Resolve#137540
Summary:
We might get different state_dict and named_parameters result when the module has registered custom state_dict_hooks.
For exported_program's state_dict, we want the state_dict to reflect the actual module hierarchy at runtime, and it might be different from the model's state_dict() output if the model has state_dict hooks.
To do weight swapping, one needs to either re-export or turn-off the hooks when saving model's state_dict().
Previously, ExportedProgram uses nn.Module's state_dict() method to populate its own state_dict, but it doesn't work for some models (e.g. llama3_3_vision) because ExportedProgram's state_dict and an nn.Module's state_dict have some subtle differences semantically.
nn.Module's state_dict is about how the state should be serialized, and it reflects the structure of the original user model code. In contrast, export specializes on a “run” of a model, and its state_dict needs to reflect the runtime module hierarchy.
One example where these two are different is TorchTune's Llama3_2_vision text decoder. Here, a FusionLayer is added as a local optimization and it is not part of the "static model definition". In runtime, we have mod.layers[3].layer.sa_norm.scale.
But in nn.Module's state_dict, the authors of the model added a state_dict hook to remove the "layer" in mod.state_dict() to reflect the static model definition, so we have mod.state_dict()["layers.3.sa_norm.scale"].
In this Diff, we change ExportedProgram to populate its state_dict using named_parameters() and named_buffers() instead. So in ExportedProgram's state_dict, we have "layers.3.layer.sa_norm.scale", which reflects the runtime module hierarchy.
Now one problem this presents is weight swapping. Since ExportedProgram's state and the model's state is not the same anymore, weight swapping procedure also needs to change slightly.
In internal Ads and RecSys models deployment, weight swapping is where they have one model that is currently being being deployed and serving traffic, and they want to swap out the weights with newly trained model weights without having to redo the whole exporting/lowering process and create a new artifact. So they would move the deployed model’s pointer to the state dict over to the new state dict. Because of this, it’s previously a requirement that the FQNs are matching between the exported and the eager model’s state dict.
The new ExportedProgram's state dict still supports weight swapping, but the state_dict to be swapped needs to be obtained from torch.export.exported_program instead of model.state_dict() if the model has state_dict hooks.
The new requirement is that the FQNs are matching between the exported’s state dict and the state_dict obtained from `_disabled_load_state_dict_hooks(M)` context manager. One benefit of having this new API is that we are now in full control within export of gathering and updating the model state.
If a model doesn't have any state_dict hooks, one can still use model.state_dict() for weight swapping, so it's BC.
Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' fbcode//caffe2/test:test_export -- -r test_export_for_training_with_state_dict_hooks
```
Differential Revision: D64080561
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137609
Approved by: https://github.com/angelayi, https://github.com/pianpwk
Summary: Fixes a couple of problems: constants didn't have metadata before creating graph signatures, and graph signatures weren't updated when lifting constants.
Test Plan: fixed test
Differential Revision: D64081786
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137547
Approved by: https://github.com/tugsbayasgalan
Summary:
When we handle dynamic shapes markers like `Dim.AUTO, Dim.DYNAMIC`, we use dynamo decorators, attaching set attributes to the export input tensors, e.g. `x._dynamo_dynamic_indices = set()`.
I thought this was fine, since it's done all the time with torch.compile, but it breaks some PT2Inference tests, specifically because unpickling a set attribute isn't possible with the C++ torch::jit::pickle_load call.
We've agreed that the PT2Inference side will clone sample inputs & pickle the original inputs to be safe, but this still establishes a nice invariant that user-facing decorators are both ignored & cleaned out in the lifecycle of an export call.
Test Plan: test_export
Differential Revision: D63773534
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137230
Approved by: https://github.com/avikchaudhuri
Removing `_transform_shapes_for_default_dynamic` and `assume_static_by_default=False` as added in https://github.com/pytorch/pytorch/pull/133620.
This reverts back to `assume_static_by_default=True` with the use of dynamo decorators (e.g. `maybe_mark_dynamic, mark_static`, instead) for handling Dim.AUTO & Dim.STATIC instead. This is easier to maintain, as it doesn't requiring reasoning about "inverting" the dynamic_shapes specs, and also opens up usage of other decorators (`mark_dynamic, mark_unbacked`).
