Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51706
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50280
As mentioned in gh-43874, this adds a `rounding_mode={'true', 'trunc', 'floor'}`
argument so `torch.div` can be used as a replacement for `floor_divide` during
the transitional period.
I've included dedicated kernels for truncated and floor division which
aren't strictly necessary for float, but do perform significantly better (~2x) than
doing true division followed by a separate rounding kernel.
Note: I introduce new overloads for `aten::div` instead of just adding a default
`rounding_mode` because various JIT passes rely on the exact operator schema.
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D26123271
Pulled By: mruberry
fbshipit-source-id: 51a83717602114597ec9c4d946e35a392eb01d46
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51421
Mark memory events that did not happen within an operator context
explicitly in the profiler output.
Test Plan: python test/test_profiler.py -k test_memory_profiler
Reviewed By: ngimel
Differential Revision: D26166518
Pulled By: ilia-cher
fbshipit-source-id: 3c14d3ac25a7137733ea7cc65f0eb48693a98f5e
Summary:
Implements `np.diff` for single order differences only:
- method and function variants for `diff` and function variant for `diff_out`
- supports out variant, but not in-place since shape changes
- adds OpInfo entry, and test in `test_torch`
- automatic autograd because we are using the `Math` dispatch
_Update: we only support Tensors for prepend and append in this PR. See discussion below and comments for more details._
Currently there is a quirk in the c++ API based on how this is implemented: it is not possible to specify scalar prepend and appends without also specifying all 4 arguments.
That is because the goal is to match NumPy's diff signature of `diff(int n=1, int dim=-1, Union[Scalar, Tensor] prepend=None, Union[Scalar, Tensor] append)=None` where all arguments are optional, positional and in the correct order.
There are a couple blockers. One is c++ ambiguity. This prevents us from simply doing `diff(int n=1, int dim=-1, Scalar? prepend=None, Tensor? append=None)` etc for all combinations of {Tensor, Scalar} x {Tensor, Scalar}.
Why not have append, prepend not have default args and then write out the whole power set of {Tensor, Scalar, omitted} x {Tensor, Scalar, omitted} you might ask. Aside from having to write 18 overloads, this is actually illegal because arguments with defaults must come after arguments without defaults. This would mean having to write `diff(prepend, append, n, dim)` which is not desired. Finally writing out the entire power set of all arguments n, dim, prepend, append is out of the question because that would actually involve 2 * 2 * 3 * 3 = 36 combinations. And if we include the out variant, that would be 72 overloads!
With this in mind, the current way this is implemented is actually to still do `diff(int n=1, int dim=-1, Scalar? prepend=None, Tensor? append=None)`. But also make use of `cpp_no_default_args`. The idea is to only have one of the 4 {Tensor, Scalar} x {Tensor, Scalar} provide default arguments for the c++ api, and add `cpp_no_default_args` for the remaining 3 overloads. With this, Python api works as expected, but some calls such as `diff(prepend=1)` won't work on c++ api.
We can optionally add 18 more overloads that cover the {dim, n, no-args} x {scalar-tensor, tensor-scalar, scalar-scalar} x {out, non-out} cases for c++ api. _[edit: counting is hard - just realized this number is still wrong. We should try to count the cases we do cover instead and subtract that from the total: (2 * 2 * 3 * 3) - (3 + 2^4) = 17. 3 comes from the 3 of 4 combinations of {tensor, scalar}^2 that we declare to be `cpp_no_default_args`, and the one remaining case that has default arguments has covers 2^4 cases. So actual count is 34 additional overloads to support all possible calls]_
_[edit: thanks to https://github.com/pytorch/pytorch/issues/50767 hacky_wrapper is no longer necessary; it is removed in the latest commit]_
hacky_wrapper was also necessary here because `Tensor?` will cause dispatch to look for the `const optional<Tensor>&` schema but also generate a `const Tensor&` declaration in Functions.h. hacky_wrapper allows us to define our function as `const Tensor&` but wraps it in optional for us, so this avoids both the errors while linking and loading.
_[edit: rewrote the above to improve clarity and correct the fact that we actually need 18 more overloads (26 total), not 18 in total to complete the c++ api]_
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50569
Reviewed By: H-Huang
Differential Revision: D26176105
Pulled By: soulitzer
fbshipit-source-id: cd8e77cc2de1117c876cd71c29b312887daca33f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51354
Re-created from https://github.com/pytorch/pytorch/pull/51301 because of issues with ghstack.
This PR is part of a larger effort to ensure torch.linalg documentation is consistent (see #50287).
Updated torch.slogdet documentation to add a deprecation message in favor of torch.linalg.slogdet.
