Commit Graph

117 Commits

Author SHA1 Message Date
Edward Yang
76b044d7cb Don't actually import module when checking if its valid (#136548)
Summary: If you actually import the module, you might end up with some import cycle situation where a module is imported too early and accesses things that are not initialized yet.

Test Plan:
sandcastle and ossci

```
TORCH_LOGS=+torch._inductor.codecache buck run mode/opt caffe2/benchmarks/dynamo:torchbench
```

Differential Revision: D63330224

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136548
Approved by: https://github.com/Skylion007
2024-09-25 20:47:32 +00:00
Zain Rizvi
37f340c1e5 [EZ] Remove remaining amz2023 runner variant references (#136540)
Validated no jobs use the amz2023 runner variant anymore ([proof](https://github.com/search?type=code&q=org%3Apytorch+%2F%5Cbamz2023%5Cb%2F+&p=1)) so removing all references to it

Explicit references to the amz2023 runner type variants were removed in the following PRs:
- https://github.com/pytorch/ignite/pull/3285
- https://github.com/pytorch/ao/pull/887
- https://github.com/pytorch/fbscribelogger/pull/1
- https://github.com/pytorch/pytorch/pull/134355

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136540
Approved by: https://github.com/huydhn, https://github.com/malfet
2024-09-25 19:01:00 +00:00
Aaron Orenstein
9fc721d22b Add cache logs + other minor caching cleanup (#136456)
Summary:
- Added TORCH_LOGS=cache to dump cache stats on exit - supported by RemoteCache.
- Split REMOTE_CACHE_VERSION - it was used for both JKs fx_graph_memcache_version and autotune_memcache_version but they really should be separate (just in case we need to change one but not the other)
- Prepare `_ManifoldCache` for use with other subpath keys
- Move create_cache to be more public and use it in codecache
- Add _InductorMetaTy alias (still just a dict)
- Cleaned up some common cached_autotune calls in triton_heuristics

Test Plan: unit tests

Reviewed By: oulgen

Differential Revision: D62648249

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136456
Approved by: https://github.com/oulgen
2024-09-24 14:00:23 +00:00
Aaron Orenstein
06909803cc Existing mypy issues (#136236)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136236
Approved by: https://github.com/bobrenjc93, https://github.com/Skylion007
2024-09-24 01:02:07 +00:00
James Wu
803ce507f1 Log structured logging overhead to dynamo compile (kinda) (#136142)
Summary:
X-link: https://github.com/pytorch/benchmark/pull/2454

This adds structured logging overhead at a per compile basis to compilation metrics.

To do so, we track the frame_id_frame_compile_id that trace_structured uses to categorize compiles, and use that as the key in our timing table.

Implementation notes:
- If there's times we call trace_structured without a compile id, the time won't be measured. Not really a good way around that today given the compile id framework of compilation metrics. Strobelight is still the best way to measure on a per job basis.
- We don't actually measure the time it takes to log the compilation metrics itself. Fundamentally, it's not possible to log this properly if we're storing the logging number *in* compilation metrics, since there's no way to measure it before we do it(unless we want discrepancies between dynamo_compile and tlparse, which seems suboptimal). Hopefully for a large job, the cost of structured_logging compilation metrics itself is small.
- I wanted to use frame_phase_timing here, but there's a bunch of ids to iron out, and I don't really want to deal with that headache. compilation_time_metrics is sort of what I want, but that isn't by frame/compile id, so it's also a bit off. Putting it into torch.logging as a separate thing so logging tracks its own overhead seems fine, though.

Test Plan:
Run benchmarks/nanogpt and staging logger. See that the new compilation metric is logged to the staged dynamo_compile table:

https://fburl.com/scuba/logger_staging_jjwu_30582a48f1ff9cf5f4ac50a4c40af/xazjg5xq

Note that the sum(structured_logging_overhead_s) / sum(entire_frame_compile_time) = 8.387 / 124.278  = 6%, which seems reasonable as the overhead for a small compilation like this.

You can also look at samples for a more detailed log of this.

Reviewed By: oulgen

Differential Revision: D62643611

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136142
Approved by: https://github.com/bobrenjc93
2024-09-19 16:11:38 +00:00
Edward Z. Yang
3825607144 Add torch._logging.scribe (#135224)
See https://github.com/pytorch/pytorch/pull/135138 for a usage example. Meta only, see https://docs.google.com/document/d/1JpbAQvRhTmuxjnKKjT7qq57dsnV84nxSLpWJo1abJuE/edit#heading=h.9wi46k7np6xw for context

fbscribelogger is a library that allows us to write to scribe, which is Meta's logging infrastructure, when you have appropriate access token (this token is available for jobs running on main, as well as authorized jobs with the ci-scribe label). The resulting data is accessible via Scuba (a real time in-memory database) and Hive (a more traditional SQL persisted database).

