Commit Graph

167 Commits

Author SHA1 Message Date
Maggie Moss
eb83c3ca23 Clean up unused Pyrefly suppressions (#166178)
Cleaning up ignores that are no longer needed in the repo and adding select suppressions so the main branch is clean.

test plan:
`lintrunner -a`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166178
Approved by: https://github.com/oulgen
2025-10-25 05:32:21 +00:00
mansiag05
f8fccb1e48 [Code Clean] Clean asserts in torch/optim. (#165629)
Replaces 50 assert statements across 15 files in torch.optim with explicit  if-checks raising AssertionError to prevent assertions from being disabled with Python -O flag.

fix partially #164878

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165629
Approved by: https://github.com/albanD
2025-10-23 15:56:29 +00:00
Maggie Moss
086dec3235 Pyrefly suppressions 6/n (#164877)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

Almost there!

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: delete lines in the pyrefly.toml file from the project-excludes field
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/4b3bf2037014e116bc00706a16aef199

after:

INFO 0 errors (5,064 ignored)

Only four directories left to enable

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164877
Approved by: https://github.com/oulgen
2025-10-08 02:30:57 +00:00
zeshengzong
fdc8ccc5bc Make Adam, AdamW work with nonzero-dim Tensor betas (#149939)
Fixes #147921

## Changes

- Convert tensor `betas` using `_to_scalar`
- Change annotation of `betas` param
- Change param type in docs

## Test Result

```bash
pytest -s test/test_optim.py -k test_tensor_lr -vv
```

![image](https://github.com/user-attachments/assets/312ee045-1e8b-4789-aa6e-ba63e6df7e81)

![image](https://github.com/user-attachments/assets/7e6ec274-645b-46b9-b1a6-2b340a685203)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/149939
Approved by: https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2025-10-06 22:03:25 +00:00
Maggie Moss
4ab847bbc7 Pyrefly suppressions 4/n (#164615)
Adds suppressions to pyrefly will typecheck clean: https://github.com/pytorch/pytorch/issues/163283

Test plan:
dmypy restart && python3 scripts/lintrunner.py -a
pyrefly check

step 1: uncomment lines in the pyrefly.toml file
step 2: run pyrefly check
step 3: add suppressions, clean up unused suppressions
before: https://gist.github.com/maggiemoss/356645cf8cfe33123d9a27f23b30f7b1

after:

0 errors (2,753 ignored)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/164615
Approved by: https://github.com/oulgen
2025-10-06 16:14:36 +00:00
Zeina Migeed
4f5be56612 [Pyrefly][Refactor] Replace dict() calls with literal dict syntax for improved readability (#157735)
There are 31 places that I spotted which construct literal dictionaries.

This PR refactors dictionary construction by replacing` dict(...) `calls with `literal {...}` syntax where applicable.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/157735
Approved by: https://github.com/ezyang, https://github.com/Skylion007
2025-07-08 18:10:33 +00:00
Xuehai Pan
db259bd6b8 [BE][12/16] fix typos in torch/ (#156602)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/156602
Approved by: https://github.com/justinchuby, https://github.com/albanD
ghstack dependencies: #156318, #156320
2025-07-02 22:55:29 +00:00
Tom Ritchford
e2c9d8d641 Fix non-bitwise type annotations for Tensor operators (see #145838) (#146845)
Fix https://github.com/pytorch/pytorch/issues/145838

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146845
Approved by: https://github.com/Skylion007
2025-06-24 15:41:34 +00:00
Xuehai Pan
596b418391 [BE][PYFMT] migrate PYFMT for {torch,test}/{nn,optim}/** to ruff format (#144548)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/144548
Approved by: https://github.com/ezyang
2025-06-14 11:27:04 +00:00
Isalia20
49f6cce736 [MPS] grad scaler (#150255)
Fixes #142397

Basic implementation is done. What's left:
- [x] Different dtype/device tensors in the TensorList
- [x] fast path for grouping the foreach kernel
- [x] Tests

Regarding tests, I found some tests in `test/test_torch.py` for GradScaler but I couldn't figure out what is the best way to enable the test for MPS device.

