Commit Graph

87 Commits

Author SHA1 Message Date
Masaki Kozuki
e773f28ee3 Reland "Add forward mode AD to out-place foreach functions (#102409) (#106043)
forward-mode AD of out-of-place foreach functions, finally.

rel:
- #102409
- #105504
- #58833
- #100695

---

# Generated Foreach
```c++
::std::vector<at::Tensor> _foreach_sinh(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::vector<bool> _any_has_forward_grad_result(self.size());
  for (const auto& i : c10::irange(self.size())) {
    _any_has_forward_grad_result[i] = isFwGradDefined(self[i]);
  }
  std::shared_ptr<ForeachSinhBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<ForeachSinhBackward0>(new ForeachSinhBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->self_ = make_saved_variable_list(self);
    grad_fn->self_size_ = self.size();
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::_foreach_sinh(ks & c10::after_autograd_keyset, self_);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  std::vector<c10::optional<at::Tensor>> result_new_fw_grad_opts(self.size(), c10::nullopt);
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    if (_any_has_forward_grad_result[i]) {
        auto self_t_raw = toNonOptFwGrad(self[i]);
        auto self_tensor = toNonOptTensor(self[i]);
        auto self_t = (self_t_raw.defined() || !self_tensor.defined())
          ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
        auto self_p = toNonOptPrimal(self[i]);
        result_new_fw_grad_opts[i] = (self_t.conj() * self_p.cosh().conj()).conj();
    }
  }
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    auto& result_new_fw_grad_opt = result_new_fw_grad_opts[i];
    if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result[i].defined()) {
      // The hardcoded 0 here will need to be updated once we support multiple levels.
      result[i]._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
    }
  }
  return result;
}

::std::vector<at::Tensor> _foreach_norm_Scalar(c10::DispatchKeySet ks, at::TensorList self, const at::Scalar & ord) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::vector<bool> _any_has_forward_grad_result(self.size());
  for (const auto& i : c10::irange(self.size())) {
    _any_has_forward_grad_result[i] = isFwGradDefined(self[i]);
  }
  std::shared_ptr<ForeachNormBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<ForeachNormBackward0>(new ForeachNormBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->ord = ord;
    grad_fn->self_ = make_saved_variable_list(self);
    grad_fn->self_size_ = self.size();
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::_foreach_norm(ks & c10::after_autograd_keyset, self_, ord);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  std::vector<c10::optional<at::Tensor>> result_new_fw_grad_opts(self.size(), c10::nullopt);
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    if (_any_has_forward_grad_result[i]) {
        auto self_t_raw = toNonOptFwGrad(self[i]);
        auto self_tensor = toNonOptTensor(self[i]);
        auto self_t = (self_t_raw.defined() || !self_tensor.defined())
          ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
        auto self_p = toNonOptPrimal(self[i]);
        result_new_fw_grad_opts[i] = norm_jvp(self_p, self_t, ord, result[i]);
    }
  }
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    auto& result_new_fw_grad_opt = result_new_fw_grad_opts[i];
    if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result[i].defined()) {
      // The hardcoded 0 here will need to be updated once we support multiple levels.
      result[i]._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
    }
  }
  if (grad_fn) {
    grad_fn->result = result;
  }
  return result;
}

