Commit Graph

119 Commits

Author SHA1 Message Date
Andrew M. James
bde1a93bc4 Add lowering for resize, decomp for resize_as. (#122317)
This has been split off from #121354 as the inplace version of these
methods prove to be rather tricky.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122317
Approved by: https://github.com/peterbell10, https://github.com/lezcano
2024-04-03 17:47:29 +00:00
Boyuan Feng
35d3adb4b0 Add ATen Op _chunk_cat and _chunk_cat.out (#121081)
# Motivation

In backward of per-parameter sharding FSDP, each rank performs reduce scatter to sync gradients across ranks. A rank chunks each gradient tensor into `world_size` slices along the 0-th dimension and concatenate all slices along the 1-th dimension. Gradient tensors will be padded before concatenation when tensor.size(0) % world_size != 0.

### Example 1
Consider `world_size=3` and tensors A (2x4), B (3x3), C (1x2):

Input tensors:
```
AAAA   BBB   CC
AAAA   BBB
       BBB
```

Reduce-scatter-copy-in Output:
```
AAAABBBCC
AAAABBB00
0000BBB00
```

### Example 2
Consider `world_size=2` and tensors A (2x4), B (3x3), C(1x2), D(4x2):

Input tensors:
```
AAAA   BBB   CC   DD
AAAA   BBB   00   DD
       BBB        DD
       000        DD
```

Reduce-scatter-copy-in first pad:
```
AAAA   BBB   CC   DD
AAAA   BBB   00   DD
       BBB        DD
       000        DD
```

Then chunk and cat along dim as the output:
```
AAAABBBBBBCCDDDD
AAAABBB00000DDDD
```

The performance of reduce-scatter-copy-in is critical to per-parameter sharding FSDP. However, reduce-scatter-copy-in via composing existing ATen ops involves `cat` and irregular `pad`, leading redundant data copies and unsatisfactory performance.

# PR
We provide aten native support for reduce-scatter-copy-in, namely `_chunk_cat()`:

```
_chunk_cat(Tensor[] tensors, int dim, int num_chunks) -> Tensor
```

This PR includes the registration of `_chunk_cat` and `_chunk_cat.out`, OpInfo tests, and basic implementation composing existing ATen ops.
In the next PR, we will add the CUDA implementation. Comparing with baselines of composing existing ATen ops, `_chunk_cat()` CUDA implementation improves copy bandwidth from 498 GB/s to 966 GB/s on a production benchmark.

## Requirements on input

1. If input tensors have different ndims, dim should be non-negative and be less than the ndims of every input tensors. If all input tensors have the same ndims, we support both negative and non-negative dim.
2. For wrapped_dim, all tensors should have the same size for 0,...,wrapped_dim-1 dimensions. No requirements for (wrapped_dim, ...)-th dimension.
3. Expect positive num_chunks
4. Expect non-empty input tensor list and each input tensor should have at least 1 element

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121081
Approved by: https://github.com/albanD
2024-03-08 21:48:12 +00:00
Kurt Mohler
13a54ce279 Avoid COW materialization in at::parallel_for/parallel_reduce (#120455)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120455
Approved by: https://github.com/albanD
2024-03-01 05:05:28 +00:00
PyTorch MergeBot
86ff31c4a0 Revert "Avoid COW materialization in at::parallel_for/parallel_reduce (#120455)"
This reverts commit cabc09a5f2.

Reverted https://github.com/pytorch/pytorch/pull/120455 on behalf of https://github.com/izaitsevfb due to breaks xla jobs ([comment](https://github.com/pytorch/pytorch/pull/120455#issuecomment-1970026100))
2024-02-28 22:30:18 +00:00
Kurt Mohler
cabc09a5f2 Avoid COW materialization in at::parallel_for/parallel_reduce (#120455)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120455
Approved by: https://github.com/albanD
2024-02-28 00:37:33 +00:00
Isuru Fernando
435063aa89 Decomposition for upsample_linear{1d, 3d} (#114774)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114774
Approved by: https://github.com/lezcano, https://github.com/vfdev-5, https://github.com/peterbell10
2024-02-27 11:57:45 +00:00
Isuru Fernando
b7df3bba62 add decomposition for frexp (#119217)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119217
Approved by: https://github.com/peterbell10
ghstack dependencies: #119284, #120027
2024-02-23 21:52:42 +00:00
Angela Yi
6d82a7e9b0 Add pixel_shuffle to core aten decomps (#120092)
Summary:
https://github.com/pytorch/pytorch/pull/118239 added a decomposition
for pixel_shuffle, so pixel_shuffle no longer needs to be a Core ATen Op. We
have also fixed the internal use case so that it no longer special cases on
pixel_shuffle, allowing us to revert the changes in
https://github.com/pytorch/pytorch/pull/118921.