By removing `@onlyNativeDeviceTypes`, one enables the tests for MPS but also enables tests for all other devices which are not included in the native device types. If I put:
`instantiate_device_type_tests(TestTorchDeviceType, globals(), allow_mps=True)`

This enables lots of tests in that class for MPS which were not(?) being tested before? This part needs some clarification

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150255
Approved by: https://github.com/malfet

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
2025-04-06 17:06:55 +00:00
Tony-Y
78715a181f Convert Tensor lr to 0-dim as needed for the optimizer to normally work (#145674)
Fixes #145461

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145674
Approved by: https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2025-03-17 23:07:05 +00:00
PyTorch MergeBot
302f56a1f2 Revert "Fix non-bitwise type annotations for Tensor operators (see #145838) (#146845)"
This reverts commit 59b7e52ad8.

Reverted https://github.com/pytorch/pytorch/pull/146845 on behalf of https://github.com/jeanschmidt due to Seems to break a few code dependencies in multiple places ([comment](https://github.com/pytorch/pytorch/pull/146845#issuecomment-2666656834))
2025-02-18 19:01:27 +00:00
Tom Ritchford
59b7e52ad8 Fix non-bitwise type annotations for Tensor operators (see #145838) (#146845)
Fix https://github.com/pytorch/pytorch/issues/145838

Pull Request resolved: https://github.com/pytorch/pytorch/pull/146845
Approved by: https://github.com/Skylion007
2025-02-17 22:42:16 +00:00
Aaron Orenstein
0afd335174 PEP585 update - torch/nn torch/optim torch/package torch/profiler torch/serialization torch/sparse torch/xpu (#145175)
See #145101 for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145175
Approved by: https://github.com/bobrenjc93
2025-01-21 16:57:27 +00:00
PyTorch MergeBot
5fd881a5b6 Revert "PEP585 update - torch/nn torch/optim torch/package torch/profiler torch/serialization torch/sparse torch/xpu (#145175)"
This reverts commit 54a00af2c6.

Reverted https://github.com/pytorch/pytorch/pull/145175 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to break some trunk tests ([comment](https://github.com/pytorch/pytorch/pull/145175#issuecomment-2603418267))
2025-01-21 00:49:55 +00:00
Aaron Orenstein
54a00af2c6 PEP585 update - torch/nn torch/optim torch/package torch/profiler torch/serialization torch/sparse torch/xpu (#145175)
See #145101 for details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/145175
Approved by: https://github.com/bobrenjc93
2025-01-20 22:32:59 +00:00
Jane Xu
e32d2bf853 Document decoupled_weight_decay for Adam for consistency with N/RAdam (#144984)
Followup from #144972 and #143710

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144984
Approved by: https://github.com/albanD
2025-01-16 18:58:29 +00:00
Aaron Orenstein
45ef3309e3 [BE] typing for decorators (#144161)
Summary:
Untyped decorators strip annotations from the decorated items.

- _compile
- _inductor/fx_passes/post_grad
- _inductor/lowering
- _library/custom_ops
- _meta_registrations
- _ops
- _refs/nn/functional
- ao/quantization/quantizer/xnnpack_quantizer_utils
- distributed/_composable/contract
- fx/experimental/graph_gradual_typechecker
- fx/experimental/migrate_gradual_types/constraint_generator
- optim/optimizer
- signal/windows/windows
- testing/_internal/common_device_type
- torch/_inductor/decomposition
- utils/flop_counter

Test Plan: unit tests

Differential Revision: D62302684

Pull Request resolved: https://github.com/pytorch/pytorch/pull/144161
Approved by: https://github.com/Skylion007, https://github.com/albanD
2025-01-04 16:40:09 +00:00
emmettbicker
92d8965082 Adding support for differentiable lr, weight_decay, and betas in Adam/AdamW (#143726)
Third PR in a series of PRs to broaden differentiable optimizer support w/ @janeyx99 (sorry for pinging over the holidays! I just wanted to put this one out but I am definitely not asking for review or anything like that rn)

This is also going to probably be my last PR before the holidays!

Note: This is a branch of #143710 -- I've never worked on a branch of a branch before so I wasn't sure about the protocol so I thought I'd just made the PR and wait until that one gets merged.

