### Before this PR:
`torch.utils.swap_tensors(a, b)` required the `use_count` of `a` and `b` to be 1
```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here would fail due to the reference held by AccumulateGrad node, which is not cleaned up after backward
# torch.utils.swap_tensors(a, b)
del out
# Calling swap_tensors here would pass
torch.utils.swap_tensors(a, b)
```
### After this PR:
`torch.utils.swap_tensors(a, b)` requires the `use_count` of `a` and `b` to be 1 or 2 IF the second reference is held by `AccumulateGrad`
A pre-hook will be registered on the `AccumulateGrad` node so that it will fail if it is called (i.e. if user attempts to backward through the graph).
```python
a = torch.randn(2, 3, requires_grad=True)
b = torch.randn(2, 4)
out = a * 2
out.sum().backward()
# Calling swap_tensors here is ok
torch.utils.swap_tensors(a, b)
# If we ever backward to the AccumulateGrad node it will error that it was poisoned by swap_tensors
```
### Application to `nn.Module`
This issue is especially pertinent in context of `nn.Module` where parameters will have `AccumulateGrad` nodes initialized after forward. Specifically, this is intended to address https://github.com/pytorch/pytorch/pull/126814#issuecomment-2127777866. Previously, this would fail at the `m.cpu()` but we want users to be able to do something like the following, and instead raise an error if the user ever attempts to backward through the poisoned `AccumulateGrad` node
```python
import torch
import torch.nn as nn
m = nn.Linear(3, 5)
inp = torch.randn(2, 3)
out = m(inp)
out.sum().backward()
m.cpu()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127313
Approved by: https://github.com/soulitzer
This PR is proposing a new approach to solve the nn/optim only linked by python object identity problem.
The idea is to have a function that can swap the content of two Tensors t1 and t2 while preserving all the old references.
This would allow us to swap the `model.weight` with a new Tensor (can be any subclass of Tensor and any TensorImpl (xla, sparse, nested tensorimpl would work)). The use within nn will be done in a follow up.
This is done by swapping the whole content of the PyObject and then putting back the fields associated with external references (refcount, gc tracking and weakrefs).
Note that we have to properly handle all the cases where there is memory used before the public pointer PyObject* and where the PyObject is bigger due to dict/weakref being inlined (older CPython version) or due to slots.
The main limitation of this approach is that the number of slots need to match for the objects being swapped and thus limit usage of slots in subclasses.
Draft right now to see what @colesbury thinks about doing this?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111747
Approved by: https://github.com/colesbury
As per title.
Note that the c++ side code for the minidumps part was removed. So trying to call any of these 3 functions today results in an error saying that `torch._C` doesn't have these attributes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105142
Approved by: https://github.com/janeyx99
As per title.
Note that the c++ side code for the minidumps part was removed. So trying to call any of these 3 functions today results in an error saying that `torch._C` doesn't have these attributes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105142
Approved by: https://github.com/janeyx99
Also not sure if this should be a public function or not. Leaving it private for now but let me know if you prefer for it to be public.
FYI @nikitaved this will logically conflict with your triton kernel PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101420
Approved by: https://github.com/malfet
Fixes #ISSUE_NUMBER
#97593
A new extension mechanism has been added.
When the user registers a new backend, the corresponding methods and attributes can be automatically generated.
Do this code.
`torch.utils.rename_privateuse1_backend('foo')`
`torch.utils.generate_for_privateuse1_backend()`
Then, get the following methods and attributes.
`torch.Tensor.is_foo`
`torch.Tensor.foo()`
`torch.nn.Module.foo()`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98066
Approved by: https://github.com/albanD
This API adds some improvements to external backends who are building C++ backends out of tree using the `PrivateUse1` dispatch key.
The docs and linked examples go over the API in more detail, but you should be able to use it like:
```
# This should probably be in the __init__.py file of a external backend's python package
> torch.register_privateuse1_backend("foo")`
# And it will allow the user to do this:
> a = torch.ones(2, device="foo")
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86992
Approved by: https://github.com/albanD
Summary:
This PR
* adds the breakpad build to most of the remaining docker images (except the mobile + slim ones)
* pins to a [fork of breakpad](https://github.com/google/breakpad/compare/master...driazati:master?expand=1) to enable dasiy chaining on signal handlers
* renames the API to be nicer
Pull Request resolved: https://github.com/pytorch/pytorch/pull/59236
Reviewed By: malfet
Differential Revision: D28792511
Pulled By: driazati
fbshipit-source-id: 83723e74b7f0a00e1695210ac2620a0c91ab4bf2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55647
This adds [breakpad](https://github.com/google/breakpad) which comes with out-of-the-box utilities to register a signal handler that writes out a minidump on an unhandled exception. Right now this is gated behind a flag in `torch.utils`, but in the future it could be on by default. Sizewise this adds aboute 500k to `libtorch_cpu.so` (187275968 B to 187810016 B).