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D26148679
Pulled By: heitorschueroff
fbshipit-source-id: 4d9f3386d9ba6dc735a4d1e86cfcd88eaba3cbcc
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51460
This PR is part of a larger effort to ensure torch.linalg documentation is consistent (see #50287).
* #51459 [doc] Fix linalg.cholesky doc consistency issues
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D26176130
Pulled By: heitorschueroff
fbshipit-source-id: cc89575db69cbfd5f87d970a2e71deb6522a35b1
Summary:
**BC-breaking note:**
torch.svd() added support for complex inputs in PyTorch 1.7, but was not documented as doing so. The complex "V" tensor returned was actually the complex conjugate of what's expected. This PR fixes the discrepancy.
This will silently break all users of torch.svd() with complex inputs.
**Original PR Summary:**
This PR resolves https://github.com/pytorch/pytorch/issues/45821.
The problem was that when introducing the support of complex inputs for `torch.svd` it was overlooked that LAPACK/MAGMA returns the conjugate transpose of V matrix, not just the transpose of V. So `torch.svd` was silently returning U, S, V.conj() instead of U, S, V.
Behavior of `torch.linalg.pinv`, `torch.pinverse` and `torch.linalg.svd` (they depend on `torch.svd`) is not changed in this PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51012
Reviewed By: bdhirsh
Differential Revision: D26047593
Pulled By: albanD
fbshipit-source-id: d1e08dbc3aab9ce1150a95806ef3b5da98b5d3ca
Summary:
This PR addresses [a two-year-old TODO in `test/test_type_hints.py`](12942ea52b/test/test_type_hints.py (L21-L22)) by replacing most of the body of our custom `get_examples_from_docstring` function with [a function from Python's built-in `doctest.DocTestParser` class](https://docs.python.org/3/library/doctest.html#doctest.DocTestParser.get_examples). This mostly made the parser more strict, catching a few errors in existing doctests:
- missing `...` in multiline statements
- missing space after `>>>`
- unmatched closing parenthesis
Also, as shown by [the resulting diff of the untracked `test/generated_type_hints_smoketest.py` file](https://pastebin.com/vC5Wz6M0) (also linked from the test plan below), this introduces a few incidental changes as well:
- standalone comments are no longer preserved
- indentation is now visually correct
- [`example_torch_promote_types`](4da9ceb743/torch/_torch_docs.py (L6753-L6772)) is now present
- an example called `example_torch_tensor___array_priority__` is added, although I can't tell where it comes from
- the last nine lines of code from [`example_torch_tensor_align_as`](5d45140d68/torch/_tensor_docs.py (L386-L431)) are now present
- the previously-misformatted third line from [`example_torch_tensor_stride`](5d45140d68/torch/_tensor_docs.py (L3508-L3532)) is now present
Pull Request resolved: https://github.com/pytorch/pytorch/pull/50596
Test Plan:
Checkout the base commit, typecheck the doctests, and save the generated file:
```
$ python test/test_type_hints.py TestTypeHints.test_doc_examples
$ cp test/generated_type_hints_smoketest.py /tmp
```
Then checkout this PR, do the same thing, and compare:
```
$ python test/test_type_hints.py TestTypeHints.test_doc_examples
$ git diff --no-index {/tmp,test}/generated_type_hints_smoketest.py
```
The test should succeed, and the diff should match [this paste](https://pastebin.com/vC5Wz6M0).
Reviewed By: walterddr
Differential Revision: D25926245
Pulled By: samestep
fbshipit-source-id: 23bc379ff438420e556263c19582dba06d8e42ec
Summary:
torch.logspace doesn't seem to have explained how integers are handled.
Add some clarification and some test when dtype is integral.
The CUDA implementation is also updated to be consistent with CPU implementation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47647
Reviewed By: gchanan
Differential Revision: D25843351
Pulled By: walterddr
fbshipit-source-id: 45237574d04c56992c18766667ff1ed71be77ac3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48668
Combine tests for `fmod` and `remainder`.
## BC-breaking Note:
In order to make `remainder` operator have type promotion, we have to introduce BC breaking.
### 1.7.1:
In the case where the second argument is a python number, the result is casted to the dtype of the first argument.
```python
>>> torch.remainder(x, 1.2)
tensor([0, 0, 0, 0, 0], dtype=torch.int32)
```
### This PR:
In the case where the second argument is a python number, the dtype of result is determined by type promotion of both inputs.