This is adding support for differentiable lr, weight_decay, and betas to Adam and AdamW (but after refactoring AdamW into an Adam subclass, it's really just changing code in torch/optim/adam.py)

I had one main thing I was wondering about, which is that adam already has a differentiable flag built in, so I have code like this
```py
if differentiable and isinstance(beta2, Tensor):
    if beta2.requires_grad:
        exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj().mul(1 - beta2))
    else:
        exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)
else:
    exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)
```
That I could definitely simplify to just
```py
if differentiable and isinstance(beta2, Tensor):
    exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj().mul(1 - beta2))
else:
    exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj(), value=1 - beta2)
```

It would definitely be a little slower in the case that it's differentiable but doesn't need a grad for beta2, but the code would also be a lot more clear and I'm debating speed vs future code usability.

Also the line in the above example:
```py
exp_avg_sq.mul_(beta2).addcmul_(grad, grad.conj().mul(1 - beta2))
```
was concerning to me because it is considerably more expensive than `value=1 - beta2`, but I couldn't think of a better way to do it.

Further work on #141832

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143726
Approved by: https://github.com/janeyx99
2024-12-30 01:11:57 +00:00
emmettbicker
6ccb8ed186 Refactor AdamW into Adam (heavily inspired by tfsingh) (#143710)
Fixes #104899

Refactors AdamW into Adam by making AdamW a subclass of Adam. Additionally adds a test to assert that the added parameter `decoupled_weight_decay` is True in AdamW and also updates test_defaults_changed_to_foreach to account for the differences in module location for AdamW.

Heavily heavily inspired by #118857 by @tfsingh

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143710
Approved by: https://github.com/janeyx99
2024-12-23 23:27:28 +00:00
Tony-Y
61a835ec53 Corrected description of AMSGrad algorithm (#142351)
Fixes #142323

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142351
Approved by: https://github.com/janeyx99
2024-12-19 16:24:19 +00:00
Xuehai Pan
e1196dfe51 Deprecate torch._utils.is_compiling() (#127690)
This PR is split from PR #126898.

- #126898

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127690
Approved by: https://github.com/Skylion007, https://github.com/malfet
2024-12-08 22:55:36 +00:00
UV
7597ab6370 Corrected AMSGrad max equation in Adam and AdamW (#142051)
Fixes #142041

Pull Request resolved: https://github.com/pytorch/pytorch/pull/142051
Approved by: https://github.com/janeyx99
2024-12-06 21:55:26 +00:00
Michael Lazos
1fd4757fdc Support tensor betas in Adam and AdamW (#134171)
Adds support for beta1 and beta2 to be wrapped in tensor for Adam and AdamW.

Fixes https://github.com/pytorch/pytorch/issues/133898

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134171
Approved by: https://github.com/janeyx99
2024-11-15 21:55:55 +00:00
PyTorch MergeBot
1d28b8b6d5 Revert "Deprecate torch._utils.is_compiling() and torch._dynamo.external_utils.is_compiling() (#127690)"
This reverts commit e84d1121ad.

Reverted https://github.com/pytorch/pytorch/pull/127690 on behalf of https://github.com/ZainRizvi due to Sorry but this is breaking internally. More details in D65483292 ([comment](https://github.com/pytorch/pytorch/pull/127690#issuecomment-2458381056))
2024-11-05 23:10:38 +00:00
Xuehai Pan
e84d1121ad Deprecate torch._utils.is_compiling() and torch._dynamo.external_utils.is_compiling() (#127690)
This PR is split from PR #126898.

- #126898

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127690
Approved by: https://github.com/Skylion007, https://github.com/malfet
2024-11-05 10:44:56 +00:00
ErezYosef
197601eeea Add Support for Tracking Parameter Names (named_parameters) in Optimizer State Dict (#134107)
A proposal addressing Issue #1489: **Optimizer should track parameter names and not id.**

(also mentioned in here: [[RFC] Introducing FQNs/clarity eyeglasses to optim state_dict](https://dev-discuss.pytorch.org/t/rfc-introducing-fqns-clarity-to-optim-state-dict/1552)

## Summary
This PR introduces a backward-compatible enhancement where optimizers track parameter names instead of just their id.
Optimizers can be initialized with `named_parameters()` as:
```python
optimizer = optim.SGD(model.named_parameters(), lr=0.01, momentum=0.9)
```
This allows for greater clarity and ease when handling optimizers, as the parameters' names are preserved within the optimizer’s `state_dict` as:
```
state_dict =
{
    'state': {
    0: {'momentum_buffer': tensor(...), ...},
    1: {'momentum_buffer': tensor(...), ...},
    },
    'param_groups': [
        {
        'lr': 0.01,
        'weight_decay': 0,
        ...
        'params': [0,1]
        'param_names' ['layer.weight', 'layer.bias']  (optional)
        }
    ]
}
```
Loading `state_dict` is not changed (backward-compatible) and the `param_names` key will be ignored.