Here's the motivating use case. Suppose there is somewhere in PyTorch's codebase where you'd like to log an event, and then you'd like to find all the situations where this log is called. If PyTorch is rolled out to our internal users, we have some FB-oriented APIs (like torch._utils_internal.signpost_event) with which you can do this. But you have to actually land your PR to main, wait for it to be ingested to fbcode, and then wait for us to actually roll out this version, before you get any data. But what if you want the results within the next few hours? Instead, you can use torch._logging.scribe to directly write to our logging infrastructure *from inside CI jobs.* The most convenient approach is to log unstructured JSON blobs to `open_source_signpost` (added in this PR; you can also add your own dedicated table as described in the GDoc above). After adding logging code to your code, you can push your PR to CI, add 'ci-scribe' label, and in a few hours view the results in Scuba, e.g., (Meta-only) https://fburl.com/scuba/torch_open_source_signpost/z2mq8o4l If you want continuous logging on all commits on master, you can land your PR and it will be continuously get logging for all CI runs that happen on main.

Eventually, if your dataset is important enough, you can consider collaborating with PyTorch Dev Infra to get the data collected in our public AWS cloud so that OSS users can view it without access to Meta's internal users. But this facility is really good for prototyping / one-off experiments. It's entirely self serve: just add your logging, run your PR CI with ci-scribe, get results, do analysis in Scuba.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135224
Approved by: https://github.com/Skylion007
2024-09-05 22:37:13 +00:00
Edward Z. Yang
dbeb8a1691 Render log filepaths that are not anchored in torch's directory in a reasonable way (#135165)
For example, if I do TORCH_LOGS=fbscribelogger I'll get:

```
I0904 17:59:07.567000 3672513 fbscribelogger/__init__.py:161] stop
```

instead of

```
I0904 12:46:15.332000 2930287 ../../../../../home/ezyang/local/a/pytorch-env/lib/python3.10/site-packages/fbscribelogger/__init__.py:161] stop
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135165
Approved by: https://github.com/Skylion007
2024-09-05 16:48:09 +00:00
Avik Chaudhuri
9f00317997 rationalize STATIC vs. None (#134877)
Summary:
A bit of refactoring to prepare to remove `None` as a way to specify static dimensions in dynamic shapes, given we already have `Dim.STATIC` for the same purpose. We will now warn whenever this happens. However no tests were modified because problematic uses of `None` still need to behave as they do today, until we are ready to remove support. It should be easy to port tests by replacing the warning function to raise instead.

Note that other uses of `None`, such as for entire values (tensor or non-tensor) remain as is. Moving forward this should be the only purpose of `None` (at least externally).

Finally, there's a bit of confusion in our representation now because `AUTO` also internally transforms to `None`. Renamed dynamic_shapes to transformed_dynamic_shapes where this happens. Overall the two forms (pre and post transformation) have different properties so should probably not be represented in the same format in the future.

Test Plan: existing

Differential Revision: D62040729

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134877
Approved by: https://github.com/pianpwk
2024-09-04 05:34:26 +00:00
Shunting Zhang
1e92d7b688 [inductor] move loop ordering after fusion (#126254)
Restart the work from PR https://github.com/pytorch/pytorch/pull/100331 in this new PR since it's hard to rebase. It would be expected that some code is copy/pasted from the previous PR and main idea is the same.

Previously we see relatively large compilation time increase due to too many loop orders being considered. This PR tries to continue the work by doing pruning and only considering loop orders that we know for sure are relevant (i.e. do it on demand).

Some manually created cases that loop ordering matters are added as unit tests. The PR can make sure inductor does not miss fusion opportunities for them.

This PR should solve the not-able to fusion problem in https://github.com/pytorch/pytorch/issues/130015

Right now there is still significant increase of compilation time. I'll disable the feature by default. Later on after the compilation time issue is resolved, I'll enable it  by default.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126254
Approved by: https://github.com/jansel
2024-08-29 21:50:07 +00:00
Colin Peppler
f754c0ae1b [easy] rm duplicate definition for inductor in TORCH_LOGS documentation (#134480)
already defined in
2eb9339b71/torch/_logging/_internal.py (L286-L287)

Test Plan: Sandcastle run

Differential Revision: D61806088

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134480
Approved by: https://github.com/eellison, https://github.com/mlazos
2024-08-27 20:15:10 +00:00
Avik Chaudhuri
8db8ac700d line by line logging (#134298)
Summary:
Today there is no good mechanism to detect progress of non-strict export line-by-line in user code. This caused some pain recently in trying to find the exact line of user code that was triggering a bug where the process appeared stuck because deep down something was calling some symbolic shapes code that was suffering some exponential blowup.

This PR adds a environment variable for extended debugging that will log the line of user code corresponding to every torch function call. It only works in non-strict export for now. Prefix setting this environment variable with `TORCH_LOGS`  enabled for `export` logs at `DEBUG` level (i.e., with a `+` prefix), i.e.,.:

```
TORCHEXPORT_EXTENDED_DEBUG_CURRENT_LOC=1 TORCH_LOGS="+export" ...
```

This will show logs with something like:
```
...
prim::device called at .../example.py:4284 in foo
TensorBase.item called at .../example.py:4277 in bar
...
```

We already have an existing place to intercept torch functions where we process data-dependent errors in non-strict, so parking the logging there. An alternative place we could be doing this is where we add `stack_trace` metadata when generating code, but unfortunately at least the example that motivated this gets stuck before generating code, so that would be too late.

Test Plan: ran it on some sample commands

Differential Revision: D61692156

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134298
Approved by: https://github.com/angelayi
2024-08-25 02:57:11 +00:00
Simon Fan
ad8bdfae1e add compiled_autograd to programmatic set_logs API (#134162)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134162
Approved by: https://github.com/yf225, https://github.com/jansel
ghstack dependencies: #134186, #134200, #134205, #134286, #134290
2024-08-24 12:06:36 +00:00
IvanKobzarev
8ae4f82243 [aotd] Support HOP effects in backward (#132638)
Support of effectful operations in backward:

1/ AOTD collects metadata from forward fn only, so we can have usage of effectful ops in backward, that were not used in forward => Allowing tokens discovery during joint function .

FunctionalTensorMode holds _tokens, in Joint function after tracing forward we memoize _tokens as `_tokens_forward_output`.

2/ Tokens are added as primals inputs (forward) in EffectTokensWrapper.
Tokens that will be used in backward are in partitioner saved values. We do not have control on which positions they are saved in forward outputs.

2/ If new tokens discovered in backward after tracing joint_fn, the result graph will be manually added in the end of primals.
_aot_autograd/utils.py

3/ All effectful ops during backward are marked with 'must_be_in_backward' partitioner_tag, to prevent partiitoner to place them in forward.

For that functional_tensor_mode got new optional state `self._effects_partitioner_tag` for effectful ops, to set after tracing forward.

There are additional changes in partitioner to improve functionality of 'must_be_in_backward'

4/ Unlift tokens now should run for both forward and backward.
- As saved for backward tokens are placed on non static places - we identify input and output tokens to erase, by input and output of `with_effects` operation
- In forward we can have input tokens, discovered in backward, that are not used in with_effects ops in forward, but saved for backward. We identify them by position in forward inputs.

5/ Adding aot debug logging for graphs before unlifting and before adding additional primal for backward tokens.

Tests:
```
python test/higher_order_ops/test_with_effects.py
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132638
Approved by: https://github.com/bdhirsh
2024-08-23 15:30:58 +00:00
James Wu
f037803290 Add ChromiumEventLogger, log FXGraphCache and AOTAutogradCache (#132864)
This PR implements ChromiumEventLogger in all @dynamo_timed events. For each dynamo timed call, we log:
- A start event before starting the function execution
- An end event after finishing the function execution
- An extra pair of start/end events for any phase names included in dynamo.

Separately, this also gives us the ability to log instant events. I use them to log cache hits/misses as a first step. The little arrows on the bottom of the UI are cache hits/misses, and you can look at cache details by clicking each triangle.

The outputted chromium trace events can be viewed in perfetto for a timeline of an execution. Here's what it looks like for a run of nanogpt:
![image](https://github.com/user-attachments/assets/cb9e6c7a-1acf-45e6-8a27-6651d9ae6132)

And another with warm start:
![image](https://github.com/user-attachments/assets/cd9709bc-59ef-4da1-a7dd-10b1a0ab9b8f)

Trace events are based around the JSON Event format: https://docs.google.com/document/d/1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview

We may want to switch to the less deprecated Protobuf format later, but so far I don't see any features we care about supported there.

Internal FB employees can see a link to this in the tlparse output:
https://interncache-all.fbcdn.net/manifold/tlparse_reports/tree/logs/.tmpVi1FIl/dedicated_log_torch_trace_bb4zl_bc.log/index.html

I'll also work on logging these

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132864
Approved by: https://github.com/aorenste
2024-08-10 01:15:53 +00:00
Nicolas Macchioni
5cb05a82b4 [BC breaking] move benchmarking + prefer inductor path (#132827)
move benchmarking out of `torch._inductor.runtime.runtime_utils` and into `torch._inductor.runtime.benchmarking`, and prefer this path over directly accessing Triton's benchmarking

Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132827
Approved by: https://github.com/eellison
2024-08-08 00:47:45 +00:00
Michael Lazos
a8f0979962 Add cudagraph static inputs logging (#132726)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132726
Approved by: https://github.com/anijain2305
2024-08-06 12:01:20 +00:00
Edward Z. Yang
898a431a46 Dump files that look like FX graphs to structured log (#132100)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132100
Approved by: https://github.com/oulgen
2024-07-31 18:45:28 +00:00
Xuehai Pan
e7eeee473c [BE][Easy][14/19] enforce style for empty lines in import segments in torch/_[a-c]*/ and torch/_[e-h]*/ and torch/_[j-z]*/ (#129765)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129765
Approved by: https://github.com/ezyang
2024-07-31 10:42:50 +00:00
Edward Z. Yang
495d413519 Include code object of frame being compiled in stack (#132161)
This is pretty useful to have!