```

# Reference
```c++
at::Tensor sinh(c10::DispatchKeySet ks, const at::Tensor & self) {
  auto& self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  [[maybe_unused]] auto _any_has_forward_grad_result = (isFwGradDefined(self));
  std::shared_ptr<SinhBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<SinhBackward0>(new SinhBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->self_ = SavedVariable(self, false);
  }
  #ifndef NDEBUG
  c10::optional<Storage> self__storage_saved =
    self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
  c10::intrusive_ptr<TensorImpl> self__impl_saved;
  if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::sinh(ks & c10::after_autograd_keyset, self_);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  if (self__storage_saved.has_value() &&
      !at::impl::dispatch_mode_enabled() &&
      !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
  if (self__impl_saved && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__impl_saved == self_.getIntrusivePtr());
  if (result.has_storage() && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result)) {
    TORCH_INTERNAL_ASSERT(result.storage().use_count() == 1, "function: sinh");
  }
  if (!at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result))
    TORCH_INTERNAL_ASSERT(result.use_count() <= 1, "function: sinh");
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  c10::optional<at::Tensor> result_new_fw_grad_opt = c10::nullopt;
  if (_any_has_forward_grad_result && (result.defined())) {
      auto self_t_raw = toNonOptFwGrad(self);
      auto self_tensor = toNonOptTensor(self);
      auto self_t = (self_t_raw.defined() || !self_tensor.defined())
        ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
      auto self_p = toNonOptPrimal(self);
      result_new_fw_grad_opt = (self_t.conj() * self_p.cosh().conj()).conj();
  }
  if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result.defined()) {
    // The hardcoded 0 here will need to be updated once we support multiple levels.
    result._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
  }
  return result;
}
at::Tensor norm_Scalar(c10::DispatchKeySet ks, const at::Tensor & self, const at::Scalar & p) {
  auto& self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  [[maybe_unused]] auto _any_has_forward_grad_result = (isFwGradDefined(self));
  std::shared_ptr<NormBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<NormBackward0>(new NormBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->p = p;
    grad_fn->self_ = SavedVariable(self, false);
  }
  #ifndef NDEBUG
  c10::optional<Storage> self__storage_saved =
    self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
  c10::intrusive_ptr<TensorImpl> self__impl_saved;
  if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::norm(ks & c10::after_autograd_keyset, self_, p);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  if (self__storage_saved.has_value() &&
      !at::impl::dispatch_mode_enabled() &&
      !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
  if (self__impl_saved && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__impl_saved == self_.getIntrusivePtr());
  if (result.has_storage() && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result)) {
    TORCH_INTERNAL_ASSERT(result.storage().use_count() == 1, "function: norm_Scalar");
  }
  if (!at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result))
    TORCH_INTERNAL_ASSERT(result.use_count() <= 1, "function: norm_Scalar");
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  throw_error_for_complex_autograd(result, "norm");
  c10::optional<at::Tensor> result_new_fw_grad_opt = c10::nullopt;
  if (_any_has_forward_grad_result && (result.defined())) {
      auto self_t_raw = toNonOptFwGrad(self);
      auto self_tensor = toNonOptTensor(self);
      auto self_t = (self_t_raw.defined() || !self_tensor.defined())
        ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
      auto self_p = toNonOptPrimal(self);
      result_new_fw_grad_opt = norm_jvp(self_p, self_t, p, result);
  }
  if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result.defined()) {
    // The hardcoded 0 here will need to be updated once we support multiple levels.
    result._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
  }
  if (grad_fn) {
    grad_fn->result_ = SavedVariable(result, true);
  }
  return result;
}

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106043
Approved by: https://github.com/soulitzer
2023-07-27 03:13:24 +00:00
Masaki Kozuki
72f2c87a5a [foreach] Set SavedVariable.is_output to true for grad_fn->result_ (#105504)
fixes #105502

The scope of this pull request is out-of-place foreach functions that depend on their output tensorlist for backward such as `_foreach_exp`. An example of the generated code with this update is as follows:

```c++
variable_list ForeachExpBackward0::apply(variable_list&& grads) {
  std::lock_guard<std::mutex> lock(mutex_);
  TORCH_CHECK(!result_released_, ERR_BACKWARD_TWICE);
  IndexRangeGenerator gen;
  auto self_ix = gen.range(self_size_);
  variable_list grad_inputs(gen.size());
  auto result = unpack_list(result_, shared_from_this());
  if (task_should_compute_output({ self_ix })) {
    std::vector<Tensor> grad_result;
    grad_result.reserve(grads.size());
    for (const auto & i : c10::irange(grads.size())) {
      if (grads[i].defined()) {
        grad_result.emplace_back(grads[i] * result[i].conj());
      } else {
        grad_result.emplace_back(Tensor());
      }
    }
    copy_range(grad_inputs, self_ix, grad_result);
  }
  return grad_inputs;
}