## Key Features
#### Named Parameters in Optimizer Initialization:
Optimizers can accept the output of `model.named_parameters()` during initialization, allowing them to store parameter names directly.
#### Parameter Names in `state_dict`:
The parameter names are saved as a list in the optimizer’s `state_dict` with key `param_names`, alongside the `params` indices, ensuring seamless tracking of both names and parameters.

## Backward Compatibility
#### No Breaking Changes:
This change is fully backward-compatible. The added `param_names` key in the optimizer's `state_dict` is ignored when loading a state to the optimizer.

#### Customization with Hooks:
For more control, the loaded state_dict can be modified using a custom `register_load_state_dict_pre_hook`, providing flexibility for different design needs.

## Documentation Updates
Please refer to the documentation changes for more details on how this feature is implemented and how it can be used effectively.

## Solution Example:

A suggested solution to the problem mentioned in #1489, for the same parameters but in a different order.
The following `register_load_state_dict_pre_hook` should be added to the optimizer before loading to enable loading the state dict :
```python
def adapt_state_dict_ids(optimizer, state_dict):
    # assuming a single param group.
    current_state_group = optimizer.state_dict()['param_groups'][0]
    loaded_state_group = state_dict['param_groups'][0]

    # same number of params, same names, only different ordering
    current_state_name_to_id_mapping = {}  # mapping --  param_name: id
    for i, name in enumerate(current_state_group['param_names']):
        current_state_name_to_id_mapping[name] = current_state_group['params'][i]

    # changing the ids of the loaded state dict to match the order of the given state dict.
    for i, name in enumerate(current_state_group['param_names']):
        loaded_state_group['params'][i] = current_state_name_to_id_mapping[name]

    return state_dict
```
In this code, the loaded `state_dict` ids are adapted to match the order of the current optimizer `state_dict`.
Both the previous and the current optimizers are required to be initiated with `named_parameters()` to have the 'param_names' key in the dict.

### Note
This is my first contribution to PyTorch, and I wish to receive feedback or suggestions for improvement.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/134107
Approved by: https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2024-10-14 19:24:44 +00:00
Sunishchal Dev
a8ed873ba2 Add missing input "eps" to adam docs (#135191)
Minor fix for missing input argument in the Adam optimizer docs page.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135191
Approved by: https://github.com/janeyx99
2024-09-25 20:17:23 +00:00
Masaki Kozuki
702c810780 move param's device check to _init_group for fused (#131153)
There could be some cases where the params have the meta device when calling optimizer's dunder init and those params are materialized in the first computation. This change would allow such situation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131153
Approved by: https://github.com/mlazos, https://github.com/janeyx99

Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
2024-08-17 04:49:47 +00:00
Jane Xu
14750dd737 Correct return type of grouping helper function in Optimizer (#133360)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133360
Approved by: https://github.com/albanD
2024-08-14 01:56:02 +00:00
PyTorch MergeBot
cbee9c1fd2 Revert "Deprecate torch._utils.is_compiling() and torch._dynamo.external_utils.is_compiling() (#127690)"
This reverts commit 0e7e61f7ce.

Reverted https://github.com/pytorch/pytorch/pull/127690 on behalf of https://github.com/kit1980 due to breaking internal builds ([comment](https://github.com/pytorch/pytorch/pull/127690#issuecomment-2272370386))
2024-08-07 00:05:20 +00:00
Xuehai Pan
0e7e61f7ce Deprecate torch._utils.is_compiling() and torch._dynamo.external_utils.is_compiling() (#127690)
This PR is split from PR #126898.