Test plan: https://internalfb.com/intern/fblearner/details/586653862/

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/132161
Approved by: https://github.com/oulgen
2024-07-30 21:33:27 +00:00
Xiaodong Wang
56bb047449 [pt2] Increase dynamo/inductor default log level to info (#131311)
Summary: Avoid the logs to be too verbose

Test Plan: CI

Differential Revision: D60028647

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131311
Approved by: https://github.com/oulgen
2024-07-22 17:33:29 +00:00
Aaron Orenstein
b193894b94 FakeTensor cache SymInt support (#127596)
Adds support for SymInts in the FakeTensor cache.

A couple notes:
1. When a SymInt is present in the input key for a FakeTensor operation we cache on the ShapeEnv instead of using the FakeTensorMode cache. This is necessary so we don't have to remember and check the guards. It reduces the cache hits but there's diminishing return on how much work we can do before the cache becomes more of a burden than a gain.
2. We need to be careful that when we cache an output SymInt that is a direct copy from the input that when we have a cache-hit we copy the SymNode from the input to the output. This is important because the fx-graph building code actually uses SymNode ids in the process of building the graph so constructing a same-content-but-different-id SymNode will fail.
3. In the cache key we store SymInts as a _PySymInputStub. These represent SymInt (and friends) but support `__hash__` and `__eq__` (which SymInt do not).
4. In the cache entry we store SymInts as a _SymIntOutputStub.

Perf example:
```
python benchmarks/dynamo/timm_models.py --ci --accuracy --timing
--explain --inductor --dynamic-shapes --dynamic-batch-only --device cuda
--training --amp --total-partitions 2 --partition-id 0 --output
/tmp/training_timm_models.csv --filter crossvit_9_240
```
fake tensor cache before:
```
INFO: FakeTensor cache stats:
INFO:   cache_hits: 68137
INFO:   cache_misses: 837
INFO:   cache_bypasses:
INFO:     symbolic shape:            48224
INFO:     CompositeImplicitAutograd: 917
INFO:     non-fake tensor:           70
INFO:     non-FakeTensor output:     62
INFO:     non-builtin:               8
INFO:     dynamic output shape:      1
```
and after:
```
INFO: FakeTensor cache stats:
INFO:   cache_hits: 88187
INFO:   cache_misses: 14233
INFO:   cache_bypasses:
INFO:     CompositeImplicitAutograd: 1037
INFO:     non-FakeTensor output:     602
INFO:     non-fake tensor:           70
INFO:     unsafe view:               36
INFO:     non-builtin:               8
INFO:     dynamic output shape:      1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127596
Approved by: https://github.com/eellison
ghstack dependencies: #131014, #129780
2024-07-21 19:26:38 +00:00
Oguz Ulgen
eee76c86a8 Write trace_structured events to scuba (#130955)
Summary: https://fb.workplace.com/groups/1286739428954016/posts/1287192258908733

Test Plan: Run test with tlparse and inspect https://www.internalfb.com/intern/scuba/query/?dataset=pt2_trace_structured_events

Differential Revision: D59866096

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130955
Approved by: https://github.com/ezyang
2024-07-19 06:02:47 +00:00
Edward Z. Yang
aa95fb99af On advice of James March, log pid instead of tid (#130679)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130679
Approved by: https://github.com/jmarchfb
2024-07-17 02:00:10 +00:00
Edward Z. Yang
6f54e961ea Add trace_shape_events artifact tracing for ShapeEnv events (#130473)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130473
Approved by: https://github.com/lezcano
2024-07-12 13:50:25 +00:00
Chien-Chin Huang
0d8dedb01b [dtensor] Add dtensor to TORCH_LOGS (#129512)
Summary:
Add the basic log for dispatcher of dtensor

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129512
Approved by: https://github.com/wanchaol, https://github.com/XilunWu
2024-07-12 06:50:53 +00:00
Xuehai Pan
973037be6a [BE][Easy] apply autofix for ruff rules unnecessary-collection-call (C408): list() / tuple() / dict() (#130199)
This PR changes the empty collection factory call to Python literals:

- `list()` -> `[]`
- `tuple()` -> `()`
- `dict()` -> `{}`

The Python literals are more performant and safer. For example, the bytecode for building an empty dictionary:

```bash
$ python3 -m dis - <<EOS
import collections

d1 = {}
d2 = dict()

dict = collections.OrderedDict
d3 = dict()
EOS
```

```text
  0           0 RESUME                   0

  1           2 LOAD_CONST               0 (0)
              4 LOAD_CONST               1 (None)
              6 IMPORT_NAME              0 (collections)
              8 STORE_NAME               0 (collections)

  3          10 BUILD_MAP                0
             12 STORE_NAME               1 (d1)

  4          14 PUSH_NULL
             16 LOAD_NAME                2 (dict)
             18 CALL                     0
             26 STORE_NAME               3 (d2)

  6          28 LOAD_NAME                0 (collections)
             30 LOAD_ATTR                8 (OrderedDict)
             50 STORE_NAME               2 (dict)

  7          52 PUSH_NULL
             54 LOAD_NAME                2 (dict)
             56 CALL                     0
             64 STORE_NAME               5 (d3)
             66 RETURN_CONST             1 (None)
```

The dict literal `{}` only has one bytecode `BUILD_MAP`, while the factory call `dict()` has three `PUSH_NULL + LOAD_NAME + CALL`. Also, the factory call is not safe if users override the `dict` name in `locals` or `globals` (see the example of replacing with `OrderedDict` above).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130199
Approved by: https://github.com/malfet
2024-07-11 17:30:28 +00:00
Edward Z. Yang
424cd1e1df Enable TORCH_TRACE by default on Conda on Mast (#129988)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129988
Approved by: https://github.com/kunalb
2024-07-03 03:35:45 +00:00
Jiashen Cao
b6689e0fb8 [ts migration] add logging as part of torch logging system (#129405)
#### Description
Add more verbose logging of conversion process. Output which IR is being converted, which function is used to do conversion, and whether it succeeds.

#### Example
`TORCH_LOGS="+export,ts2ep_conversion" pytest test/export/test_converter.py -s -k test_prim_tolist`
```
test/export/test_converter.py I0624 13:19:26.416000 140608224474112 torch/_export/converter.py:734] TorchScript graph
I0624 13:19:26.416000 140608224474112 torch/_export/converter.py:734]
I0624 13:19:26.416000 140608224474112 torch/_export/converter.py:734] graph(%x.1 : Long(3, strides=[1], requires_grad=0, device=cpu)):
I0624 13:19:26.416000 140608224474112 torch/_export/converter.py:734]   %1 : __torch__.export.test_converter.___torch_mangle_1.Module = prim::CreateObject()
I0624 13:19:26.416000 140608224474112 torch/_export/converter.py:734]   %2 : int = prim::Constant[value=1](), scope: export.test_converter.Module::
I0624 13:19:26.416000 140608224474112 torch/_export/converter.py:734]   %3 : int = prim::Constant[value=0](), scope: export.test_converter.Module::
I0624 13:19:26.416000 140608224474112 torch/_export/converter.py:734]   %4 : int[] = prim::tolist(%x.1, %2, %3), scope: export.test_converter.Module::
I0624 13:19:26.416000 140608224474112 torch/_export/converter.py:734]   return (%4)
I0624 13:19:26.416000 140608224474112 torch/_export/converter.py:734]
I0624 13:19:26.416000 140608224474112 torch/_export/converter.py:734]
V0624 13:19:26.417000 140608224474112 torch/_export/converter.py:690] Convert [%1 : __torch__.export.test_converter.___torch_mangle_1.Module = prim::CreateObject()]
V0624 13:19:26.417000 140608224474112 torch/_export/converter.py:690] Convert using [convert_prim_CreateObject] succeeds
V0624 13:19:26.417000 140608224474112 torch/_export/converter.py:690] Convert [%2 : int = prim::Constant[value=1](), scope: export.test_converter.Module::]
V0624 13:19:26.417000 140608224474112 torch/_export/converter.py:690] Convert using [convert_prim_Constant] succeeds
V0624 13:19:26.417000 140608224474112 torch/_export/converter.py:690] Convert [%3 : int = prim::Constant[value=0](), scope: export.test_converter.Module::]
V0624 13:19:26.417000 140608224474112 torch/_export/converter.py:690] Convert using [convert_prim_Constant] succeeds
V0624 13:19:26.417000 140608224474112 torch/_export/converter.py:690] Convert [%4 : int[] = prim::tolist(%x.1, %2, %3), scope: export.test_converter.Module::]
V0624 13:19:26.417000 140608224474112 torch/_export/converter.py:690] Convert using [convert_prim_tolist] succeeds
I0624 13:19:26.427000 140608224474112 torch/_export/converter.py:760] TS2EPConverter IR-to-IR conversion succeeds
```

#### Test Plan
`pytest test/export/test_converter`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129405
Approved by: https://github.com/angelayi
2024-06-27 00:20:20 +00:00
mori360
ef55446538 [FSDP2] Add 'TORCH_LOGS=+fsdp' to log hooks(pre/post forward/backward) and FQN (_init_fqns) (#128663)
Summary:
Add  '`TORCH_LOGS=+fsdp`' in the CLI to print fsdp logs
Example:
`TORCH_LOGS=+fsdp torchrun --standalone --nproc_per_node=2 run_fsdp.py`
Description:
Add logging to `FSDPParamGroup.pre_forward`, `FSDPParamGroup.post_forward`, `FSDPParamGroup.pre_backward`, and `FSDPParamGroup.post_backward`, `FSDPState._root_pre_forward` if is the root, and `FSDPState._root_post_backward_final_callback`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128663
Approved by: https://github.com/weifengpy, https://github.com/awgu
2024-06-21 23:25:58 +00:00
Aaron Orenstein
afe15d2d2f Flip default value for mypy disallow_untyped_defs [3/11] (#127840)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127840
Approved by: https://github.com/oulgen
2024-06-08 18:28:01 +00:00
Edward Z. Yang
0aaac68c57 Add structured logging for tensor fakeification (#126879)
This adds dumps of MetaTensorDesc and MetaStorageDesc to structured logs
when they are triggered from Dynamo.  The logs look like this:

```
V0522 08:13:25.267000 140224882566144 torch/_subclasses/meta_utils.py:195] {"describe_storage": {"id": 0, "describer_id": 0, "size": 32}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
V0522 08:13:25.267000 140224882566144 torch/_subclasses/meta_utils.py:220] {"describe_tensor": {"id": 0, "ndim": 1, "dtype": "torch.float32", "device": "device(type='cpu')", "size": [8], "is_leaf": true, "stride": [1], "storage": 0, "view_func": "<built-in method _view_func_unsafe of Tensor object at 0x7f882959e840>", "describer_id": 0}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
V0522 08:13:25.268000 140224882566144 torch/_subclasses/meta_utils.py:1594] {"describe_source": {"describer_id": 0, "id": 0, "source": "L['x']"}, "frame_id": 0, "frame_compile_id": 0, "attempt": 0}
```

The `describer_id` is used to disambiguate ids.  We expect it to be
unique per frame id, but if there is a bug it possibly is not.  Note you will get
redundant dumps when evaluation restarts.

tlparse can use this to give a visualization of input tensors to a
model, you could also use this to generate example inputs to run graphs
on.

Some care is taken to avoid redumping the tensor metadata multiple
times, which would happen ordinarily because AOTAutograd refakifies
everything after Dynamo, to deal with metadata mutation.

Partially fixes https://github.com/pytorch/pytorch/issues/126644

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126879
Approved by: https://github.com/jamesjwu
2024-05-31 01:58:44 +00:00
Jason Ansel
c08afbb3da [inductor] Add kernel_code logging artifact (#126631)
This is useful for some compile errors where we don't finish outputting the full graph.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126631
Approved by: https://github.com/shunting314
2024-05-21 23:12:42 +00:00
Will Constable
54bc55c515 Remove dist_ prefix from TORCH_LOGS shortcuts (#126499)
e.g. dist_ddp -> ddp

'distributed' shortcut remains unchained

Feedback has been that it is not appealing to have the dist_ prefix,
and the main reason for it was to keep the distributed shortcuts grouped
together in the help menu.  It's nice to have shorter shortcuts.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126499
Approved by: https://github.com/XilunWu, https://github.com/kwen2501
ghstack dependencies: #126322
2024-05-18 00:07:30 +00:00
Will Constable
a0df40f195 Add dist_pp shortcut to TORCH_LOGS (#126322)
distributed log category already includes pipelining since its under the
torch.distributed umbrella.

So both TORCH_LOGS=distributed and TORCH_LOGS=dist_pp will enable PP
logs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126322
Approved by: https://github.com/kwen2501
2024-05-17 05:32:15 +00:00
William Wen
55c705b602 [dynamo] add trace_bytecode logging artifact (#125360)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125360
Approved by: https://github.com/ezyang
2024-05-02 22:01:00 +00:00
Edward Z. Yang
7aa6bd7fa0 Refactor all top level usages of record_shapeenv_event to ShapeEnv class (#123735)
This ensures that first argument to record_shapeenv_event is a ShapeEnv
so we can appropriately short circuit when recording is not in progress.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123735
Approved by: https://github.com/ysiraichi, https://github.com/zou3519, https://github.com/albanD
2024-04-27 20:36:40 +00:00
Simon Fan
43a7ab2a21 [compiled autograd] introduce verbose logs, add autograd node info to graph (#124954)
- sets it as a fake stack trace as we don't have a generic comment feature
- when verbose is disabled, still adds a contextmanager and flag checks. the alternative is to use MACROS, but that wouldn't be usable with TORCH_LOGS

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124954
Approved by: https://github.com/jansel
2024-04-27 01:10:37 +00:00
PyTorch MergeBot
e607dc8abb Revert "Refactor all top level usages of record_shapeenv_event to ShapeEnv class (#123735)"
This reverts commit 87bec7db4e.

Reverted https://github.com/pytorch/pytorch/pull/123735 on behalf of https://github.com/jeanschmidt due to Breaking internal signals, more info in D56587358 ([comment](https://github.com/pytorch/pytorch/pull/123735#issuecomment-2078695590))
2024-04-26 06:10:58 +00:00
Edward Z. Yang
87bec7db4e Refactor all top level usages of record_shapeenv_event to ShapeEnv class (#123735)
This ensures that first argument to record_shapeenv_event is a ShapeEnv
so we can appropriately short circuit when recording is not in progress.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123735
Approved by: https://github.com/ysiraichi, https://github.com/zou3519, https://github.com/albanD
ghstack dependencies: #124310, #124314, #124316, #124394, #124739, #124782, #124785
2024-04-25 14:02:48 +00:00
Edward Z. Yang
852111e1c2 [TORCH_TRACE] Record stack when no compile context is available (#122644)
This will help me track down those annoying unknown compile products.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122644
Approved by: https://github.com/jamesjwu
2024-03-26 19:30:52 +00:00
Edward Z. Yang
2f064d895c Switch TORCH_TRACE to accept a directory by default (#121331)
Directory is better because it works smoothly with distributed
runs; otherwise you'd need to modify torchrun to setup distinct
log names for each file.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Differential Revision: [D54597814](https://our.internmc.facebook.com/intern/diff/D54597814)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121331
Approved by: https://github.com/albanD
2024-03-06 22:46:18 +00:00
Edward Yang
02a410ee12 Enable TORCH_TRACE by default in all Tupperware like environments (#120915)
Summary:
This is a reimplemented version of the FB specific code in https://www.internalfb.com/diff/D54230697

The new strategy is that we unconditionally install an FB handler to trace_log logger (and always set level to DEBUG). When the first log message is emitted, we check the JK/filesystem to see if we should actually do logging. If we decide we don't do logging, we remove the handler from trace_log and are done.

build_only[github-export-checks,executorch,pytorch_benchmark,pytorch_quantization,pytorch_distributed,pytorch_distributed_gpu,pytorch_dynamo_inductor,pytorch_functorch,pytorch_fx2trt,pytorch_diff_train_tests_ads,glow_fb_pytorch_tests,training_platform,training_platform_compatibility,training_toolkit_applications,training_toolkit_examples,training_toolkit_model_optimization,dper3_pytorch,xplat_caffe2,pytorch_dev,android-pytorch-instrumentation-tests,smartpytorchgithub_first_try_merge,frl-target-determinator,f6-buck,training_platform_for_github,sigmoid_cpu,sigmoid_gpu,aiplatform_modelprocessing_for_github,accelerators_workloads_models_slimdsnn,ae_aotinductor_benchmark_test,aps_,aps_deterministic_ne_tests,dper_lib_silvertorch,torchrec,torchrec_fb,deeplearning_aot_inductor]

Test Plan:
sandcastle

