Summary:
The error for `test_error_stack_module`:
```
Traceback (most recent call last):
File "../test.py", line 35, in <module>
scripted = torch.jit.script(M())
File "/home/davidriazati/other/pytorch/torch/jit/__init__.py", line 1119, in script
return _convert_to_script_module(obj)
File "/home/davidriazati/other/pytorch/torch/jit/__init__.py", line 1825, in _convert_to_script_module
raise e
RuntimeError:
d(int x) -> int:
Expected a value of type 'int' for argument 'x' but instead found type 'str'.
:
at ../test.py:11:12
def c(x):
return d("hello") + d(x)
~ <--- HERE
'c' is being compiled since it was called from 'b'
at ../test.py:14:12
def b(x):
return c(x)
~~~ <--- HERE
'b' is being compiled since it was called from 'forward'
at ../test.py:22:16
def forward(self, x):
return b(x)
~~~ <--- HERE
'forward' is being compiled since it was called from 'forward'
at ../test.py:31:20
def forward(self, x):
return x + self.submodule(x)
~~~~~~~~~~~~~~~~ <--- HERE
```
This also unifies our error reporting in the front end with `ErrorReport`
TODO
* Include module names in message, #22207 should make this easy
](https://our.intern.facebook.com/intern/diff/16060781/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22280
Pulled By: driazati
Differential Revision: D16060781
fbshipit-source-id: c42968b53aaddb774ac69d5abbf7e60c23df8eed
Summary:
The code in `python_sugared_value.cpp` to recursively compile methods
was not being tested, so this adds a test for it and fixes some errors
in it
It was necessary to disable any hooks set since (at least in our tests) they would try to export
a half-finished graph since they were being called on recursively
compiled methods
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21862
Differential Revision: D15860314
Pulled By: driazati
fbshipit-source-id: e8afe9d4c75c345b6e1471072d67c5e335b61337
Summary:
Resolves https://github.com/pytorch/lockdown/issues/18
This implements NamedTuple by taking advantage of the existing `names` field in `TupleType`.
TODO: This currently doesn't retain the NamedTuple-ness through serialization. Discussed with suo offline, we can probably make a way to define an anonymous NamedTuple in script (e.g. `NamedTuple('Foo', [('a', int), ('b', float), ('c', List[float])])` and serialize that
TODO: implement support for calling the constructor with kwargs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21428
Differential Revision: D15741564
Pulled By: jamesr66a
fbshipit-source-id: c077cbcea1880675ca6deb340a9ec78f824a136c
Summary:
- [x] Add tests after https://github.com/pytorch/pytorch/pull/20256 is merged
- Support exporting ScriptModule with inputs/outputs of arbitrarily constructed tuples.
- Moved the assigning of output shapes to after graph conversion to ONNX is completed. By then all tuples in the IR has already been lowered by the pass ```_jit_pass_lower_all_tuples```. If assigning output shapes is required to happen before that, we'll need to hand parse the tuple structures in the graph, and repeat the same logic in ```_jit_pass_lower_all_tuples```. Handling inputs is easier because all tuple information is encoded within the input tensor type.
- Swap the order of ```_jit_pass_lower_all_tuples``` and ```_jit_pass_erase_number_types```. Ops like ```prim::TupleIndex``` relies on index being a scalar. ```_jit_pass_erase_number_types``` will convert these kind of scalars to tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20784
Reviewed By: zrphercule
Differential Revision: D15484171
Pulled By: houseroad
fbshipit-source-id: 4767a84038244c929f5662758047af6cb92228d3
Summary:
This makes file-line reporting also work for things loaded using `torch.jit.load()` as well as the string frontend (via `CompilationUnit`)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21217
Differential Revision: D15590838
Pulled By: jamesr66a
fbshipit-source-id: 6b6a12574bf9eca0b83f24f0b50535fda5863243
Summary:
Following on #19747, this implements most of the `torch.jit.script()` changes laid out in #20939.
