`torch.compile` now always goes through `torch._dynamo._optimize`. fullgraph is now implemented in `torch.compile` by looking at `config.error_on_graph_break`. Export still goes through `torch._dynamo._optimize_assert`, which uses `tx.one_graph` instead of `config.error_on_graph_break`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154283
Approved by: https://github.com/jansel, https://github.com/anijain2305
`torch.compile` now always goes through `torch._dynamo._optimize`. fullgraph is now implemented in `torch.compile` by looking at `config.error_on_graph_break`. Export still goes through `torch._dynamo._optimize_assert`, which uses `tx.one_graph` instead of `config.error_on_graph_break`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/154283
Approved by: https://github.com/jansel, https://github.com/anijain2305
When running a distributed job with compiler collectives enabled, if one rank recompiles while others do not, this leads to a deadlock (as not everyone will rendezvous with the compiler collective from the recompile). Although there aren't any convenient ways to cheaply solve this problem, if you are willing to force everyone to sync when evaluating guards, you can just force everyone to recompile if anyone requires a recompile. So the way guard collectives work is:
1. Perform compiled code lookup (evaluating guards)
2. Run a collective, communicating if you found a compiled code or not
3. If anyone requires recompile, force everyone to recompile
One current deficiency in the implementation is we can't conveniently track the time it takes to run this collective.
I need to test if we actually successfully are running the collective on a separate stream, or if we have to wait for user collectives to all finish.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155558
Approved by: https://github.com/Microve
When running a distributed job with compiler collectives enabled, if one rank recompiles while others do not, this leads to a deadlock (as not everyone will rendezvous with the compiler collective from the recompile). Although there aren't any convenient ways to cheaply solve this problem, if you are willing to force everyone to sync when evaluating guards, you can just force everyone to recompile if anyone requires a recompile. So the way guard collectives work is:
1. Perform compiled code lookup (evaluating guards)
2. Run a collective, communicating if you found a compiled code or not
3. If anyone requires recompile, force everyone to recompile
One current deficiency in the implementation is we can't conveniently track the time it takes to run this collective.
I need to test if we actually successfully are running the collective on a separate stream, or if we have to wait for user collectives to all finish.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/155558
Approved by: https://github.com/Microve
Implement traceable config patching for Dynamo: enables restricted patching of Dynamo config where user can use a context manager/decorator to change tracing behavior for parts of the code.
The new `dont_skip_tracing` decorator/context manager for ignoring most trace rules is easily implemented with this more generic traceable config patching feature.
Implementation:
- Create a new specialized context manager class representing a wrapper around torch._dynamo.config.patch
- Dynamo doesn't trace into the context manager but updates config at compile time
- Correctness is based on our correctness for handling supported context managers
- Implementation is inspired by how `GradModeVariable` is implemented.
Previous attempts: https://github.com/pytorch/pytorch/pull/148736 (decorator-only global approach) and https://github.com/pytorch/pytorch/pull/149439 (decorator-only traceback approach)
See https://docs.google.com/document/d/1vWNwKL_jpg-PLopifcaSa338wks3GqSVF4GHRguybGg/edit?tab=t.0 for more details on implementation - including previous approaches.
NOTE: this PR fixes a bug where skipped code objects were not tracked by convert_frame.py, leading to cases where code objects would be automatically skipped even after `torch._dynamo.reset()`. This exposed some latent dynamo-wrapped test failures in CI that previously passed in CI but not locally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150586
Approved by: https://github.com/jansel, https://github.com/zou3519, https://github.com/anijain2305
Implement traceable config patching for Dynamo: enables restricted patching of Dynamo config where user can use a context manager/decorator to change tracing behavior for parts of the code.
The new `dont_skip_tracing` decorator/context manager for ignoring most trace rules is easily implemented with this more generic traceable config patching feature.
Implementation:
- Create a new specialized context manager class representing a wrapper around torch._dynamo.config.patch
- Dynamo doesn't trace into the context manager but updates config at compile time
- Correctness is based on our correctness for handling supported context managers
- Implementation is inspired by how `GradModeVariable` is implemented.
Previous attempts: https://github.com/pytorch/pytorch/pull/148736 (decorator-only global approach) and https://github.com/pytorch/pytorch/pull/149439 (decorator-only traceback approach)
See https://docs.google.com/document/d/1vWNwKL_jpg-PLopifcaSa338wks3GqSVF4GHRguybGg/edit?tab=t.0 for more details on implementation - including previous approaches.