::std::vector<at::Tensor> _foreach_exp(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::shared_ptr<ForeachExpBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<ForeachExpBackward0>(new ForeachExpBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->self_size_ = self.size();
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    if ((isFwGradDefinedTensorList(self))) {
      static c10::OperatorName full_name("aten::_foreach_exp", "");
      static c10::optional<c10::OperatorHandle> opt_op = c10::Dispatcher::singleton().findSchema(full_name);
      return impl::run_jit_decomposition_with_args_for_jvp<::std::vector<at::Tensor>>("_foreach_exp", *opt_op, ks, self);
    } else {
      at::AutoDispatchBelowADInplaceOrView guard;
      return at::redispatch::_foreach_exp(ks & c10::after_autograd_keyset, self_);
    }
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  if (grad_fn) {
    grad_fn->result_ = make_saved_variable_list(result, true);
  }
  return result;
}
```

A bit of context:
- https://github.com/pytorch/pytorch/pull/105368#issuecomment-1640912479
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105504
Approved by: https://github.com/soulitzer
2023-07-26 14:29:32 +00:00
Jane Xu
803d42e457 add lerp cpu support for half (#105607)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105607
Approved by: https://github.com/albanD
2023-07-21 20:29:05 +00:00
Justin Chu
73e1455327 [BE] Enable ruff's UP rules and autoformat test/ (#105434)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105434
Approved by: https://github.com/albanD
2023-07-19 20:36:06 +00:00
PyTorch MergeBot
8958f041be Revert "Add forward mode AD to out-place foreach functions (#102409)"
This reverts commit e2ec0ba404.

Reverted https://github.com/pytorch/pytorch/pull/102409 on behalf of https://github.com/huydhn due to Sorry for reverting your PR but it is failing some tests in trunk e799f565eb ([comment](https://github.com/pytorch/pytorch/pull/102409#issuecomment-1615254393))
2023-06-30 22:46:57 +00:00
Masaki Kozuki
e2ec0ba404 Add forward mode AD to out-place foreach functions (#102409)
The major difference from in-place support is that some out-place functions have their derivatives spelled out in derivatives.yaml, which requires some changes in `load_derivatives.py` and some handlings in various places due to the others whose derivatives are generated by `torchgen`.

rel:
- #58833
- #100695

---

# Generated Foreach
```c++
::std::vector<at::Tensor> _foreach_sinh(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::vector<bool> _any_has_forward_grad_result(self.size());
  for (const auto& i : c10::irange(self.size())) {
    _any_has_forward_grad_result[i] = isFwGradDefined(self[i]);
  }
  std::shared_ptr<ForeachSinhBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<ForeachSinhBackward0>(new ForeachSinhBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->self_ = make_saved_variable_list(self);
    grad_fn->self_size_ = self.size();
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::_foreach_sinh(ks & c10::after_autograd_keyset, self_);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  std::vector<c10::optional<at::Tensor>> result_new_fw_grad_opts(self.size(), c10::nullopt);
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    if (_any_has_forward_grad_result[i]) {
        auto self_t_raw = toNonOptFwGrad(self[i]);
        auto self_tensor = toNonOptTensor(self[i]);
        auto self_t = (self_t_raw.defined() || !self_tensor.defined())
          ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
        auto self_p = toNonOptPrimal(self[i]);
        result_new_fw_grad_opts[i] = (self_t.conj() * self_p.cosh().conj()).conj();
    }
  }
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    auto& result_new_fw_grad_opt = result_new_fw_grad_opts[i];
    if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result[i].defined()) {
      // The hardcoded 0 here will need to be updated once we support multiple levels.
      result[i]._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
    }
  }
  return result;
}