- #126898

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127690
Approved by: https://github.com/Skylion007, https://github.com/malfet
2024-08-03 09:43:38 +00:00
Xuehai Pan
30293319a8 [BE][Easy][19/19] enforce style for empty lines in import segments in torch/[o-z]*/ (#129771)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129771
Approved by: https://github.com/justinchuby, https://github.com/janeyx99
2024-08-01 17:07:14 +00:00
Jane Xu
3816f6420a [BE] remove unnecessary _dispatch_sqrt by using ** 0.5 (#131358)
Based on the discussion here where ** 0.5 is not slower than math.sqrt. https://github.com/pytorch/pytorch/pull/129905#discussion_r1675605075

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131358
Approved by: https://github.com/albanD
2024-07-30 18:08:17 +00:00
PyTorch MergeBot
e4db5dc1c4 Revert "[BE] remove unnecessary _dispatch_sqrt by using ** 0.5 (#131358)"
This reverts commit 4c7f22dee2.

Reverted https://github.com/pytorch/pytorch/pull/131358 on behalf of https://github.com/janeyx99 due to Internal uses this private API and landing that has been a pain so we're reverting this first ([comment](https://github.com/pytorch/pytorch/pull/131358#issuecomment-2253190654))
2024-07-26 17:35:27 +00:00
PyTorch MergeBot
c9888c2739 Revert "[BE] typing for decorators - optim/optimizer (#131583)"
This reverts commit a1dad77dfa.

Reverted https://github.com/pytorch/pytorch/pull/131583 on behalf of https://github.com/atalman due to Breaks CI: [GH job link](https://github.com/pytorch/pytorch/actions/runs/10105959146/job/27947741162) [HUD commit link](a1dad77dfa) ([comment](https://github.com/pytorch/pytorch/pull/131583#issuecomment-2252784280))
2024-07-26 13:41:22 +00:00
Aaron Orenstein
a1dad77dfa [BE] typing for decorators - optim/optimizer (#131583)
See #131429
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131583
Approved by: https://github.com/janeyx99
ghstack dependencies: #131568, #131569, #131570, #131571, #131572, #131573, #131574, #131575, #131576, #131577, #131578, #131579, #131580, #131581, #131582
2024-07-26 05:00:07 +00:00
Jane Xu
4c7f22dee2 [BE] remove unnecessary _dispatch_sqrt by using ** 0.5 (#131358)
Based on the discussion here where ** 0.5 is not slower than math.sqrt. https://github.com/pytorch/pytorch/pull/129905#discussion_r1675605075

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131358
Approved by: https://github.com/albanD
2024-07-24 14:58:57 +00:00
hxwang
276b5238ef [bug] Add is_compiling check for optimizers to avoid untracked tensor during graph tracing (#130909)
Hey folks, I was using the `stateless_func` [here](7c45476d38/torch/distributed/_spmd/api.py (L435)), which worked well before [this commit](https://github.com/pytorch/pytorch/pull/111084) but then introduced a `_tensor_constant0` and made this func non-stateless. Since there is no way to retrieve this constant tensor before compilation and performance is not an issue when tracing a graph, I think it might be good to fall back to the other branch.
![image](https://github.com/user-attachments/assets/6ee4487d-456b-47e0-8c1d-66cb5a641d47)

![image](https://github.com/user-attachments/assets/1ed46502-e50e-45c4-9751-49aa5a4590ae)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130909
Approved by: https://github.com/mlazos
2024-07-24 08:29:27 +00:00
Aaron Orenstein
5a0068cc69 [BE] mypy: disallow untyped decorators (#131428)
Untyped decorators strip the types from their decorated function so even if the underlying function is fully typed then callers to it don't get any benefit from type annotations.

Step 1 - Enable the error and override in all the offending files.

#131429

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131428
Approved by: https://github.com/justinchuby, https://github.com/oulgen
2024-07-23 21:50:55 +00:00
Li-Huai (Allan) Lin
99d9b369f4 [Optim] Support tensor lr for all optimizers and check it is 1-element (#131065)
Fixes: #130980
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131065
Approved by: https://github.com/janeyx99
2024-07-23 04:27:05 +00:00
Li-Huai (Allan) Lin
8ec5ba960f [MPS] Add tensor_lr overloads to fused adam & adamw (#129451)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129451
Approved by: https://github.com/janeyx99
2024-07-02 19:46:30 +00:00
Li-Huai (Allan) Lin
9a7e2519d3 [MPS] Fused Adam & AdamW (#127242)
Summary:

This PR adds fused Adam and AdamW implementations.

