.sin(x)
x = torch.ops.aten.sin(x)
# x = sin(x)
return x
~~~
From 18 seconds to 12 seconds.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121031
Approved by: https://github.com/jansel
# Motivation
In backward of per-parameter sharding FSDP, each rank performs reduce scatter to sync gradients across ranks. A rank chunks each gradient tensor into `world_size` slices along the 0-th dimension and concatenate all slices along the 1-th dimension. Gradient tensors will be padded before concatenation when tensor.size(0) % world_size != 0.
### Example 1
Consider `world_size=3` and tensors A (2x4), B (3x3), C (1x2):
Input tensors:
```
AAAA BBB CC
AAAA BBB
BBB
```
Reduce-scatter-copy-in Output:
```
AAAABBBCC
AAAABBB00
0000BBB00
```
### Example 2
Consider `world_size=2` and tensors A (2x4), B (3x3), C(1x2), D(4x2):
Input tensors:
```
AAAA BBB CC DD
AAAA BBB 00 DD
BBB DD
000 DD
```
Reduce-scatter-copy-in first pad:
```
AAAA BBB CC DD
AAAA BBB 00 DD
BBB DD
000 DD
```
Then chunk and cat along dim as the output:
```
AAAABBBBBBCCDDDD
AAAABBB00000DDDD
```
The performance of reduce-scatter-copy-in is critical to per-parameter sharding FSDP. However, reduce-scatter-copy-in via composing existing ATen ops involves `cat` and irregular `pad`, leading redundant data copies and unsatisfactory performance.
# PR
We provide aten native support for reduce-scatter-copy-in, namely `_chunk_cat()`:
```
_chunk_cat(Tensor[] tensors, int dim, int num_chunks) -> Tensor
```
This PR includes the registration of `_chunk_cat` and `_chunk_cat.out`, OpInfo tests, and basic implementation composing existing ATen ops.
In the next PR, we will add the CUDA implementation. Comparing with baselines of composing existing ATen ops, `_chunk_cat()` CUDA implementation improves copy bandwidth from 498 GB/s to 966 GB/s on a production benchmark.
## Requirements on input
1. If input tensors have different ndims, dim should be non-negative and be less than the ndims of every input tensors. If all input tensors have the same ndims, we support both negative and non-negative dim.
2. For wrapped_dim, all tensors should have the same size for 0,...,wrapped_dim-1 dimensions. No requirements for (wrapped_dim, ...)-th dimension.
3. Expect positive num_chunks
4. Expect non-empty input tensor list and each input tensor should have at least 1 element
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121081
Approved by: https://github.com/albanD
I was originally trying to solve https://github.com/pytorch/pytorch/issues/120799 but got sidetracked along the way.
This PR contains a couple fixes. Let me know if you want me to split them up!
- Properly handle invalid user code when "super()" is called from non-method/classmethod. It will now properly raise the same error as CPython
- Fix base VariableTracker `__str__` method shadowing all `__repr__` methods defined in subclasses
- Fix accessing a classmethod on a user object to bind "cls" and not "self"
- Fix custom class handling of super() call to properly handle mixed regular/class/static methods
Locally , test_repros.py -k test_batch_norm_act still fails where the generated graph module is:
```
Call using an FX-traced Module, line 8 of the traced Module's generated forward function:
x = self.forward(l_x_); self = l_x_ = None
x_1 = self.L__self___act(x); x = None
```
note that "self" is being unset on the first line even though it is used on the second one.
For reference, this is the test c268ce4a6d/test/dynamo/test_repros.py (L1368-L1369)
I cannot figure out where the generated forward function comes from though, any hint would be welcome!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121365
Approved by: https://github.com/jansel
**Summary:**
This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:
```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
aten.native_batch_norm ->
aten._native_batch_norm_legit (export only) ->
_batch_norm_legit_cpu/cuda (kernels, export only) ->
_batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```
Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.
Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:
```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```
The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:
```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```
Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.
Test Plan: `OpInfo` tests for `batch_norm_with_update`.