Test Plan: CI

Differential Revision: D53860966

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120092
Approved by: https://github.com/ydwu4
2024-02-20 18:37:32 +00:00
lezcano
b97fa6ac30 Make roll a decomposition and remove its lowering (#119857)
We use the fact that we now propagate indexing properly to avoid having
to maintain two different implementations of the op. Doing this we also remove
a spurious guard on this op.

We move the ref into a decomp as we now use advanced indexing.
The only difference we did in the implementation is that we now use
advanced indexing rather than `torch.cat`.

We also remove it from core. Let's see how this goes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119857
Approved by: https://github.com/peterbell10, https://github.com/larryliu0820
ghstack dependencies: #119863, #119864
2024-02-16 19:14:39 +00:00
PyTorch MergeBot
86dedebeaf Revert "Add pixel_shuffle to core aten decomps (#119899)"
This reverts commit 9201d7335a.

Reverted https://github.com/pytorch/pytorch/pull/119899 on behalf of https://github.com/huydhn due to Sorry for reverting your change but keep the diff D53766709 around while investigating the failed tests is not a good practice and could lead to out of sync issue, so it is better to revert and reland this ([comment](https://github.com/pytorch/pytorch/pull/119899#issuecomment-1948970686))
2024-02-16 17:44:59 +00:00
Andrew M. James
4625ecb858 Add decomp for linalg.cross (#119809)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119809
Approved by: https://github.com/lezcano, https://github.com/peterbell10
2024-02-16 09:58:38 +00:00
Angela Yi
9201d7335a Add pixel_shuffle to core aten decomps (#119899)
Summary: https://github.com/pytorch/pytorch/pull/118239 added a decomposition for pixel_shuffle, so pixel_shuffle no longer needs to be a Core ATen Op. We have also fixed the internal use case so that it no longer special cases on pixel_shuffle, allowing us to revert the changes in https://github.com/pytorch/pytorch/pull/118921.

Test Plan: CI

Differential Revision: D53766709

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119899
Approved by: https://github.com/peterbell10, https://github.com/lezcano
2024-02-14 21:01:11 +00:00
Aaron Meurer
5ce305270b Add a decomposition for isin() (#115390)
Co-authored-by: Peter Bell <peterbell10@live.co.uk>
Co-authored-by: Mario Lezcano Casado <3291265+lezcano@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115390
Approved by: https://github.com/peterbell10
2024-02-14 03:03:42 +00:00
angelayi
1adedc3c86 [decomp] Remove pixel_shuffle from core aten decomps (#118921)
pixel_shuffle is a core aten op
(https://pytorch.org/docs/main/torch.compiler_ir.html#core-aten-ir) so we should not decompose it.

https://github.com/pytorch/pytorch/pull/118239 added a decomp for it which is causing an internal test failure
(https://www.internalfb.com/intern/test/281475090561210/) which cases on the pixel_shuffle operator.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118921
Approved by: https://github.com/SherlockNoMad, https://github.com/lezcano
2024-02-03 08:21:32 +00:00
Yifu Wang
a1280f0cc6 Add an OpInfo test for split_with_sizes_copy (#118512)
Adding an `OpInfo` test for `split_with_sizes_copy` so we can use it to test [CUDA fast path for split_with_sizes_copy.out](https://github.com/pytorch/pytorch/pull/117203). Since the `OpInfo` test doesn't exist yet and introducing it requires modifications to the `CompositeExplicitAutograd` impl, adding the `OpInfo` test in a separate PR to establish a healthy baseline.