::std::vector<at::Tensor> _foreach_norm_Scalar(c10::DispatchKeySet ks, at::TensorList self, const at::Scalar & ord) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::vector<bool> _any_has_forward_grad_result(self.size());
  for (const auto& i : c10::irange(self.size())) {
    _any_has_forward_grad_result[i] = isFwGradDefined(self[i]);
  }
  std::shared_ptr<ForeachNormBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<ForeachNormBackward0>(new ForeachNormBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->ord = ord;
    grad_fn->self_ = make_saved_variable_list(self);
    grad_fn->self_size_ = self.size();
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::_foreach_norm(ks & c10::after_autograd_keyset, self_, ord);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  std::vector<c10::optional<at::Tensor>> result_new_fw_grad_opts(self.size(), c10::nullopt);
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    if (_any_has_forward_grad_result[i]) {
        auto self_t_raw = toNonOptFwGrad(self[i]);
        auto self_tensor = toNonOptTensor(self[i]);
        auto self_t = (self_t_raw.defined() || !self_tensor.defined())
          ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
        auto self_p = toNonOptPrimal(self[i]);
        result_new_fw_grad_opts[i] = norm_jvp(self_p, self_t, ord, result[i]);
    }
  }
  for (const auto& i : c10::irange(result_new_fw_grad_opts.size())) {
    auto& result_new_fw_grad_opt = result_new_fw_grad_opts[i];
    if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result[i].defined()) {
      // The hardcoded 0 here will need to be updated once we support multiple levels.
      result[i]._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
    }
  }
  if (grad_fn) {
    grad_fn->result = result;
  }
  return result;
}

```

# Reference
```c++
at::Tensor sinh(c10::DispatchKeySet ks, const at::Tensor & self) {
  auto& self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  [[maybe_unused]] auto _any_has_forward_grad_result = (isFwGradDefined(self));
  std::shared_ptr<SinhBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<SinhBackward0>(new SinhBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->self_ = SavedVariable(self, false);
  }
  #ifndef NDEBUG
  c10::optional<Storage> self__storage_saved =
    self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
  c10::intrusive_ptr<TensorImpl> self__impl_saved;
  if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::sinh(ks & c10::after_autograd_keyset, self_);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  if (self__storage_saved.has_value() &&
      !at::impl::dispatch_mode_enabled() &&
      !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
  if (self__impl_saved && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__impl_saved == self_.getIntrusivePtr());
  if (result.has_storage() && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result)) {
    TORCH_INTERNAL_ASSERT(result.storage().use_count() == 1, "function: sinh");
  }
  if (!at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result))
    TORCH_INTERNAL_ASSERT(result.use_count() <= 1, "function: sinh");
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  c10::optional<at::Tensor> result_new_fw_grad_opt = c10::nullopt;
  if (_any_has_forward_grad_result && (result.defined())) {
      auto self_t_raw = toNonOptFwGrad(self);
      auto self_tensor = toNonOptTensor(self);
      auto self_t = (self_t_raw.defined() || !self_tensor.defined())
        ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
      auto self_p = toNonOptPrimal(self);
      result_new_fw_grad_opt = (self_t.conj() * self_p.cosh().conj()).conj();
  }
  if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result.defined()) {
    // The hardcoded 0 here will need to be updated once we support multiple levels.
    result._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
  }
  return result;
}
at::Tensor norm_Scalar(c10::DispatchKeySet ks, const at::Tensor & self, const at::Scalar & p) {
  auto& self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  [[maybe_unused]] auto _any_has_forward_grad_result = (isFwGradDefined(self));
  std::shared_ptr<NormBackward0> grad_fn;
  if (_any_requires_grad) {
    grad_fn = std::shared_ptr<NormBackward0>(new NormBackward0(), deleteNode);
    grad_fn->set_next_edges(collect_next_edges( self ));
    grad_fn->p = p;
    grad_fn->self_ = SavedVariable(self, false);
  }
  #ifndef NDEBUG
  c10::optional<Storage> self__storage_saved =
    self_.has_storage() ? c10::optional<Storage>(self_.storage()) : c10::nullopt;
  c10::intrusive_ptr<TensorImpl> self__impl_saved;
  if (self_.defined()) self__impl_saved = self_.getIntrusivePtr();
  #endif
  auto _tmp = ([&]() {
    at::AutoDispatchBelowADInplaceOrView guard;
    return at::redispatch::norm(ks & c10::after_autograd_keyset, self_, p);
  })();
  auto result = std::move(_tmp);
  #ifndef NDEBUG
  if (self__storage_saved.has_value() &&
      !at::impl::dispatch_mode_enabled() &&
      !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__storage_saved.value().is_alias_of(self_.storage()));
  if (self__impl_saved && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(self_))
    TORCH_INTERNAL_ASSERT(self__impl_saved == self_.getIntrusivePtr());
  if (result.has_storage() && !at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result)) {
    TORCH_INTERNAL_ASSERT(result.storage().use_count() == 1, "function: norm_Scalar");
  }
  if (!at::impl::dispatch_mode_enabled() && !at::impl::tensor_has_dispatch(result))
    TORCH_INTERNAL_ASSERT(result.use_count() <= 1, "function: norm_Scalar");
  #endif
  if (grad_fn) {
      set_history(flatten_tensor_args( result ), grad_fn);
  }
  throw_error_for_complex_autograd(result, "norm");
  c10::optional<at::Tensor> result_new_fw_grad_opt = c10::nullopt;
  if (_any_has_forward_grad_result && (result.defined())) {
      auto self_t_raw = toNonOptFwGrad(self);
      auto self_tensor = toNonOptTensor(self);
      auto self_t = (self_t_raw.defined() || !self_tensor.defined())
        ? self_t_raw : at::_efficientzerotensor(self_tensor.sizes(), self_tensor.options());
      auto self_p = toNonOptPrimal(self);
      result_new_fw_grad_opt = norm_jvp(self_p, self_t, p, result);
  }
  if (result_new_fw_grad_opt.has_value() && result_new_fw_grad_opt.value().defined() && result.defined()) {
    // The hardcoded 0 here will need to be updated once we support multiple levels.
    result._set_fw_grad(result_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ false);
  }
  if (grad_fn) {
    grad_fn->result_ = SavedVariable(result, true);
  }
  return result;
}