Reviewers: albanD, bdhirsh
Subscribers: albanD, bdhirsh, supriyar
Tasks: https://github.com/pytorch/pytorch/issues/111384
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
This PR:
* Uses reified ViewFuncs to swap in fake tensors / symbolic SymInts for view replay during subclass view fake-ification
* Enables automatic dynamic on view bases -> fakeifies according to the resultant symbolic context instead of the old "all-static" approach
* Covers the following view types:
* subclass -> dense
* dense -> subclass
* subclass -> subclass
* Dense -> dense views are handled the old way via an `as_strided()` call, as it's likely there is no view func available
Differential Revision: [D54269082](https://our.internmc.facebook.com/intern/diff/D54269082)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118405
Approved by: https://github.com/ezyang
Fixes#115607
We were missing guards when the grads were set to `None`. So if we compiled the optimizer with grads set to their proper value, and then with the grads set to `None` we'd continuously run the `None` version because all of the guards would pass and it would be ordered before the correct version in the cache.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121291
Approved by: https://github.com/Skylion007, https://github.com/anijain2305
Fix: https://github.com/pytorch/xla/issues/6009
This PR adds another case to `TensorVariable.method_new` special case, where it
re-dispatches `new` into `new_empty`.
Since we are using fake tensors, the `new` call doesn't actually gets to the corresponding
backend (e.g. XLA). So, things like the following might happen:
```python
@torch.compile(backend="openxla")
def foo(x):
new_x = x.new(*x.size())
# new_x.device() == "xla"
# x.device() == "xla:0"
return new_x + x
a = torch.arange(10)
foo(a.to(xm.xla_device()))
```
Resulting in the following error:
```python
Traceback (most recent call last):
...
File "torch/_dynamo/utils.py", line 1654, in get_fake_value
ret_val = wrap_fake_exception(
File "torch/_dynamo/utils.py", line 1190, in wrap_fake_exception
return fn()
File "torch/_dynamo/utils.py", line 1655, in <lambda>
lambda: run_node(tx.output, node, args, kwargs, nnmodule)
File "torch/_dynamo/utils.py", line 1776, in run_node
raise RuntimeError(make_error_message(e)).with_traceback(
File "torch/_dynamo/utils.py", line 1758, in run_node
return node.target(*args, **kwargs)
File "torch/utils/_stats.py", line 20, in wrapper
return fn(*args, **kwargs)
File "torch/_subclasses/fake_tensor.py", line 885, in __torch_dispatch__
return self.dispatch(func, types, args, kwargs)
File "torch/_subclasses/fake_tensor.py", line 1224, in dispatch
return self._cached_dispatch_impl(func, types, args, kwargs)
File "torch/_subclasses/fake_tensor.py", line 955, in _cached_dispatch_impl
output = self._dispatch_impl(func, types, args, kwargs)
File "torch/_subclasses/fake_tensor.py", line 1445, in _dispatch_impl
return self.wrap_meta_outputs_with_default_device_logic(
File "torch/_subclasses/fake_tensor.py", line 1575, in wrap_meta_outputs_with_default_device_logic
return tree_map(wrap, r)
File "torch/utils/_pytree.py", line 900, in tree_map
return treespec.unflatten(map(func, *flat_args))
File "torch/utils/_pytree.py", line 736, in unflatten
leaves = list(leaves)
File "torch/_subclasses/fake_tensor.py", line 1550, in wrap
) = FakeTensor._find_common_device(func, flat_args)
File "torch/_subclasses/fake_tensor.py", line 625, in _find_common_device
merge_devices(arg)
File "torch/_subclasses/fake_tensor.py", line 620, in merge_devices
raise RuntimeError(
torch._dynamo.exc.TorchRuntimeError: Failed running call_function <built-in function add>(*(FakeTensor(..., device='xla', size=(10,), dtype=torch.int64), FakeTensor(..., device='xla:0', size=(10,), dtype=torch.int64)), **{}):
Unhandled FakeTensor Device Propagation for aten.add.Tensor, found two different devices xla, xla:0
```
Using `new_empty`, instead, fixes this error because it uses the device from the source
tensor, instead of inferring from the current dispatch key set.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121075
Approved by: https://github.com/jansel
**Summary:**
This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:
```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
aten.native_batch_norm ->
aten._native_batch_norm_legit (export only) ->
_batch_norm_legit_cpu/cuda (kernels, export only) ->
_batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```
Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.
Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:
```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```
The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:
```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```
Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.
Test Plan: `OpInfo` tests for `batch_norm_with_update`.