Changes made:
- Registered a batching rule for `split_with_sizes_copy`.
- Registered a decomposition for `split_with_sizes_copy`.
- Registered a DTensor prop rule for `split_with_sizes_copy`.
- Added required dtype and device checks to the composite impl.
- Added output resize to the composite impl.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118512
Approved by: https://github.com/albanD
2024-02-01 07:09:27 +00:00
Isuru Fernando
81d12846dc Add decomp for pixel_shuffle/unshuffle (#118239)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118239
Approved by: https://github.com/peterbell10
2024-01-31 18:34:21 +00:00
Isuru Fernando
2f7839e6db register decomposition for rsub in torch._refs (#118288)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118288
Approved by: https://github.com/lezcano
ghstack dependencies: #118398
2024-01-30 22:18:15 +00:00
Mengwei Liu
1a8545164a [export] Add unit test for SDPA export result (#117390)
Summary:

A follow up for #117097. In that PR I didn't add
`_scaled_dot_product_attention_for_cpu` into the core_aten_decomposition
table. This PR does that and also add a unit test.

Test Plan: python test/export/test_export.py -k
test_scaled_dot_product_attention

Reviewers:

Subscribers:

Tasks:

Tags:

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117390
Approved by: https://github.com/drisspg
2024-01-14 00:21:28 +00:00
Edward Z. Yang
edec54b9de Add torch._lazy_clone to create COW tensors (#113397)
Part of #109833

Stack from [ghstack](https://github.com/ezyang/ghstack) (oldest at bottom):
* __->__ #113397
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113397
Approved by: https://github.com/ezyang
2024-01-11 01:32:44 +00:00
Aaron Meurer
f08c4da86d Add a decomposition for take() (#114813)
Presumably this can close https://github.com/pytorch/pytorch/pull/109784

Also related to https://github.com/pytorch/pytorch/issues/93757 (though `take` is not listed there).

There's no bounds checking here (out of bounds indices cause a segfault or undefined behavior). Should that be added somehow?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/114813
Approved by: https://github.com/peterbell10, https://github.com/lezcano
2023-12-22 18:14:57 +00:00
Isuru Fernando
505574c46a Add decomposition for torch.block_diag (#115096)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115096
Approved by: https://github.com/peterbell10
2023-12-11 20:04:22 +00:00
Isuru Fernando
d40a7c6026 Add decompositions for replication_pad (#115113)
Fixes #115395

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115113
Approved by: https://github.com/peterbell10
2023-12-09 02:44:07 +00:00
Isuru Fernando
fb19947962 Add decompositions for reflection_pad{1, 2, 3}d (#115100)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115100
Approved by: https://github.com/peterbell10
2023-12-08 23:05:57 +00:00
Kurt Mohler
6f32eb7eef Add decomp for replication_pad2d and use for CUDA deterministic (#111590)
Fixes #95578

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111590
Approved by: https://github.com/peterbell10
2023-12-01 18:56:09 +00:00
PyTorch MergeBot
013675ff59 Revert "Add decomp for replication_pad2d and use for CUDA deterministic (#111590)"
This reverts commit f1286161a6.

Reverted https://github.com/pytorch/pytorch/pull/111590 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is failing XLA job.  The job is also failing on the PR, but the log classifier failed to find the failed test which lead to it being marked wrongly as flaky ([comment](https://github.com/pytorch/pytorch/pull/111590#issuecomment-1833004794))
2023-11-30 02:28:14 +00:00
Kurt Mohler
f1286161a6 Add decomp for replication_pad2d and use for CUDA deterministic (#111590)
Fixes #95578

Pull Request resolved: https://github.com/pytorch/pytorch/pull/111590
Approved by: https://github.com/peterbell10
2023-11-29 21:50:46 +00:00
PyTorch MergeBot
fe428a284b Revert "Add torch._lazy_clone to create COW tensors (#113397)"
This reverts commit 9916d8a9ea.