Benchmark on Macbook Pro with M1 Max chip and 64GB unified memory:
**Fast math enabled:**
```
[---------------------------------------------- Fused Adam ----------------------------------------------]
                                                                           |  Fused: True  |  Fused: False
1 threads: -----------------------------------------------------------------------------------------------
      amsgrad: True, adamWflag: True, numel: 1024, num_tensors: 100        |       10      |       100
      amsgrad: False, adamWflag: True, numel: 1024, num_tensors: 100       |        9      |        89
      amsgrad: True, adamWflag: False, numel: 1024, num_tensors: 100       |        9      |        90
      amsgrad: False, adamWflag: False, numel: 1024, num_tensors: 100      |        9      |        83
      amsgrad: True, adamWflag: True, numel: 65536, num_tensors: 100       |       12      |        94
      amsgrad: False, adamWflag: True, numel: 65536, num_tensors: 100      |       11      |        88
      amsgrad: True, adamWflag: False, numel: 65536, num_tensors: 100      |       12      |        90
      amsgrad: False, adamWflag: False, numel: 65536, num_tensors: 100     |       11      |       100
      amsgrad: True, adamWflag: True, numel: 1048576, num_tensors: 100     |       27      |       100
      amsgrad: False, adamWflag: True, numel: 1048576, num_tensors: 100    |       23      |       100
      amsgrad: True, adamWflag: False, numel: 1048576, num_tensors: 100    |       27      |       100
      amsgrad: False, adamWflag: False, numel: 1048576, num_tensors: 100   |       23      |        98
      amsgrad: True, adamWflag: True, numel: 1024, num_tensors: 500        |       82      |       480
      amsgrad: False, adamWflag: True, numel: 1024, num_tensors: 500       |       72      |       450
      amsgrad: True, adamWflag: False, numel: 1024, num_tensors: 500       |       82      |       450
      amsgrad: False, adamWflag: False, numel: 1024, num_tensors: 500      |       73      |       420
      amsgrad: True, adamWflag: True, numel: 65536, num_tensors: 500       |       91      |       500
      amsgrad: False, adamWflag: True, numel: 65536, num_tensors: 500      |       83      |       400
      amsgrad: True, adamWflag: False, numel: 65536, num_tensors: 500      |       94      |       500
      amsgrad: False, adamWflag: False, numel: 65536, num_tensors: 500     |       78      |       400
      amsgrad: True, adamWflag: True, numel: 1048576, num_tensors: 500     |      170      |       500
      amsgrad: False, adamWflag: True, numel: 1048576, num_tensors: 500    |      140      |       600
      amsgrad: True, adamWflag: False, numel: 1048576, num_tensors: 500    |      170      |       600
      amsgrad: False, adamWflag: False, numel: 1048576, num_tensors: 500   |      140      |       500
      amsgrad: True, adamWflag: True, numel: 1024, num_tensors: 1000       |      250      |       890
      amsgrad: False, adamWflag: True, numel: 1024, num_tensors: 1000      |      220      |       850
      amsgrad: True, adamWflag: False, numel: 1024, num_tensors: 1000      |      250      |       830
      amsgrad: False, adamWflag: False, numel: 1024, num_tensors: 1000     |      220      |       770
      amsgrad: True, adamWflag: True, numel: 65536, num_tensors: 1000      |      270      |       870
      amsgrad: False, adamWflag: True, numel: 65536, num_tensors: 1000     |      230      |       840
      amsgrad: True, adamWflag: False, numel: 65536, num_tensors: 1000     |      270      |       810
      amsgrad: False, adamWflag: False, numel: 65536, num_tensors: 1000    |      240      |       800
      amsgrad: True, adamWflag: True, numel: 1048576, num_tensors: 1000    |      400      |      1000
      amsgrad: False, adamWflag: True, numel: 1048576, num_tensors: 1000   |      360      |      2000
      amsgrad: True, adamWflag: False, numel: 1048576, num_tensors: 1000   |      430      |      2000
      amsgrad: False, adamWflag: False, numel: 1048576, num_tensors: 1000  |      360      |      1300

Times are in milliseconds (ms).
```