On the user side this change has no effect, but internally this means dynamic behavior is determined only by the `dynamic_shapes` specs (ignoring user-side input decorators following https://github.com/pytorch/pytorch/pull/135536), but transferring this information for _DimHints via decorators, for Dynamo/non-strict to create symbolic_contexts accordingly, e.g. 7c6d543a5b/torch/_dynamo/variables/builder.py (L2646-L2666)
One caveat is we don't raise errors for dynamic decorators on the user side, since we don't know if they're from user markings, or from re-exporting with inputs we've previously marked.
Differential Revision: D63358628
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136591
Approved by: https://github.com/avikchaudhuri
Summary:
With empty graphs, the `graph.inserting_before(first_user_input = None)` call turns into a `graph.inserting_after(root)` call, inverting the order of constant input nodes being inserted.
This fixes the issue by initializing to the first node in the graph (still valid if not a user input - only used for insertion).
Test Plan: test_export
Differential Revision: D63403514
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136658
Approved by: https://github.com/avikchaudhuri
Currently when we deserialize inputs to nodes, we deserialize arguments with default values as kwargs. So deserializing `aten.uniform`, which has the signature `uniform(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!)`, will get become `uniform(x, from=0, to=1)`. However, this fails when running in python because `from` is a python keyword. So the solution here is to not deserialize it as a kwarg.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136036
Approved by: https://github.com/zhxchen17
Summary:
Fixes https://github.com/pytorch/pytorch/issues/134778
The previous D62304294 broke some executorch tests. It has already been reverted.
In this diff, `_collect_param_buffer_metadata()` is modified in a way that when a `call_function` node is encountered and its input nodes include `get_attr`. We skip the fields that have been collected previously and only collect rest of the fields. This prevents over-writing.
Test Plan:
```
buck2 test 'fbcode//mode/dev-nosan' fbcode//executorch/backends/xnnpack/test:test_xnnpack_ops
buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_re_export_preserve_handle
buck2 test 'fbcode//mode/dev-nosan' fbcode//caffe2/test/quantization:test_quantization -- -r test_run_decompositions_preserve_handle
```
Differential Revision: D62514208
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135720
Approved by: https://github.com/zhxchen17, https://github.com/jerryzh168
Summary:
Skip test_prepare_qat_conv_bn_fusion_getitem_placeholder when we use training ir, since it's only for bn-getitem pattern, but the pattern doesn't exist in training ir.
Remove BLOCK_LIST since it's empty.
Now all internal unittests will use training ir.
Test Plan:
```
buck2 run 'fbcode//mode/dev-nosan' caffe2/test/quantization:test_quantization -- -r test_prepare_qat_conv_bn_fusion_getitem_placeholder
buck2 run 'fbcode//mode/dev-nosan' caffe2/test:quantization_pt2e_qat -- -r test_prepare_qat_conv_bn_fusion_getitem_placeholder
```
Differential Revision: D62387987
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135729
Approved by: https://github.com/tugsbayasgalan
Summary: In general I think it will be useful to also record the global torch version in the EP, so that we can track them in the logging in addition to the schema version.
Test Plan: CI
Reviewed By: henryoier
Differential Revision: D62252626
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135243
Approved by: https://github.com/yushangdi
Adds utility functions `_dump_dynamic_shapes` and `_load_dynamic_shapes`.
- `_dump_dynamic_shapes`: dynamic shapes spec -> serialized format:
- takes in the `dynamic_shapes` pytree object you'd feed into `export()`, and dumps into serialized format
- `_load_dynamic_shapes`: serialized format -> dynamic shapes spec
- takes the serialized format, and produces a `dynamic_shapes` object you feed into `export()`
For example with dumping:
```
dx = Dim("dx", min=4, max=16)
dy = dx + 1
inputs = (
[
torch.randn(4, 4),
torch.randn(5, 4),
],
torch.randn(4),
torch.randn(4, 4),
"hello",
)
dynamic_shapes = {
"a": [
(dx, 4),
(dy, 4),
],
"b": (Dim.AUTO,),
"c": None,
"d": None,
}
out = _dump_dynamic_shapes(dynamic_shapes, inputs)
```
would generate the following output:
```
DynamicShapesSpec(
dynamic_shapes=(
[
['dx', 4],
['dx + 1', 4],
],
['_DimHint.STATIC'],
['_DimHint.STATIC', '_DimHint.STATIC'],
None,
),
dims={
'dx': RootDim(
min=4,
max=16,
derived=['dx + 1'],
),
},
)
```
The serialized format contains 2 keys, `dynamic_shapes` and `dims.`
- `dynamic_shapes` is the pytree structure matching the input to `export()`, with strings in place of Dim names and enums, and ints/Nones otherwise. Each tensor is represented with a list of shapes, non-tensors with Nones.