```python
>>> torch.remainder(x, 1.2)
tensor([1.0000, 0.8000, 0.6000, 0.4000, 0.2000])
```
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D25869136
Pulled By: ejguan
fbshipit-source-id: 8e5e87eec605a15060f715952de140f25644008c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48278
Remove various lines from tests due to no type promotion introduced from #47323
## BC-breaking Note:
In order to make `fmod` operator have type promotion, we have to introduce BC breaking.
### 1.7.1:
In the case where the second argument is a python number, the result is casted to the dtype of the first argument.
```python
>>> torch.fmod(x, 1.2)
tensor([0, 0, 0, 0, 0], dtype=torch.int32)
```
### Prior PR:
Check the BC-breaking note of #47323
### This PR:
In the case where the second argument is a python number, the dtype of result is determined by type promotion of both inputs.
```python
>>> torch.fmod(x, 1.2)
tensor([1.0000, 0.8000, 0.6000, 0.4000, 0.2000])
```
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D25869137
Pulled By: ejguan
fbshipit-source-id: bce763926731e095b75daf2e934bff7c03ff0832
Summary:
BC-breaking note:
This PR changes the behavior of the any and all functions to always return a bool tensor. Previously these functions were only defined on bool and uint8 tensors, and when called on uint8 tensors they would also return a uint8 tensor. (When called on a bool tensor they would return a bool tensor.)
PR summary:
https://github.com/pytorch/pytorch/pull/44790#issuecomment-725596687
Fixes 2 and 3
Also Fixes https://github.com/pytorch/pytorch/issues/48352
Changes
* Output dtype is always `bool` (consistent with numpy) **BC Breaking (Previously used to match the input dtype**)
* Uses vectorized version for all dtypes on CPU
* Enables test for complex
* Update doc for `torch.all` and `torch.any`
TODO
* [x] Update docs
* [x] Benchmark
* [x] Raise issue on XLA
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47878
Reviewed By: albanD
Differential Revision: D25714324
Pulled By: mruberry
fbshipit-source-id: a87345f725297524242d69402dfe53060521ea5d
Summary:
This is related to https://github.com/pytorch/pytorch/issues/42666 .
I am opening this PR to have the opportunity to discuss things.
First, we need to consider the differences between `torch.svd` and `numpy.linalg.svd`:
1. `torch.svd` takes `some=True`, while `numpy.linalg.svd` takes `full_matrices=True`, which is effectively the opposite (and with the opposite default, too!)
2. `torch.svd` returns `(U, S, V)`, while `numpy.linalg.svd` returns `(U, S, VT)` (i.e., V transposed).
3. `torch.svd` always returns a 3-tuple; `numpy.linalg.svd` returns only `S` in case `compute_uv==False`
4. `numpy.linalg.svd` also takes an optional `hermitian=False` argument.
I think that the plan is to eventually deprecate `torch.svd` in favor of `torch.linalg.svd`, so this PR does the following:
1. Rename/adapt the old `svd` C++ functions into `linalg_svd`: in particular, now `linalg_svd` takes `full_matrices` and returns `VT`
2. Re-implement the old C++ interface on top of the new (by negating `full_matrices` and transposing `VT`).
3. The C++ version of `linalg_svd` *always* returns a 3-tuple (we can't do anything else). So, there is a python wrapper which manually calls `torch._C._linalg.linalg_svd` to tweak the return value in case `compute_uv==False`.
Currently, `linalg_svd_backward` is broken because it has not been adapted yet after the `V ==> VT` change, but before continuing and spending more time on it I wanted to make sure that the general approach is fine.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45562
Reviewed By: H-Huang
Differential Revision: D25803557
Pulled By: mruberry
fbshipit-source-id: 4966f314a0ba2ee391bab5cda4563e16275ce91f
Summary:
Implements very simple changes suggested in the short discussion of the issue. Updated documentation to inform user that creation of tensor with memory mapped read only numpy arrays will probably cause a crash of the program. The displayed warning message was also updated to contain the information about issues concerning the use of a memory mapped read only numpy array. Closes https://github.com/pytorch/pytorch/issues/46741.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49516
Reviewed By: mrshenli
Differential Revision: D25746115
Pulled By: mruberry
fbshipit-source-id: 3e534a8f2bc1f083a2835440d324bd6f30798ad4
Summary:
The first commit fixes the `MultiheadAttention` docstrings, which are causing a cryptic KaTeX crash.
The second commit fixes many documentation issues in `torch/_torch_docs.py`, and closes gh-43667 (missing "Keyword arguments" headers). It also fixes a weird duplicate docstring for `torch.argmin`; there's more of these, it looks like they were written based on whether the C++ implementation has an overload. That makes little sense to a Python user though, and the content is simply duplicate.