**Fast math disabled:**
```
[---------------------------------------------- Fused Adam ----------------------------------------------]
                                                                           |  Fused: True  |  Fused: False
1 threads: -----------------------------------------------------------------------------------------------
      amsgrad: True, adamWflag: True, numel: 1024, num_tensors: 100        |       10      |       100
      amsgrad: False, adamWflag: True, numel: 1024, num_tensors: 100       |        9      |        84
      amsgrad: True, adamWflag: False, numel: 1024, num_tensors: 100       |        9      |        84
      amsgrad: False, adamWflag: False, numel: 1024, num_tensors: 100      |        9      |        79
      amsgrad: True, adamWflag: True, numel: 65536, num_tensors: 100       |       11      |        93
      amsgrad: False, adamWflag: True, numel: 65536, num_tensors: 100      |       10      |        90
      amsgrad: True, adamWflag: False, numel: 65536, num_tensors: 100      |       11      |        91
      amsgrad: False, adamWflag: False, numel: 65536, num_tensors: 100     |       11      |        81
      amsgrad: True, adamWflag: True, numel: 1048576, num_tensors: 100     |       34      |       100
      amsgrad: False, adamWflag: True, numel: 1048576, num_tensors: 100    |       31      |       100
      amsgrad: True, adamWflag: False, numel: 1048576, num_tensors: 100    |       34      |        95
      amsgrad: False, adamWflag: False, numel: 1048576, num_tensors: 100   |       31      |       100
      amsgrad: True, adamWflag: True, numel: 1024, num_tensors: 500        |       94      |       500
      amsgrad: False, adamWflag: True, numel: 1024, num_tensors: 500       |       82      |       430
      amsgrad: True, adamWflag: False, numel: 1024, num_tensors: 500       |       92      |       430
      amsgrad: False, adamWflag: False, numel: 1024, num_tensors: 500      |       81      |       390
      amsgrad: True, adamWflag: True, numel: 65536, num_tensors: 500       |       98      |       500
      amsgrad: False, adamWflag: True, numel: 65536, num_tensors: 500      |       88      |       430
      amsgrad: True, adamWflag: False, numel: 65536, num_tensors: 500      |      100      |       500
      amsgrad: False, adamWflag: False, numel: 65536, num_tensors: 500     |       88      |       400
      amsgrad: True, adamWflag: True, numel: 1048576, num_tensors: 500     |      210      |       500
      amsgrad: False, adamWflag: True, numel: 1048576, num_tensors: 500    |      190      |       610
      amsgrad: True, adamWflag: False, numel: 1048576, num_tensors: 500    |      210      |       510
      amsgrad: False, adamWflag: False, numel: 1048576, num_tensors: 500   |      190      |       500
      amsgrad: True, adamWflag: True, numel: 1024, num_tensors: 1000       |      300      |       900
      amsgrad: False, adamWflag: True, numel: 1024, num_tensors: 1000      |      260      |       850
      amsgrad: True, adamWflag: False, numel: 1024, num_tensors: 1000      |      295      |       900
      amsgrad: False, adamWflag: False, numel: 1024, num_tensors: 1000     |      260      |       800
      amsgrad: True, adamWflag: True, numel: 65536, num_tensors: 1000      |      320      |       910
      amsgrad: False, adamWflag: True, numel: 65536, num_tensors: 1000     |      280      |       900
      amsgrad: True, adamWflag: False, numel: 65536, num_tensors: 1000     |      320      |       900
      amsgrad: False, adamWflag: False, numel: 65536, num_tensors: 1000    |      300      |       900
      amsgrad: True, adamWflag: True, numel: 1048576, num_tensors: 1000    |      500      |      2000
      amsgrad: False, adamWflag: True, numel: 1048576, num_tensors: 1000   |      480      |      2000
      amsgrad: True, adamWflag: False, numel: 1048576, num_tensors: 1000   |      540      |      1500
      amsgrad: False, adamWflag: False, numel: 1048576, num_tensors: 1000  |      480      |      1200

Times are in milliseconds (ms).
```

```python
def profile_fused_adam():
    from torch.optim import adam, adamw
    import torch.utils.benchmark as benchmark

    import itertools

    def profile(fn, params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, amsgrad, fused):
        fn(
            params,
            grads,
            exp_avgs,
            exp_avg_sqs,
            max_exp_avg_sqs,