Reviewers: albanD, bdhirsh
Subscribers: albanD, bdhirsh, supriyar
Tasks: https://github.com/pytorch/pytorch/issues/111384
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
Context: view fake-ification should handle closed-over state in ViewFuncs for use in view replay by:
* fake-ifying tensors
* symbolicizing SymInts
This avoids invalid specialization during view replay. However, the symbols / tensors created as intermediates in the view chain should not stick around or be guarded on. This PR introduces an `EphemeralSource` intended to be used as a source for this purpose. It has the following properties:
* Considered first to be simplified out in symbol simplification logic
* Errors if guarded on
Differential Revision: [D54561597](https://our.internmc.facebook.com/intern/diff/D54561597)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120948
Approved by: https://github.com/ezyang
Summary: WrapperModule seems a good idea but may introduce some surprising behavior to users, for example, it never registers enclosed modules as submodules and therefore it's unclear that's the state dict for the exported program should look like, because some people may argue to include every state in state dict but others want to keep them as constants.
Test Plan: CI
Reviewed By: tugsbayasgalan
Differential Revision: D54326331
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121042
Approved by: https://github.com/angelayi
Reduces the torch.compile(backend="eager") for this code by 1-2 seconds.
~~~
def fn(x):
for _ in range(10000):
# x = torch.sin(x)
x = torch.ops.aten.sin(x)
# x = sin(x)
return x
~~~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121052
Approved by: https://github.com/jansel
ghstack dependencies: #121053
Reduces the torch.compile(backend="eager") for this code by 1-2 seconds.
~~~
def fn(x):
for _ in range(10000):
# x = torch.sin(x)
x = torch.ops.aten.sin(x)
# x = sin(x)
return x
~~~
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121053
Approved by: https://github.com/jansel
Currently when there is a print/warning in the graph, dynamo graph breaks causing export to fail. However export would like to just skip over these print/warning calls: https://github.com/pytorch/pytorch/issues/113792.
Additionally there's a torch.compile feature request to "reorder prints" so that instead of graph breaking when hitting prints/logging, we can skip over these prints to create larger compiled graphs, and then print the results out after those compiled graphs: https://github.com/pytorch/pytorch/issues/93739. This PR also adds the `reorderable_logging_functions` config for users to register logging functions to be reordered (like `print` or a custom logging function). Printout of the bytecode after reordering the prints looks like the following: P914736600
There are some limitations to the printing right now:
* You can only register logging functions, not methods
* Inputs to the logging functions can only be tensors, constants, and format strings
* Inputs to the logging functions which will later be mutated in-place will not be printed correctly
TODO: Add the following tests
* print function with argument of nested data structure;
* print function with argument of nested data structure being updated inside of compile region (this would test if we handle side effect correctly);
* custom defined logging functions with nn.Module or nn.Module attribute arguments;
* custom defined logging functions with submodule input/output as arguments (we need to handle the mapping and fused-out value);
* custom defined logging functions with tensor argument and mutation inside of the function (TBD: this may increase memory usage);
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116106
Approved by: https://github.com/yanboliang
The special-case code for handling SUPPORTED_NODES was producing a guard that looked like:
```
"G['torch'].utils._pytree.SUPPORTED_NODES[<class '__main__.CausalLMOutputWithPast'>].type"
```
resulting in a eval error trying to evaluate the guard.
This change adds a new source type (`ClassSource`) which is given a class type (in this case `CausalLMOutputWithPast`) and attempts to fetch it from its defining module. It then uses that to build the `SUPPORTED_NODES` guards instead of referring to the type directly.
Also added a unit test which fails before this change and passes after.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120798
Approved by: https://github.com/anijain2305
Currently when there is a print/warning in the graph, dynamo graph breaks causing export to fail. However export would like to just skip over these print/warning calls: https://github.com/pytorch/pytorch/issues/113792.
Additionally there's a torch.compile feature request to "reorder prints" so that instead of graph breaking when hitting prints/logging, we can skip over these prints to create larger compiled graphs, and then print the results out after those compiled graphs: https://github.com/pytorch/pytorch/issues/93739. This PR also adds the `reorderable_logging_functions` config for users to register logging functions to be reordered (like `print` or a custom logging function). Printout of the bytecode after reordering the prints looks like the following: P914736600
There are some limitations to the printing right now:
* You can only register logging functions, not methods
* Inputs to the logging functions can only be tensors, constants, and format strings
* Inputs to the logging functions which will later be mutated in-place will not be printed correctly
TODO: Add the following tests
* print function with argument of nested data structure;
* print function with argument of nested data structure being updated inside of compile region (this would test if we handle side effect correctly);
* custom defined logging functions with nn.Module or nn.Module attribute arguments;
* custom defined logging functions with submodule input/output as arguments (we need to handle the mapping and fused-out value);
* custom defined logging functions with tensor argument and mutation inside of the function (TBD: this may increase memory usage);