```bash
$ cat <<EOF > test.py
import torch
torch.utils.enable_minidump_collection()
# temporary util that just segfaults
torch._C._crash()
EOF
$ python test.py
Wrote minidump to /tmp/pytorch_crashes/6a829041-50e9-4247-ea992f99-a74cf47a.dmp
fish: “python test.py” terminated by signal SIGSEGV (Address boundary error)
$ minidump-2-core /tmp/pytorch_crashes/6a829041-50e9-4247-ea992f99-a74cf47a.dmp -o core.dmp
$ gdb python core.dmp
... commence debugging ...
```
Right now all exceptions that get passed up to Python don't trigger the signal handler (which by default only
handles [these](https://github.com/google/breakpad/blob/main/src/client/linux/handler/exception_handler.cc#L115)). It would be possible for PyTorch exceptions to explicitly write a minidump when passed up to Python (maybe only when the exception is unhandled or something).
Test Plan: Imported from OSS
Reviewed By: ailzhang
Differential Revision: D27679767
Pulled By: driazati
fbshipit-source-id: 1ab3b5160b6dc405f5097eb25acc644d533358d7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51124
Original commit changeset: 1c7133627da2
Test Plan: Test locally with interpreter_test and on CI
Reviewed By: suo
Differential Revision: D26077905
fbshipit-source-id: fae83bf9822d79e9a9b5641bc5191a7f3fdea78d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50458
libinterpreter.so contains a frozen python distribution including
torch-python bindings.
Freezing refers to serializing bytecode of python standard library modules as
well as the torch python library and embedding them in the library code. This
library can then be dlopened multiple times in one process context, each
interpreter having its own python state and GIL. In addition, each python
environment is sealed off from the filesystem and can only import the frozen
modules included in the distribution.
This change relies on newly added frozenpython, a cpython 3.8.6 fork built for this purpose. Frozenpython provides libpython3.8-frozen.a which
contains frozen bytecode and object code for the python standard library.
Building on top of frozen python, the frozen torch-python bindings are added in
this diff, providing each embedded interpreter with a copy of the torch
bindings. Each interpreter is intended to share one instance of libtorch and
the underlying tensor libraries.
Known issues
- Autograd is not expected to work with the embedded interpreter currently, as it manages
its own python interactions and needs to coordinate with the duplicated python
states in each of the interpreters.
- Distributed and cuda stuff is disabled in libinterpreter.so build, needs to be revisited
- __file__ is not supported in the context of embedded python since there are no
files for the underlying library modules.
using __file__
- __version__ is not properly supported in the embedded torch-python, just a
workaround for now
Test Plan: tested locally and on CI with cmake and buck builds running torch::deploy interpreter_test
Reviewed By: ailzhang
Differential Revision: D25850783
fbshipit-source-id: a4656377caff25b73913daae7ae2f88bcab8fd88
Summary:
This is useful for measuring inference performance of your
models. This is a very basic benchmark for now. We don't support
batching on the benchmark side, no inter and intra op parallelizm is
supported yet, just caller based parallelizm.
Main phylosophy here is that user should be able to provide inputs
from python and just stack them within the benchmark. API should be
exactly the same as passing inputs to module.forward.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20766
Test Plan: Added a new unit test
Differential Revision: D15435461
Pulled By: salexspb
fbshipit-source-id: db08829dc3f4398bb1d8aa16cc4a58b6c72f16c6
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13141
This is an example diff to show what lint rules are being applied.
Reviewed By: mingzhe09088
Differential Revision: D10858478
fbshipit-source-id: cbeb013f10f755b0095478adf79366e7cf7836ff
Here's the command I used to invoke autopep8 (in parallel!):
git ls-files | grep '\.py$' | xargs -n1 -P`nproc` autopep8 -i
Several rules are ignored in setup.cfg. The goal is to let autopep8
handle everything which it can handle safely, and to disable any rules
which are tricky or controversial to address. We may want to come back
and re-enable some of these rules later, but I'm trying to make this
patch as safe as possible.
Also configures flake8 to match pep8's behavior.
Also configures TravisCI to check the whole project for lint.