The `Shape:` heading for https://pytorch.org/docs/master/generated/torch.nn.MultiheadAttention.html looked bad, here's what it looks like with this PR:
<img width="475" alt="image" src="https://user-images.githubusercontent.com/98330/102797488-09a44e00-43b0-11eb-8788-acdf4e936f2f.png">
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49684
Reviewed By: ngimel
Differential Revision: D25730909
Pulled By: mruberry
fbshipit-source-id: d25bcf8caf928e7e8e918017d119de12e10a46e9
Summary:
I am opening this PR early to have a place to discuss design issues.
The biggest difference between `torch.qr` and `numpy.linalg.qr` is that the former `torch.qr` takes a boolean parameter `some=True`, while the latter takes a string parameter `mode='reduced'` which can be one of the following:
`reduced`
this is completely equivalent to `some=True`, and both are the default.
`complete`
this is completely equivalent to `some=False`.
`r`
this returns only `r` instead of a tuple `(r, q)`. We have already decided that we don't want different return types depending on the parameters, so I propose to return `(r, empty_tensor)` instead. I **think** that in this mode it will be impossible to implement the backward pass, so we should raise an appropriate error in that case.
`raw`
in this mode, it returns `(h, tau)` instead of `(q, r)`. Internally, `h` and `tau` are obtained by calling lapack's `dgeqrf` and are later used to compute the actual values of `(q, r)`. The numpy docs suggest that these might be useful to call other lapack functions, but at the moment none of them is exposed by numpy and I don't know how often it is used in the real world.
I suppose the implementing the backward pass need attention to: the most straightforward solution is to use `(h, tau)` to compute `(q, r)` and then use the normal logic for `qr_backward`, but there might be faster alternatives.
`full`, `f`
alias for `reduced`, deprecated since numpy 1.8.0
`economic`, `e`
similar to `raw but it returns only `h` instead of `(h, tau). Deprecated since numpy 1.8.0
To summarize:
* `reduce`, `complete` and `r` are straightforward to implement.
* `raw` needs a bit of extra care, but I don't know how much high priority it is: since it is used rarely, we might want to not support it right now and maybe implement it in the future?
* I think we should just leave `full` and `economic` out, and possibly add a note to the docs explaining what you need to use instead
/cc mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47764
Reviewed By: ngimel
Differential Revision: D25708870
Pulled By: mruberry
fbshipit-source-id: c25c70a23a02ec4322430d636542041e766ebe1b
Summary:
**BC-breaking Note:**
This PR updates PyTorch's digamma function to be consistent with SciPy's special.digamma function. This changes the result of the digamma function on the nonpositive integers, where the gamma function is not defined. Since the gamma function is undefined at these points, the (typical) derivative of the logarithm of the gamma function is also undefined at these points, and for negative integers this PR updates digamma to return NaN. For zero, however, it returns -inf to be consistent with SciPy.
Interestingly, SciPy made a similar change, which was noticed by at least one user: https://github.com/scipy/scipy/issues/9663#issue-396587679.
SciPy's returning of negative infinity at zero is intentional:
59347ae8b8/scipy/special/cephes/psi.c (L163)
This change is consistent with the C++ standard for the gamma function:
https://en.cppreference.com/w/cpp/numeric/math/tgamma
**PR Summary:**
Reference https://github.com/pytorch/pytorch/issues/42515
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48302
Reviewed By: ngimel
Differential Revision: D25664087
Pulled By: mruberry
fbshipit-source-id: 1168e81e218bf9fe5b849db0e07e7b22e590cf73
Summary:
**BC-Breaking Note:**
This PR updates PyTorch's angle operator to be consistent with NumPy's. Previously angle would return zero for all floating point values (including NaN). Now angle returns `pi` for negative floating point values, zero for non-negative floating point values, and propagates NaNs.
**PR Summary:**
Reference: https://github.com/pytorch/pytorch/issues/42515
TODO:
* [x] Add BC-Breaking Note (Prev all real numbers returned `0` (even `nan`)) -> Fixed to match the correct behavior of NumPy.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49163
Reviewed By: ngimel
Differential Revision: D25681758
Pulled By: mruberry
fbshipit-source-id: 54143fe6bccbae044427ff15d8daaed3596f9685
Summary:
Related https://github.com/pytorch/pytorch/issues/38349
Implement NumPy-like function `torch.broadcast_to` to broadcast the input tensor to a new shape.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48997
Reviewed By: anjali411, ngimel
Differential Revision: D25663937
Pulled By: mruberry
fbshipit-source-id: 0415c03f92f02684983f412666d0a44515b99373