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116106
Approved by: https://github.com/yanboliang
# Note: Returning Fake Tensors on First AOT Autograd Call
#
# Inductor will optimize strides of outputs when it deems it profitable.
# For instance, converting to channels last. When we split the graph here
# into multiple inductor compilations, we need to make sure that the
# output strides of one compilation is appropriately passed to the subsequent
# compilations. However, the mapping from inductor output to dynamo output
# is non-trivial due to aot_autograd's deduping, de-aliasing, mutation, re-writing,
# subclass handling, etc. In order to replay all this logic we set a flag such that
# the first invocation of inductor in aot_autograd will return Fake Tensors with
# appropriate strides. Then, all of aot autograd's runtime logic is replayed.
# This gives us the appropriately strided outputs here which will reflect runtime strides.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120523
Approved by: https://github.com/yf225, https://github.com/bdhirsh
Summary:
When we convert `dynamic_shapes` to `constraints` and pass them to `_dynamo.export`, we shouldn't give a deprecation warning. Such conversion happens when calling `torch.export.export`, e.g. But it can also happen when calling `capture_pre_autograd_graph` (which itself has this deprecation warning when `constraints` are passed directly as well).
Since `_log_export_usage` is an indicator of a top-level call (it is `True` by default but set to `False`, or at least passed through, by callers), we can (ab)use it to indicate when to give this deprecation warning.
Test Plan: none
Differential Revision: D54350172
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120896
Approved by: https://github.com/BoyuanFeng, https://github.com/zhxchen17
Summary: In non-strict mode of torch.export() we didn't set those `is_compiling()` to `True` which is needed by some models.
Test Plan: Unit tests and manual testing.
Differential Revision: D53624452
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119602
Approved by: https://github.com/suo
The special-case code for handling SUPPORTED_NODES was producing a guard that looked like:
```
"G['torch'].utils._pytree.SUPPORTED_NODES[<class '__main__.CausalLMOutputWithPast'>].type"
```
resulting in a eval error trying to evaluate the guard.
This change adds a new source type (`ClassSource`) which is given a class type (in this case `CausalLMOutputWithPast`) and attempts to fetch it from its defining module. It then uses that to build the `SUPPORTED_NODES` guards instead of referring to the type directly.
Also added a unit test which fails before this change and passes after.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120798
Approved by: https://github.com/anijain2305
This adds support for backwards hooks that are *both*:
1) Interior to the graph; and
2) Dynamically generated (e.g. lambdas)
We do this by creating a BackwardState object that is used to register the hooks in the forward, then populated by dynamo *after* the forwards runs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120382
Approved by: https://github.com/xmfan
With the current `Dim`-based dynamic shapes API for export, one can express that shapes of different input shapes must be equal by reusing the same `Dim`. However, non-trivial relationships between such input shapes cannot be expressed.
Recently we are seeing more and more examples of code that require this additional expressibility, e.g., where a pair of shapes might differ by one, or a shape might be double another (or simply even).
This PR introduces the concept of a "derived" `Dim`, i.e., a linear arithmetic expression over a `Dim`. By using a combination of `Dim`s and derived `Dim`s to specify input shapes, the desired relationships can be expressed naturally. E.g., a pair of shapes might be `dim` and `dim + 1`, or `dim` and `2*dim`, or even `2*dim` and `dim + 1`.
We extend the current infrastructure that translates `Dim`s to deprecated `dynamic_dim`-based constraints to work with derived `Dim`s. As usual, we raise constraint violation errors when shape guards cannot be verified given a dynamic shapes spec; suggest fixes; and raise runtime errors when future inputs violate the spec.
Importantly, some guards that used to cause forced specializations in the constraint solver because they were deemed "too complex" now do not do so, because they can now be specified as constraints. Since this was what motivated the introduction of a `disable_constraint_solver` flag to some internal APIs, we may not need that flag any more.
Note that shapes of placeholders in exported programs can now contain symbolic expressions and not just symbols.
Differential Revision: D53254587
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118729
Approved by: https://github.com/ezyang
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.
https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
ghstack dependencies: #120712
Tacotron2 causes massive loop unrolling resulting in very large graphs (26k nodes) which was causing inductor (and tracing itself) to choke.