```
buck2 test 'fbcode//mode/dev-nosan' fbcode//torchrec/inference/tests:test_single_gpu_executor -- --exact 'torchrec/inference/tests:test_single_gpu_executor - TorchDeployGPUTest.NestedModelSingleGPU'
buck2 test 'fbcode//mode/dev-nosan' fbcode//dper_lib/silvertorch/modules/dynamic_stats/tests:accumulators_test -- --exact 'dper_lib/silvertorch/modules/dynamic_stats/tests:accumulators_test - test_global_fixed_interval_accumulator (dper_lib.silvertorch.modules.dynamic_stats.tests.accumulators_test.GlobalFixedIntervalUnivalentAcculumatorTest)'
```

Also running a test flow with/without JK enabled

Differential Revision: D54275086

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120915
Approved by: https://github.com/yanboliang
2024-03-01 04:47:13 +00:00
Jason Ansel
184e815c74 Add TORCH_LOGS_FORMAT=short alias (#120757)
Shorthand for `"%(levelname)s:%(name)s:%(message)s"` which is hard to
remember.

I find the default formatter annoying since just the metadata fills up
most of the width of my terminal.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120757
Approved by: https://github.com/ezyang
2024-02-28 04:40:48 +00:00
Edward Z. Yang
1a1fc1047d Add structured trace logs (#120289)
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit

How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.

https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
ghstack dependencies: #120712
2024-02-28 01:01:41 +00:00
PyTorch MergeBot
f3dd2a544c Revert "Add structured trace logs (#120289)"
This reverts commit 9dfaef962c.

Reverted https://github.com/pytorch/pytorch/pull/120289 on behalf of https://github.com/kit1980 due to breaking internal builds, see D54230697 ([comment](https://github.com/pytorch/pytorch/pull/120289#issuecomment-1967477120))
2024-02-27 19:49:05 +00:00
Edward Z. Yang
237773132d Restore artifact name in log messages (#120671)
Yuzhen Huang was complaining to me that searching for `__recompile`
no longer works.  This is because the glog format is filename, not
logger name, so we lost the artifact name.  Add it back.

Looks like:

```
V0226 15:56:04.142000 139828992779264 torch/_dynamo/guards.py:1084] [0/2] __guards: ___check_type_id(L['inputs'], 7626144)
```

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120671
Approved by: https://github.com/Skylion007
2024-02-27 03:37:11 +00:00
Edward Z. Yang
9dfaef962c Add structured trace logs (#120289)
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit

How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). There's a teensy bit of FB specific code to automatically enable trace logging if a /logs directory exists. `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.

https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.

Testing that the fbcode detection works at https://www.internalfb.com/mlhub/pipelines/runs/fblearner/534553450 (Meta-only)

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
2024-02-27 00:04:23 +00:00
Edward Z. Yang
fbe8e0f92d Fix missing right square bracket to match glog format (#119966)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119966
Approved by: https://github.com/oulgen
ghstack dependencies: #119869
2024-02-16 15:14:00 +00:00
Edward Z. Yang
90f785dc34 Change default TORCH_LOGS format to match Meta/glog standard (#119869)
Before:

```
[2024-02-13 19:34:50,591] [0/0] torch._dynamo.guards.__guards: [DEBUG] GUARDS:
[2024-02-13 19:34:50,591] [0/0] torch._dynamo.guards.__guards: [DEBUG] ___check_type_id(L['x'], 70049616)                            # assert x.shape[0] > 2  # b.py:5 in f
[2024-02-13 19:34:50,592] [0/0] torch._dynamo.guards.__guards: [DEBUG] hasattr(L['x'], '_dynamo_dynamic_indices') == False           # assert x.shape[0] > 2  # b.py:5 in f
```

After this change, the logs look like this:

```
V0214 07:00:49.354000 139646045393920 torch/_dynamo/guards.py:1023 [0/0] GUARDS:
V0214 07:00:49.354000 139646045393920 torch/_dynamo/guards.py:1039 [0/0] ___check_type_id(L['x'], 70050096)                            # assert x.shape[0] > 2  # b.py:5 in f
V0214 07:00:49.355000 139646045393920 torch/_dynamo/guards.py:1039 [0/0] hasattr(L['x'], '_dynamo_dynamic_indices') == False           # assert x.shape[0] > 2  # b.py:5 in f
```

The main differences from what we had before:

* We don't print DEBUG/INFO/WARNING, instead, we only print a single character. DEBUG, somewhat oddly, maps to V, because it corresponds to glog VERBOSE
* The year is omitted, and a more compact representation for date/month is adopted. Somewhat perplexingly, six digits are allocated for the nanoseconds, even though Python typically doesn't have that level of resolution
* The thread ID is included (in a containerized environment, this thread id will be typically much lower)
* Instead of using the module name, we give a filepath, as well as the line the log message was emitted from. I think the line number is a nice touch and improvement over our old logs, but one downside is we do lose the artifact name in the log message, in case anyone was grepping for that.
* I chose to move the compile id prefix to the very end so as to keep a uniform layout before it, but I do think there are benefits to having it before the filename

Meta only: This format was reverse engineered off of 6b8bbe3b53/supervisor/logging.py and https://www.internalfb.com/code/fbsource/[e6728305a48540110f2bdba198aa74eee47290f9]/fbcode/tupperware/front_end/log_reader/filter/StreamingLogLineFilter.cpp?lines=105-114

Now, I think this may be slightly controversial, but I have chosen to apply this format *by default* in OSS. My reasoning is that many PT2 developers work with the logs in OSS, and keeping the format identical to what we run in prod will make it easier for these skills to transfer.

The non-negotiable portion of the new format is "V0213 19:28:32"; the date string is expected to be in exactly this form or Tupperware will fail to parse it as a date.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119869
Approved by: https://github.com/oulgen, https://github.com/mlazos, https://github.com/Skylion007
2024-02-14 18:56:35 +00:00
PyTorch MergeBot
458e83b5b3 Revert "Add FakeTensor support to torch._utils._rebuild_tensor (#108186)"
This reverts commit 113506d2d4.

Reverted https://github.com/pytorch/pytorch/pull/108186 on behalf of https://github.com/atalman due to Reverted Internally ([comment](https://github.com/pytorch/pytorch/pull/108186#issuecomment-1935310344))
2024-02-09 04:19:20 +00:00