- `dims` contain min/max range and derived dims info for each root dim.
The test cases show some roundtrippability guarantees for these functions. Definitely taking naming suggestions for them :)
Follow up: utility function to extract serializable format from ExportedProgram.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134718
Approved by: https://github.com/avikchaudhuri
Summary:
A bit of refactoring to prepare to remove `None` as a way to specify static dimensions in dynamic shapes, given we already have `Dim.STATIC` for the same purpose. We will now warn whenever this happens. However no tests were modified because problematic uses of `None` still need to behave as they do today, until we are ready to remove support. It should be easy to port tests by replacing the warning function to raise instead.
Note that other uses of `None`, such as for entire values (tensor or non-tensor) remain as is. Moving forward this should be the only purpose of `None` (at least externally).
Finally, there's a bit of confusion in our representation now because `AUTO` also internally transforms to `None`. Renamed dynamic_shapes to transformed_dynamic_shapes where this happens. Overall the two forms (pre and post transformation) have different properties so should probably not be represented in the same format in the future.
Test Plan: existing
Differential Revision: D62040729
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134877
Approved by: https://github.com/pianpwk
Summary: When we are placing nodes in the graph, we should also replace the references in module_call_graph.
Test Plan:
buck2 run 'fbcode//mode/opt' torchrec/fb/ir/tests:test_serializer -- --filter-regex test_serialize_deserialize_vlea
buck2 test 'fbcode//mode/opt' fbcode//torchrec/fb/ir/tests:test_serializer -- --exact 'torchrec/fb/ir/tests:test_serializer - torchrec.fb.ir.tests.test_serializer.TestSerializer: test_serialize_empty_value_vlea' --run-disabled
buck2 test 'fbcode//mode/opt' fbcode//torchrec/fb/ir/tests:test_serializer -- --exact 'torchrec/fb/ir/tests:test_serializer - torchrec.fb.ir.tests.test_serializer.TestSerializer: test_deserialized_device_vle' --run-disabled
Differential Revision: D62014035
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134830
Approved by: https://github.com/angelayi
Summary: Recently https://github.com/pytorch/pytorch/pull/133620 added support for automatic dynamic shapes, where a new enum, `DIM`, was introduced to provide hints like `AUTO` and `STATIC`. This PR is a nominal change where we expose the hints via the existing public `Dim` API, and remove `DIM` from the public API. The main motivation is to avoid having users need to import too many things.
Test Plan: existing
Differential Revision: D61807361
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134484
Approved by: https://github.com/angelayi
Summary:
Today there is no good mechanism to detect progress of non-strict export line-by-line in user code. This caused some pain recently in trying to find the exact line of user code that was triggering a bug where the process appeared stuck because deep down something was calling some symbolic shapes code that was suffering some exponential blowup.
This PR adds a environment variable for extended debugging that will log the line of user code corresponding to every torch function call. It only works in non-strict export for now. Prefix setting this environment variable with `TORCH_LOGS` enabled for `export` logs at `DEBUG` level (i.e., with a `+` prefix), i.e.,.:
```
TORCHEXPORT_EXTENDED_DEBUG_CURRENT_LOC=1 TORCH_LOGS="+export" ...
```
This will show logs with something like:
```
...
prim::device called at .../example.py:4284 in foo
TensorBase.item called at .../example.py:4277 in bar
...
```
We already have an existing place to intercept torch functions where we process data-dependent errors in non-strict, so parking the logging there. An alternative place we could be doing this is where we add `stack_trace` metadata when generating code, but unfortunately at least the example that motivated this gets stuck before generating code, so that would be too late.
Test Plan: ran it on some sample commands
Differential Revision: D61692156
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134298
Approved by: https://github.com/angelayi
Starter version of automatic dynamic shapes for export.