            state_steps,
            foreach=False,
            capturable=False,
            fused=fused,
            amsgrad=amsgrad,
            beta1=0.9,
            beta2=0.99,
            lr=1e-3,
            weight_decay=.0,
            eps=1e-5,
            maximize=False,
            grad_scale=None,
            found_inf=None,
        )
        torch.mps.synchronize()

    device = "mps"

    results = []

    for num_tensors, numel, adamWflag, amsgrad in itertools.product([100, 500, 1000], [1024, 65536, 1048576], [True, False], [True, False]):
        print(f"amsgrad: {amsgrad}, adamWflag: {adamWflag}, numel: {numel}, num_tensors: {num_tensors}")
        params, grads, exp_avgs, exp_avg_sqs = [[torch.arange(numel, dtype=torch.float32, device=device) + (numel * i) for i in range(num_tensors)] for _ in range(4)]
        max_exp_avg_sqs = [torch.arange(numel, dtype=torch.float32, device=device) for _ in range(num_tensors)] if amsgrad else []
        state_steps = [torch.tensor([5], dtype=torch.float32, device=device) for _ in range(num_tensors)]
        if adamWflag:
            fn = adamw.adamw
        else:
            fn = adam.adam

        for fused in [True, False]:

            t = benchmark.Timer(
                    stmt='profile(fn, params, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps, amsgrad, fused)',
                    label='Fused Adam',
                    sub_label=f"amsgrad: {amsgrad}, adamWflag: {adamWflag}, numel: {numel}, num_tensors: {num_tensors}",
                    globals=locals(),
                    description= f"Fused: {fused}",
                ).blocked_autorange(min_run_time=5)
            results.append(t)

    compare = benchmark.Compare(results)
    compare.trim_significant_figures()
    compare.colorize(rowwise=True)
    compare.print()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127242
Approved by: https://github.com/kulinseth, https://github.com/janeyx99
2024-06-18 19:59:50 +00:00
PyTorch MergeBot
90bb510ece Revert "Deprecate torch._utils.is_compiling() and torch._dynamo.external_utils.is_compiling() (#127690)"
This reverts commit 348b181a97.

Reverted https://github.com/pytorch/pytorch/pull/127690 on behalf of https://github.com/clee2000 due to sorry I think https://github.com/pytorch/pytorch/pull/126898#issuecomment-2142884456 is still relevant, I will reach out to them to see what needs to be done in internal to get this remerged ([comment](https://github.com/pytorch/pytorch/pull/127690#issuecomment-2159248859))
2024-06-10 20:44:42 +00:00
Aaron Orenstein
27f9d3b0a1 Flip default value for mypy disallow_untyped_defs [8/11] (#127845)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127845
Approved by: https://github.com/oulgen
ghstack dependencies: #127842, #127843, #127844
2024-06-08 18:49:56 +00:00
Xuehai Pan
348b181a97 Deprecate torch._utils.is_compiling() and torch._dynamo.external_utils.is_compiling() (#127690)
This PR is split from PR #126898.

- #126898

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127690
Approved by: https://github.com/Skylion007
2024-06-08 15:25:03 +00:00
PyTorch MergeBot
033e733021 Revert "[BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)"
This reverts commit 749a132fb0.

Reverted https://github.com/pytorch/pytorch/pull/126898 on behalf of https://github.com/fbgheith due to switching typing-extensions=4.3.0 to 4.9.0 causes internal failure ([comment](https://github.com/pytorch/pytorch/pull/126898#issuecomment-2142884456))
2024-05-31 19:47:24 +00:00
Xuehai Pan
749a132fb0 [BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.

Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.

UPDATE: Use `FutureWarning` instead of `DeprecationWarning`.

Resolves #126888

- #126888

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126898
Approved by: https://github.com/albanD
2024-05-29 12:09:27 +00:00
David Chiu
1a28f731dc [optim] Merge the pyi files into py files of optimizer (#125452)
Continue the work of pytorch/pytorch#125153
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125452
Approved by: https://github.com/janeyx99
2024-05-14 18:24:50 +00:00
daitian1995
b805d3cbcb Modify device check in capturable optimizer to support more devices (#124919)
Fixes #124830

Modify device check in capturable optimizer to support more device

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124919
Approved by: https://github.com/janeyx99
2024-05-14 05:56:00 +00:00