Reverted https://github.com/pytorch/pytorch/pull/113397 on behalf of https://github.com/DanilBaibak due to Unfortunately, I need to revert your PR because the lower [PR in the stack](https://github.com/pytorch/pytorch/pull/113396) is failing a bunch of internal build jobs. ([comment](https://github.com/pytorch/pytorch/pull/113397#issuecomment-1818761224))
2023-11-20 10:21:09 +00:00
Kurt Mohler
9916d8a9ea Add torch._lazy_clone to create COW tensors (#113397)
Part of #109833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/113397
Approved by: https://github.com/ezyang
ghstack dependencies: #113396
2023-11-17 01:58:51 +00:00
Han Qi
5a6f8014c4 Add a decomposition for _weight_norm_interface. (#112193)
Fixes #112086

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112193
Approved by: https://github.com/ezyang
2023-11-01 19:51:11 +00:00
Peter Bell
04024926f4 Use pytree.tree_map_ everywhere (#112417)
Wherever we discard the output of `tree_map` it's better to call `tree_map_`
which doesn't unflatten the mapped results and so is a lot cheaper.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112417
Approved by: https://github.com/lezcano
ghstack dependencies: #112391, #112392, #112393, #112394
2023-10-31 15:57:06 +00:00
PyTorch MergeBot
98c329b19e Revert "[core ATen IR] Add decompositions for max, min, var_mean (#110906)"
This reverts commit 9606cda64e.

Reverted https://github.com/pytorch/pytorch/pull/110906 on behalf of https://github.com/SS-JIA due to Breaks internal CI ([comment](https://github.com/pytorch/pytorch/pull/110906#issuecomment-1757490740))
2023-10-11 11:41:21 +00:00
SS-JIA
9606cda64e [core ATen IR] Add decompositions for max, min, var_mean (#110906)
## Context

Add decompositions for `aten.max`, `aten.min`, and `aten.var_mean`. These operators follow a pattern of returning a tuple of outputs from two component operators:

```
aten.max(x) -> return aten.amax(x), aten.argmax(x)
aten.min(x) -> return aten.amin(x), aten.argmin(x)
aten.var_mean(x) -> return aten.var(x), aten.mean(x)
```

For `var_mean`, the `refs` implementation was doing something similar, so I changed it to call `torch.` ops instead like was done for other `refs` implementations previously. cc: @peterbell10 @lezcano

Note that Inductor lowers all these directly, so they are excluded from the Inductor decomp table.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110906
Approved by: https://github.com/manuelcandales
2023-10-11 00:06:24 +00:00
Stephen Jia
c2e7a0d689 [core IR] Add decomps for aten.sum and aten.squeeze variants (#110645)
Summary:
## Context

Both `aten.sum` and `aten.squeeze` have a "most generic" variant in the form of `aten.sum.dim_IntList` and `aten.squeeze.dims` respectively. Add decompositions for other non generic variants of these operators to express them using the most generic variant.

Note that to register these decomps, the reference implementation under `_refs` had to be removed as registered decompositions. cc: @lezcano @peterbell10

Test Plan: Github CI + Meta Internal CI

Differential Revision: D49965952

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110645
Approved by: https://github.com/peterbell10, https://github.com/digantdesai, https://github.com/manuelcandales
2023-10-07 04:21:51 +00:00
Stephen Jia
ff96f6d04f [core IR][reland] Add split.Tensor and unbind decompositions to core ATen decomp table (#110323)
Summary:
This is a reland of [github PR #110102]( https://github.com/pytorch/pytorch/pull/110102).

The original PR had to be unlanded due to internal CI failures. This diff applies some small fixes to the failing tests to adjust to the new decompositions.

Note that `lift_fresh` will not be decomposed for now, since it was found that [constant propogation looks specifically for `lift_fresh`](13af952f94/torch/fx/experimental/proxy_tensor.py (L381-L386)). Therefore decomposing `lift_fresh` will interfere with constant propogation during export.

Test Plan: Github CI and internal CI

Differential Revision: D49761321

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110323
Approved by: https://github.com/jansel
2023-10-03 14:35:04 +00:00
PyTorch MergeBot
e0b035c220 Revert "[core IR] Add lift_fresh, split.Tensor, and unbind decompositions to core ATen decomp table (#110102)"
This reverts commit 22e706f768.