Creates enums `DIM.AUTO`, `DIM.STATIC`, allowing user to specify `AUTO` for dims in dynamic_shapes specs, meaning that corresponding dims are treated as dynamic, and relevant guards will do what's necessary (e.g. refine ValueRanges, set replacements based on equality, or even set static) without raising ConstraintViolationErrors. Basically allows the user to say, "a bunch of these dims can be dynamic, let export do model analysis and return the program with maximum possible dynamism, without complaining".
The usage for specifying `dynamic_shapes` is now:
```
AUTO -> dynamic by default, return whatever produce_guards() says, even if it's static
None/int/STATIC -> static
Dim/DerivedDim -> same as before - will complain if the min/max range is invalid, or if dims related to this are unspecified.
```
Caveat 1: specifying `AUTO` for a dim won't guarantee it'll be dynamic:
- specifying `AUTO` for a dim will return the maximum possible dynamism given your program and other specified constraints, but this can still mean you'll get a static program. For example, with the program below, x is specified dynamic, but it's equal to y, which is specified static, and with how we currently do things we won't promote y to dynamic, but will demote(?) x to static. So this can be surprising if you don't fully know your model, and/or missed one of your other inputs when specifying auto-dynamic shapes.
```
class Foo(torch.nn.Module):
def forward(self, x, y):
return x + y
inputs = (torch.randn(6), torch.randn(6))
export(Foo(), inputs, dynamic_shapes={"x": (DIM.AUTO,), "y": None})
```
Caveat 2: specifying `AUTO` and Dims in the same spec is still problematic:
- The way Dims/DerivedDims are currently handled is very strict. A Dim represents a symbol, and we require a user to specify the symbol for all dims governed by the symbol - that's why we've seen errors in the past like `The values of x must always be related to y by ...`, asking the user to specify the exact relation as in the program. We also require the specified min/max range to be a subset of the valid range from model analysis. All this doesn't compose well with specifying `AUTO` just yet - for example in the program below, ideal behavior could be to return a dynamic program, where `dx = x.size(0) = y.size(0)` has range (3,6). Unfortunately this crashes, and correct behavior is to specify `dx` for both inputs. So currently we raise a UserError and crash if both Dims + `AUTO` are present in the spec.
```
class Foo(torch.nn.Module):
def forward(self, x, y):
return x + y
inputs = (torch.randn(6), torch.randn(6))
export(Foo(), inputs, dynamic_shapes={"x": (DIM.AUTO,), "y": {0: Dim("dx", min=3, max=6)}}) # this doesn't work, because x & y and related
```
Implementation details:
This is done by setting `assume_static_by_default=False`, and doing a transform on the `dynamic_shapes` spec to preserve semantics. `assume_static_by_default=False` will treat unspecified dims or Nones as dynamic. This is the opposite of what `export.export()` currently does - unspecified Dims/Nones are treated as static. Historically this static-by-default behavior, where the user deals with fewer guards, has been desirable, and we would like to respect that in this implementation. So this internal spec transformation is added, `_transform_shapes_for_default_dynamic()`, does the spec conversion necessary to be compatbile with dynamic by default. Specifically, AUTOs are converted into Nones, and Nones/unspecified dims are filled in with explicitly static constraints.
For example, this would look like, for a 3-d tensor: `{0: DIM.AUTO, 1: None, 2: Dim("dx")} -> {0: None, 1: 32, 2: Dim("dx")}`
This does seem overly complicated, but it's done to preserve dynamic shapes semantics for `torch._dynamo.export()`, which already uses `assume_static_by_default=False`, and follows the same process for generating shape constraints , via `_process_dynamic_shapes`. There the semantics are:
```
None/unspecified: dynamic by default
Dim/DerivedDim: also a strict assertion
```
If we don't care about BC for `_dynamo.export(dynamic_shapes)`, then we can just modify semantics for `_process_dynamic_shapes()` and change all the relevant tests in `test/dynamo/test_export.py`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133620
Approved by: https://github.com/avikchaudhuri
`nn_module_stack` was previously serialized to string by adding commas between the module_path and module_type. This error prone when the `nn_module_stack` itself contains commas.
This PR fixes this by creating a dictionary to store the `nn_module_stack` and serialize it to string via `json.dumps()`
Fixes#131941
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134049
Approved by: https://github.com/angelayi