# PR
This PR supports mutating inputs in cudagraph trees, if these inputs are outputs from previous cudagraph. Please check #121861 for more details.
# Note on Optimistic Mutation Check
To determine whether applying cudagraph, we need to check input mutations, falling into four categories: a) no mutation, b) mutation on parameters/buffers, c) mutation on cudagraph recorded tensors, d) mutation on non-cudagraph recorded tensors. We can apply cudagraph for type a,b,c but cannot for type d. This input mutation types depends on function, current_node, and inputs.
Since `check_for_mutation` is slow, there is a trade-off on making type c or d faster.
- To make type d) faster, we want to `check_for_mutation` and call eager function early. However, this adds unnecessary overhead to type a, b, c due to the extra check.
- To make type c) faster, we want to skip `check_for_mutation` at the beginning and only `check_for_mutation` before `record_function` for a new function. This removes the overhead of `check_for_mutation` for type a, b, c. However, this adds extra overhead to type d due to `check_invariants` for all children nodes.
Instead, we design optimistic mutation check. The assumption is that, given a function and a node, the input mutation types usually remain the same across inputs. So, if we have ever detect a function on a node with type d, we will never detect it as type c. The detailed design is:
- [Slow Path] On the first invocation of a function on a node, we run `check_for_mutation` once and cache the input mutation type as `non_cudagraph_managed_mutation[node_id][func_id]`.
- [Fast Path] On the subsequent invocations of a function on a node, we skip `check_for_mutation`. For `non_cudagraph_managed_mutation[node_id][func_id]` as true, we directly call eager function. Otherwise, we `check_variants` and call cudagraph function.
- [Slow Path] Before `record_function`, we run `check_for_mutation` again.
**Q1: Would there be overhead for type a,b,c,d?**
A: No. We only check input mutation types for the first invocation of a function on a node.
**Q2: If a function happens to be type c during the first invocation on a node, could we detect it as type d in the future?**
A: Yes. This is done by `check_invariants` and guarantees the correctness.
**Q3: If a function happens to be type d during the first invocation on a node, could it still be recognized as type c in the future?**
A: No. But this should happen rarely according to our assumption. In the rare case that it happens, there would not be any correctness issues and the performance is the same as the eager (or inductor optimized) function.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123231
Approved by: https://github.com/eellison
The original motivation for MYPYINDUCTOR was a faster type checking configuration that only checked a subset of files. With the removal of `follow_imports = ignore`, we are now able to use dmypy to do fast incremental typechecking, eliminating the need for this.
Perhaps erroneously, when I tee'ed up this PR I elected to delete the `follow_imports = skip` designations in the mypy-inductor.ini. This lead to a number of extra type error suppressions that I manually edited. You will need to review.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118432
Approved by: https://github.com/Skylion007
ghstack dependencies: #118414, #118418
- Don't copy inputs in cudagraphs wrapping, since the copies will distorts timing and triton do_bench will clear cache anyway
- Don't skip op if there is a fallback, since we have both fallbacks and lowerings for some ops
- Add option for channels last
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103110
Approved by: https://github.com/desertfire