The unrolling size is controlled by the environment variable TORCHDYNAMO_MAX_LOOP_UNROLL_NODES which defaults to the arbitrary value 5000.
This updates the tacotron2 timings as follows:
eager timing: 3m:23s -> 35s
aot_eager timing: 4m:12s -> 39s
inductor timing: 22m:24s ->1m
For reference the big loop in tacotron2 was this one (model.py[405]):
```
while len(mel_outputs) < decoder_inputs.size(0) - 1:
decoder_input = decoder_inputs[len(mel_outputs)]
mel_output, gate_output, attention_weights = self.decode(decoder_input)
mel_outputs += [mel_output.squeeze(1)]
gate_outputs += [gate_output.squeeze(1)]
alignments += [attention_weights]
```
which gets unrolled and inlined adding about 36 nodes to the graph per iteration.
Fixes#98467
Relates to #102839 which hopefully will result in a better fix.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120023
Approved by: https://github.com/yanboliang
In this PR stack, there were unrelated test failures within test_trace_rules.py - It turned out that torch.cuda._get_device_properties should be registered in _dynamoc/trace_rules.py. A test failed because it was not.
This is a small fix which tries to get rid of the test failure by manually registering that function.
Note:
I am not sure whether this is the best way to fix this, as I am neither familiar with the trace rules nor with the introduction of torch.cuda._get_device_properties.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120620
Approved by: https://github.com/Skylion007
Reduces backend=eager compile time from 33 to 19 seconds for `MobileBertForQuestionAnswering`. This also helps an internal model where guards.add function is taking 124 seconds.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120520
Approved by: https://github.com/mlazos
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). There's a teensy bit of FB specific code to automatically enable trace logging if a /logs directory exists. `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.
https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.
Testing that the fbcode detection works at https://www.internalfb.com/mlhub/pipelines/runs/fblearner/534553450 (Meta-only)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
By changing runtime symbolic asserts to using assert_scalar, the asserts can call into `expect_true` and modify the shape env so that we can run through the traced graph module with fake tensors. With assert_async, the asserts only get hit during runtime, but that means if we run the graph module with fake tensors, the asserts will not affect the shape env, so later data dependent calls to the fake tensors may result in GuardOnDataDependentSymNode errors.
https://github.com/pytorch/pytorch/issues/119587
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119608
Approved by: https://github.com/ezyang
Fixes#114831
Before:
```
(pytorch10) angelayi@devgpu022 ~/local/pytorch [main] $ python test/dynamo/test_trace_rules.py -k test_torch_name_rule_map_updated
F
======================================================================
FAIL: test_torch_name_rule_map_updated (__main__.TraceRuleTests)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/data/users/angelayi/pytorch/torch/testing/_internal/common_utils.py", line 2739, in wrapper
method(*args, **kwargs)
File "/data/users/angelayi/pytorch/test/dynamo/test_trace_rules.py", line 328, in test_torch_name_rule_map_updated
self._check_set_equality(
File "/data/users/angelayi/pytorch/test/dynamo/test_trace_rules.py", line 302, in _check_set_equality
self.assertTrue(len(x) == 0, msg1)
AssertionError: False is not true : New torch objects: {<built-in method _print of type object at 0x7ff477e40ee0>} were not added to `trace_rules.torch_c_binding_in_graph_functions` or `test_trace_rules.ignored_c_binding_in_graph_function_names`. Refer the instruction in `torch/_dynamo/trace_rules.py` for more details.
To execute this test, run the following from the base repo dir:
python test/dynamo/test_trace_rules.py -k test_torch_name_rule_map_updated
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
----------------------------------------------------------------------
Ran 1 test in 0.184s
FAILED (failures=1)
```
After change:
```
(pytorch10) angelayi@devgpu022 ~/local/pytorch [main] $ python test/dynamo/test_trace_rules.py -k test_torch_name_rule_map_updated
.
----------------------------------------------------------------------
Ran 1 test in 0.209s
OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120533
Approved by: https://github.com/clee2000, https://github.com/yanboliang, https://github.com/huydhn, https://github.com/Skylion007
1) Using items stored in torch._tensor_classes to check item passed from python side;
2) Add SparsePrivateUse1 in backend_to_string, layout_from_backend and check_base_legacy_new;
3) Using more general API to get python module name in get_storage_obj and get_name functions.