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102409
Approved by: https://github.com/soulitzer
2023-06-30 04:51:43 +00:00
Nikita Shulga
6d2887cc06 Reland "Move tensor grouping to ATen" (#103912)
This is a reland of https://github.com/pytorch/pytorch/pull/100007 with a build fix for Windows debug builds.
`at::native::ParamsHash` only works on structs with standard layout, but `std::string` isn't one in Visual C++ debug builds, which one can easily verified by running something like:
```cpp
#define _DEBUG
#include <type_traits>
#include <string>
static_assert(std::is_standard_layout_v<std::string>, "Oh noes");
```
If above conditon is not met, instead of printing a static_assert output, VC++ raises a very cryptic compilation errors,  see https://github.com/pytorch/pytorch/pull/100007#discussion_r1227116292 for more detail.

Also, using `std::hash` for string should result in a faster hash function.

(cherry picked from commit 74b7a6c75e)

<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 5914771</samp>

This pull request introduces a new function `_group_tensors_by_device_and_dtype` that can group tensors by their device and dtype, and updates the `foreach` utilities and several optimizers to use this function. The goal is to improve the performance, readability, and compatibility of the code that handles tensors with different properties. The pull request also adds a test case and type annotations for the new function, and some error checks for the `fused` argument in Adam and AdamW.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103912
Approved by: https://github.com/janeyx99
2023-06-21 09:26:33 +00:00
PyTorch MergeBot
0cb5bc3b04 Revert "Move tensor grouping to ATen (#100007)"
This reverts commit 74b7a6c75e.