Still to do:
* Accessing a method from Python does not add it as a `ScriptMethod` (so only `export`ed methods and `forward` are compiled)
* Calling a method other than `forward` on a submodule doesn't work
](https://our.intern.facebook.com/intern/diff/15560490/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20708
Pulled By: driazati
Differential Revision: D15560490
fbshipit-source-id: cc7ef3a1c2772eff9beba5f3e66546d2b7d7198a
Summary:
Following on #19747, this implements most of the `torch.jit.script()` changes laid out in #20939.
Still to do:
* Accessing a method from Python does not add it as a `ScriptMethod` (so only `export`ed methods and `forward` are compiled)
* Calling a method other than `forward` on a submodule doesn't work
](https://our.intern.facebook.com/intern/diff/15546045/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20708
Pulled By: driazati
Differential Revision: D15546045
fbshipit-source-id: c2c8fe179088ffbdad47198e799a456560655b86
Summary:
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#19587 [jit] Make ScriptModule.training an attribute instead of a parameter**
Remove the hack we had previously where `training` was a buffer
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19587
Differential Revision: D15502768
Pulled By: driazati
fbshipit-source-id: 3022f2d57ec6849868f9225d9bc2bfb7828cb318
Summary:
Resubmit #20698 which got messed up.
Idea is that when PyTorch is used in a custom build environment (e.g. Facebook), it's useful to track usage of various APIs centrally. This PR introduces a simple very lightweight mechanism to do so - only first invocation of a trigger point would be logged. This is significantly more lightweight than #18235 and thus we can allow to put logging in e.g. TensorImpl.
Also adds an initial list of trigger points. Trigger points are added in such a way that no static initialization triggers them, i.e. just linking with libtorch.so will not cause any logging. Further suggestions of what to log are welcomed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20745
Differential Revision: D15429196
Pulled By: dzhulgakov
fbshipit-source-id: a5e41a709a65b7ebccc6b95f93854e583cf20aca
Summary:
Fixes#20017
This wraps the `torch._C.Function` currently returned from `torch.jit.script` and `torch.jit.trace` in a `ScriptFunction` and `TracedFunction` respectively, both of which are just wrappers to hold the function.
](https://our.intern.facebook.com/intern/diff/15403161/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20386
Pulled By: driazati
Differential Revision: D15403161
fbshipit-source-id: 94fb9f32929e62a00be6cf7512ea144ec9b91e0b
Summary:
Otherwise users see something like (Tensor, Tensor)? and don't know what the ? means.
First commit is formatting.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20657
Differential Revision: D15400225
Pulled By: eellison
fbshipit-source-id: cf826790bf2ddafd34f6d5c144526cad9904770b
Summary:
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#19578 [jit] Try to script all Python functions**
This adds the `torch.jit._enable_recursive_script` context manager, which will try to compile any Python functions it sees. It's hidden behind an internal context manager for now since it's incomplete (doesn't work for script_methods/Python submodules). If it can't compile the Python function it outputs an error.
](https://our.intern.facebook.com/intern/diff/15386727/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19578
Pulled By: driazati
Differential Revision: D15386727
fbshipit-source-id: 4e308f67677b8e9fccfc525a91bb2f4585062048
Summary:
This PR adds a new trace API `trace_module` that will allow us to trace multiple methods as a part of a single `ScriptModule`
See the example below.
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Conv2d(1, 1, 3)
def forward(self, x):
return self.conv(x)
def weighted_kernel_sum(self, weight):
return weight * self.conv.weight
example_weight = torch.rand(1, 1, 3, 3)
example_forward_input = torch.rand(1, 1, 3, 3)
n = Net()
inputs = {'forward' : example_forward_input, 'weighted_kernel_sum' : example_weight}
module = torch.jit.trace_module(n, inputs)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19905
Differential Revision: D15200007
Pulled By: Krovatkin
fbshipit-source-id: 0354d973fe40cb6e58b395bd866df14e0fc29d5b