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119263
Approved by: https://github.com/ezyang
Additional changes: tests in test_functional_api.py uses multi-threaded pg which is implemented in Python. For the native ops to call into the Python pg implementation, glue code in PyProcessGroup is required for each collective. This PR also adds a few pieces of previously missing glue code, which are necessary for running test_functional_api.py with native funcol.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119982
Approved by: https://github.com/wanchaol
1. right now we double increment the profile counter. The PR avoid that so we don't end up with profile_0, profile_2, profile_4 ...
2. log the latency to run the passed in function with profiling on so we can easily skip those _compile call which returns quickly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120100
Approved by: https://github.com/eellison
Fixes https://github.com/pytorch/pytorch/issues/117596
This was needed for Float8Tensor. Before this PR, dynamo would sometimes handle attribute access on tensor subclasses correctly, but it would choke on tensor subclasses with no source (it would fall back to using a `GetAttrVariable` to represent the attribute access, which is a problem if the attribute is a tensor that we later want to call tensor methods on).
I supported two cases:
(1) the attribute is a tensor, which is part of the `attrs` returned by the subclass's `__tensor_flatten__`. This creates a `TensorVariable`
(2) the attribute is a constant, which is part of the constant metadata returned by `__tensor_flatten__`. As per the contract of tensor_flatten, this should be a `ConstantVariable`. It could be possible that we allow non-constant metadata in the future, but we don't support that today.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117666
Approved by: https://github.com/zou3519
ghstack dependencies: #117667
Fix: https://github.com/pytorch/pytorch/issues/119779 by properly graph breaking a proper fix is to handle quantized tensors for full complete solution.
if when generating a fake tensor, UnsupportedFakeTensorException is thrown, then its handled and converted into a
Unimplemented in inside wrap_fake_exception which is then translated to a graph break.
However run_node used to convert UnsupportedFakeTensorException into a runtime error, creating runtime
errors instead of graph breaks whenever generating a fake tensor for a quantized tensor fails.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120026
Approved by: https://github.com/jansel
By changing runtime symbolic asserts to using assert_scalar, the asserts can call into `expect_true` and modify the shape env so that we can run through the traced graph module with fake tensors. With assert_async, the asserts only get hit during runtime, but that means if we run the graph module with fake tensors, the asserts will not affect the shape env, so later data dependent calls to the fake tensors may result in GuardOnDataDependentSymNode errors.
https://github.com/pytorch/pytorch/issues/119587
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119608
Approved by: https://github.com/ezyang
Summary:
as title.
The following APIs are logged:
- capture_preautograd_graph
- torch._export.aot_compile
- external usage of _export_to_torch_ir (AOTInductor, Pippy)
- constraints API
- public use of torch._dynamo.export
Test Plan: CI
Differential Revision: D53735599
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119848
Approved by: https://github.com/suo
When building guards which went through a property we were analyzing the property using getattr_static but the guard wasn't built using getattr_static so if the property was "unusual" it generated misbehaved code which referenced a non-existent `__closure__` field.
Fixes#118786
Note that after this change some of the referenced tests are still failing with a different error - but getting further.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119719
Approved by: https://github.com/oulgen
Fixes https://github.com/pytorch/pytorch/issues/117268; check this issue for background.
This PR does the following:
* Do not perform a replacement if the expression we're replacing the symbol with has a less refined value range than the original. There's a little bit of trickiness around the handling for values close to INT64_MAX; when checking if a range refines another, I *only* consider the range representable in 64-bit integers. This is enough to prevent us from doing a substitution like `i0 = 10 - i1`, but it appears to still let us do the other substitutions we like, such as `i0 = i1` or `i0 = 12 * i1`
* The test above is order dependent: if we assert an equality BEFORE we have refined a range, we might be willing to do the replacement because there isn't a meaningful range. This means that it's important to mark things as sizes, before you start doing other error checking. `split_with_sizes` is adjusted accordingly. It would be good to raise an error if you get the ordering wrong, but I leave this to future work.