NOTE: this PR fixes a bug where skipped code objects were not tracked by convert_frame.py, leading to cases where code objects would be automatically skipped even after `torch._dynamo.reset()`. This exposed some latent dynamo-wrapped test failures in CI that previously passed in CI but not locally.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/150586
Approved by: https://github.com/jansel, https://github.com/zou3519, https://github.com/anijain2305
[dynamo] Deprecate enable_cpp_framelocals_guard_eval config variable - default: True
Reading the feature enabling param `enable_cpp_framelocals_guard_eval `at the CPP level is time consuming and slows down the operation of the dynamo as it is done every time the function using this param is called. Reading the value only once at init isn’t an option as it would disable the modification of this param at the runtime. Since this feature is enabled by default for some time and it doesn’t cause known issues, the `enable_cpp_framelocals_guard_eval `configuration param will be deprecated by this commit and its value is hardcoded to true.
Local microbenchmark dynamo_guard_eval.py:
- 931.9 us -> 538.9 us (3.10)
@williamwen42 @jansel @anijain2305
Pull Request resolved: https://github.com/pytorch/pytorch/pull/151008
Approved by: https://github.com/williamwen42
This patch effectively ignores traceable_tensor_subclasses, allowing
Dynamo to always try tracing into the `__torch_function__` of tensor
subclass. This helps us with 2 things:
1. allowing users to directly benefit from better compilation of tensor
subclass, by just upgrading pytorch, without having to change legacy
library code (see earlier patches in the stack for examples).
2. potentially exposing more issues in compiling tensor subclass, so we
can get signals and improve them.
As a consequence, it exposed and fixes 2 subtle bugs:
1. In `build_torch_function_fn`, we could get
`torch._C._disabled_torch_function_impl` because we have a
`Parameter` subclass without `__torch_function__` override or if we
have a tensor subclass with `__torch_dispatch__` override. We graph
break on this for now, and plan to add support -- the logic for
simulating `torch._C._disabled_torch_function_impl` is already in
`SuperVariable`, we just need to reuse it.
2. Sometimes we create `SyntheticLocalSource` and need to remove all the
guards installed on it, but we only removed the ones whose source
_is_ the created synthetic source `s`, but forgot about chained
source like `s.foo`, this showed up as
`SYNTHETIC_LOCAL['tmp_0'].__torch_function__.__func__`.
Differential Revision: [D71906141](https://our.internmc.facebook.com/intern/diff/D71906141)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149792
Approved by: https://github.com/jansel, https://github.com/mlazos
ghstack dependencies: #149482, #149483, #149484
This patch effectively ignores traceable_tensor_subclasses, allowing
Dynamo to always try tracing into the `__torch_function__` of tensor
subclass. This helps us with 2 things:
1. allowing users to directly benefit from better compilation of tensor
subclass, by just upgrading pytorch, without having to change legacy
library code (see earlier patches in the stack for examples).
2. potentially exposing more issues in compiling tensor subclass, so we
can get signals and improve them.
As a consequence, it exposed and fixes 2 subtle bugs:
1. In `build_torch_function_fn`, we could get
`torch._C._disabled_torch_function_impl` because we have a
`Parameter` subclass without `__torch_function__` override or if we
have a tensor subclass with `__torch_dispatch__` override. We graph
break on this for now, and plan to add support -- the logic for
simulating `torch._C._disabled_torch_function_impl` is already in
`SuperVariable`, we just need to reuse it.
2. Sometimes we create `SyntheticLocalSource` and need to remove all the
guards installed on it, but we only removed the ones whose source
_is_ the created synthetic source `s`, but forgot about chained
source like `s.foo`, this showed up as
`SYNTHETIC_LOCAL['tmp_0'].__torch_function__.__func__`.
Differential Revision: [D71906141](https://our.internmc.facebook.com/intern/diff/D71906141)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149792
Approved by: https://github.com/jansel, https://github.com/mlazos
ghstack dependencies: #149482, #149483, #149484
PR does following
* Turns `inference_mode` to False and `no_grad` for `convert_frame`, if the inference_mode is on globally.
* Turns off inference_mode for fake tensor prop. This ensures that converting from real inference tensor to a fake tensor removes the inference-ness.
* Graph breaks on is_inference and is_inference_mode_enabled.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/149321
Approved by: https://github.com/jansel, https://github.com/zou3519
Current implementation reads as: we will only actually use the "python_reducer" config if the DDP forward is compiled. Otherwise, we will silently fallback to C++ reducer + no DDPOptimizer.
I'm changing this behavior to always use the python reducer if the config is specified.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/147123
Approved by: https://github.com/fegin