Reverted https://github.com/pytorch/pytorch/pull/110102 on behalf of https://github.com/atalman due to Breaks internal CI ([comment](https://github.com/pytorch/pytorch/pull/110102#issuecomment-1739856671))
2023-09-28 19:03:25 +00:00
SS-JIA
22e706f768 [core IR] Add lift_fresh, split.Tensor, and unbind decompositions to core ATen decomp table (#110102)
## Context

Add existing decomps for `lift_fresh`, `split.Tensor`, and `unbind` to the core ATen decomposition table. Do not use them in inductor, since Inductor currently lowers these directly.

One note though is that `lift_fresh`'s decomposition has a note saying it's not correct under autograd. However, my understanding is that these decompositions are registered to the `"post_autograd"` decomposition table, meaning autograd wouldn't be a factor. Would like some confirmation that this premise is correct.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110102
Approved by: https://github.com/jansel
2023-09-28 01:21:45 +00:00
SS-JIA
dec140f1ea [core IR] Add a core decomposition for aten.all (#110093)
## Context

Change the ref implementation of `aten.all` to only use other `torch` operators such that we can use it for the core ATen decomposition table. This will replace the decomposition for `aten.all` that was used specifically by Inductor.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110093
Approved by: https://github.com/manuelcandales, https://github.com/peterbell10, https://github.com/lezcano
2023-09-27 01:31:41 +00:00
SS-JIA
9928c10e71 [core IR] Add glu as a core decomposition (#110043)
## Context

Add the decomposition for `aten.glu` as a decomposition in the core ATen decomposition table. Don't use it in the Inductor decomposition table since Inductor has a lowering for it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110043
Approved by: https://github.com/peterbell10, https://github.com/lezcano
ghstack dependencies: #110046
2023-09-27 00:23:05 +00:00
SS-JIA
5df8aca994 [core IR] Add a core decomposition for floor_divide (#110046)
## Context

Introduce a core decomposition for `aten.floor_divide` into other `aten` ops, and add it to the core ATen decomposition table.

This replaces the decomposition of `floor_divide` that was used by Inductor. I noticed there was a note on that decomposition

```
# TorchInductor-only decomposition. It should not be taken to core.
# See https://github.com/pytorch/torchdynamo/pull/1120
```

but couldn't discern the reason why this is the case. cc: @lezcano

Pull Request resolved: https://github.com/pytorch/pytorch/pull/110046
Approved by: https://github.com/peterbell10
2023-09-26 08:39:21 +00:00
Mwiza Kunda
5c4b5baf21 Fix python decomps for OpOverloadPackets and add tests (#107707)
- Extend `test_torch_dispatch_meta_outplace` to test torch ops that do not have an out parameter but have aten op overloads that have out parameters. Additionally, Python decompositions may register `OpOverloadPacket`'s so decompositions need to be tested to ensure all `OpOverloads` still function for the `Meta` key (e.g. if a python decomposition is registered for an aten op `aten.foo` with overloads `[default, out]`, the python function needs to support receiving out arguments)

- Add out parameter wrappers to python decomps for aten ops that have out overloads

CC. @ezyang @albanD @lezcano

Fixes #107713

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107707
Approved by: https://github.com/lezcano
2023-09-25 20:53:30 +00:00
SS-JIA
7de669f2f9 [core IR] Remove trunc decomp and add trunc to core (#109902)
Following up from [this comment](https://github.com/pytorch/pytorch/pull/109319#discussion_r1330803226). Remove the decomposition for `trunc`, and add it as a core operator.