* It turns out this is not enough to fix AOTAutograd, because we lose the size-ness of unbacked SymInts when AOTAutograd retraces the Dynamo graph. So update deferred runtime assert insertion to also insert size-ness and value ranges annotations. Note that, in principle, it shouldn't be necessary to explicitly do the latter; these should just show up as deferred runtime asserts. That's some extra refactoring for a later day.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117356
Approved by: https://github.com/lezcano
There's a bug when converting from TorchVariable to trace rule look ups,
in some corner cases the DTensor.from_local calls not matching the trace
name rule look up, resulting in a None look up, and falling back to the
UserFunctionVariable, which makes the tracing silent wrong by tracing
into the DTensor.from_local function. Not exactly sure yet why the look
up failed
This PR fixes the DTensor.from_local tracing to make sure in everycase
we should hit the InGraphFunctionVariable
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119659
Approved by: https://github.com/yifuwang
partially address https://github.com/pytorch/pytorch/issues/118785
This diff fixes three things:
1. add get_function to FunctoolsPartialVariable note that it will be available only if all args constant otherwise,
it would throw unimplemented in the call to asPythonConstant.
2. NamedTupleVariable takes args dispatched not as list ex: NamedTuple(a, b, c) vs NamedTuple([a, b, c]),
hence fix that by specializing asProxy.
3. A call to create_arg from within create_proxy, changes a python NamedTuple to a function call node without
associating an example value! Updated get_fake_values_from_nodes to handle such case.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119435
Approved by: https://github.com/jansel, https://github.com/anijain2305
ghstack dependencies: #119314
Summary: In dynamo tracing, `index()`'s implementation currently has the default begin index as `0` and the default end index as`-1` which means that by default we're dropping the last element. Rather we should be doing `None` which will ensure that the last element is also checked.
Test Plan: CI
Differential Revision: D53392287
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119151
Approved by: https://github.com/yanboliang
This is going to fix a legacy issue like:
```
torch._dynamo.export(torch.ops.aten.scaled_dot_product_attention, ...)(*inputs,)
```
This is not supported any more, now the top level ```torch.export``` only support ```nn.Module```, but there are still some tests using the internal APIs and caused the ```trace_rules.check``` assertion error. This PR is going to mitigate such cases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119528
Approved by: https://github.com/ydwu4
Fixes https://github.com/pytorch/pytorch/issues/117268; check this issue for background.
This PR does the following:
* Do not perform a replacement if the expression we're replacing the symbol with has a less refined value range than the original. There's a little bit of trickiness around the handling for values close to INT64_MAX; when checking if a range refines another, I *only* consider the range representable in 64-bit integers. This is enough to prevent us from doing a substitution like `i0 = 10 - i1`, but it appears to still let us do the other substitutions we like, such as `i0 = i1` or `i0 = 12 * i1`
* The test above is order dependent: if we assert an equality BEFORE we have refined a range, we might be willing to do the replacement because there isn't a meaningful range. This means that it's important to mark things as sizes, before you start doing other error checking. `split_with_sizes` is adjusted accordingly. It would be good to raise an error if you get the ordering wrong, but I leave this to future work.
* It turns out this is not enough to fix AOTAutograd, because we lose the size-ness of unbacked SymInts when AOTAutograd retraces the Dynamo graph. So update deferred runtime assert insertion to also insert size-ness and value ranges annotations. Note that, in principle, it shouldn't be necessary to explicitly do the latter; these should just show up as deferred runtime asserts. That's some extra refactoring for a later day.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117356
Approved by: https://github.com/lezcano
```
Takes in a function which has been printed with print_readable() and constructs kwargs to run it.
Currently only handles Tensor inputs and a graph module which might have tensor constants.
Example:
Consider a function `forward` defined as follows:
>>> def forward(self, primals_1: "f32[1001, 6]"):
... _tensor_constant0: "i64[4190]" = self._tensor_constant0
... # Further implementation
>>> kwargs = aot_graph_input_parser(forward)
>>> forward(**kwargs)
"""
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119409
Approved by: https://github.com/shunting314
Summary:
Seems like `kwargs` is already support in `_infer_argument`, so we don't need the extra assertion `len(kwargs) == 0`.
This optimization ensures compatibility with torch.compile() for LazyModules with kwargs inputs, preventing graph breaks.
Test Plan: Unit tetst and CI
Differential Revision: D53558778
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119445
Approved by: https://github.com/yanboliang
Fixes#119198.
This PR make dynamo inline `__iter__` of a user defined object instead of creating a graph break. Also added a new test, which shows:
1. the loop is unrolled
2. the length of the loop is guarded when inlining `__iter__`
```python
class Mod:
def __init__(self):
self.a = [torch.randn(2, 2), torch.randn(2, 2)]
def __iter__(self):
return iter(self.a)
def f(mod):
ret = []
for x in mod:
ret.append(x + 1)
return ret
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119243
Approved by: https://github.com/jansel