Going forward, provide similar treatment for operators that map cleanly to hardware instructions.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109902
Approved by: https://github.com/peterbell10
2023-09-25 18:18:06 +00:00
Mwiza Kunda
6b7b9c796e Fix registering jit decompositions for jvp for out wrapped decomps (#109367)
Python decompositions wrapped by `out_wrapper` need to be unwrapped before compiling with TorchScript since:
- `out_wrapper` extends the decompositions signature with an out parameter, however this `out` parameter is not present in the source code of the original decomposition so the resulting `ScriptFunction` will not have an `out` parameter
- `out_wrapper` is in the `torch._prims_common.wrappers` module so its `globals()` are different to the globals of the decomposition to be wrapped. This may cause symbol resolution to fail with the TorchScript compiler since it is compiling the unwrapped decomps source code rather than the wrapper

The python decomposition for `aten.trace` is wrapped as an example, other decompositions are to be fixed in https://github.com/pytorch/pytorch/pull/107707
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109367
Approved by: https://github.com/lezcano
2023-09-21 16:36:51 +00:00
Peter Bell
6f0cf5a837 [decomp] Decompose unsafe_split{,_with_sizes} into safe variants (#109668)
The "safety" aspect refers to the output not being registered as aliasing the
input, but after AOTAutograd I don't think this distinction matters. However,
we shouldn't use the same decomposition as the safe variant in case the backend
doesn't want to decompose split.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109668
Approved by: https://github.com/lezcano
ghstack dependencies: #109667
2023-09-20 18:45:56 +00:00
Peter Bell
9e629dd73c [decomp] Add all std and std_mean overloads to core decompostions (#109667)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109667
Approved by: https://github.com/lezcano
2023-09-20 18:45:56 +00:00
Salil Desai
40b2c796dc [Decomposition] baddbmm (#108534)
Summary:
Moving decomposition of baddbmm from _inductor/decomposition.py and include it in core_aten_decompositions

ff38c0e2f9/torch/_inductor/decomposition.py (L203)

Test Plan: Phabricator + OSS Tests

Differential Revision: D48871741

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108534
Approved by: https://github.com/SherlockNoMad
2023-09-20 12:49:32 +00:00
Salil Desai
d0cc623192 [Decomposition] _unsafe_view (#108713)
Summary:
Decomp already exists so just add it to core_aten_decompositions

https://www.internalfb.com/code/fbsource/[9d5eabd7b213d1a356d4e7bb400355d574ea924b]/fbcode/caffe2/torch/_decomp/decompositions.py?lines=3091

Differential Revision: D48619079

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108713
Approved by: https://github.com/larryliu0820, https://github.com/SherlockNoMad
2023-09-19 13:37:35 +00:00
Salil Desai
2e721aab98 [Decomposition] Trunc (#109319)
Summary:
Add Decomp for Trunc and add it to core_aten_decompositions

Differential Revision: D49042033

Pull Request resolved: https://github.com/pytorch/pytorch/pull/109319
Approved by: https://github.com/SherlockNoMad
2023-09-19 13:30:13 +00:00
Salil Desai
ae66d0b3bf [Decomposition] clamp_max (#108718)
Summary:
Decomp already exists so just add it to core_aten_decompositions

https://www.internalfb.com/code/fbsource/[abda43a5a268e83fef6d62b49531a390ce915ad2]/fbcode/caffe2/torch/_refs/__init__.py?lines=1855

Differential Revision: D48880026

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108718
Approved by: https://github.com/SherlockNoMad
2023-09-19 13:25:35 +00:00
Salil Desai
fc47ba2794 [Decomposition] clamp_min (#108717)
Summary:
Decomp already exists so just add it to core_aten_decompositions

https://www.internalfb.com/code/fbsource/[abda43a5a268e83fef6d62b49531a390ce915ad2]/fbcode/caffe2/torch/_refs/__init__.py?lines=1846

Differential Revision: D48880080

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108717
Approved by: https://github.com/SherlockNoMad
2023-09-18 12:43:58 +00:00
Salil Desai
a6d4cca7c0 [Decomposition] unsafe_split.Tensor (#108544)
Summary:
Include decomp in core_aten_decompositions

Decomp already exists

https://www.internalfb.com/code/fbsource/[03ff511cad587fc27ed8fd6a54b87845246e8e0c]/fbcode/caffe2/torch/_decomp/decompositions.py?lines=1209

Test Plan: OSS + Phabricator Tests

Differential Revision: D48940445

Pull Request resolved: https://github.com/pytorch/pytorch/pull/108544
Approved by: https://github.com/larryliu0820, https://github.com/SherlockNoMad
2023-09-18 12:43:07 +00:00