Reverted https://github.com/pytorch/pytorch/pull/100007 on behalf of https://github.com/izaitsevfb due to Breaks internal builds, see D46629727 ([comment](https://github.com/pytorch/pytorch/pull/100007#issuecomment-1587861598))
2023-06-12 18:30:33 +00:00
Masaki Kozuki
74b7a6c75e Move tensor grouping to ATen (#100007)
rel: #94344
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100007
Approved by: https://github.com/janeyx99
2023-06-09 15:44:46 +00:00
Masaki Kozuki
0bb2b01541 Add forward mode AD to in-place foreach functions (#100695)
Awkwardly implement fwd AD by
- adding a few `CodeTemplate`s
- allowing for the cases where a variable is initialized with i-th element of TensorList

<!--
### TODOs:
- [x] ~~remove the first `_any_has_forward_grad_self`~~ make it a vector of bool
- [ ] clean up mapping of names from reference impl to foreach impl
- [x] add tests
-->

### Rel:
- #58833
- #96405

---

`_foreach_addcmul_.ScalarList` from `VariableType`

```c++
void _foreach_addcmul__ScalarList(c10::DispatchKeySet ks, at::TensorList self, at::TensorList tensor1, at::TensorList tensor2, at::ArrayRef<at::Scalar> scalars) {
  auto self_ = unpack(self, "self", 0);
  auto tensor1_ = unpack(tensor1, "tensor1", 1);
  auto tensor2_ = unpack(tensor2, "tensor2", 2);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self, tensor1, tensor2 );

  std::vector<bool> _any_has_forward_grad_self(self.size());
  for (const auto& i : c10::irange(self.size())) {
    _any_has_forward_grad_self[i] = isFwGradDefined(self[i]) || isFwGradDefined(tensor1[i]) || isFwGradDefined(tensor2[i]);
  }
  std::vector<c10::optional<at::Tensor>> original_selfs(self.size());
  std::vector<std::shared_ptr<AddcmulBackward0>> grad_fns;
  if (_any_requires_grad) {
    for (const auto& i : c10::irange( self.size() )) {
      const auto ith_requires_grad = compute_requires_grad(self[i], tensor1[i], tensor2[i]);
      check_inplace(self[i], ith_requires_grad);
      grad_fns.push_back([&]() -> std::shared_ptr<AddcmulBackward0> {
          if (!ith_requires_grad) {
              return nullptr;
          } else {
              auto grad_fn = std::shared_ptr<AddcmulBackward0>(new AddcmulBackward0(), deleteNode);
              grad_fn->set_next_edges(collect_next_edges( self[i], tensor1[i], tensor2[i] ));
              return grad_fn;
          }
      }());
    }
    if (!grad_fns.empty()) {

        for (const auto& i : c10::irange(grad_fns.size())) {
            auto grad_fn = grad_fns[i];
            if (grad_fn != nullptr) {
                grad_fn->self_scalar_type = self[i].scalar_type();
                grad_fn->tensor1_scalar_type = tensor1[i].scalar_type();
                if (grad_fn->should_compute_output(1)) {
                  grad_fn->tensor2_ = SavedVariable(tensor2[i], false);
                }
                grad_fn->value = scalars[i];
                if (grad_fn->should_compute_output(2)) {
                  grad_fn->tensor1_ = SavedVariable(tensor1[i], false);
                }
                grad_fn->tensor2_scalar_type = tensor2[i].scalar_type();
            }
        }
    }
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  std::vector<c10::optional<Storage>> tensor1__storage_saved(tensor1_.size());
  for (const Tensor& tensor : tensor1_)
    tensor1__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> tensor1__impl_saved(tensor1_.size());
  for (size_t i=0; i<tensor1_.size(); i++)
    if (tensor1_[i].defined()) tensor1__impl_saved[i] = tensor1_[i].getIntrusivePtr();
  std::vector<c10::optional<Storage>> tensor2__storage_saved(tensor2_.size());
  for (const Tensor& tensor : tensor2_)
    tensor2__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> tensor2__impl_saved(tensor2_.size());
  for (size_t i=0; i<tensor2_.size(); i++)
    if (tensor2_[i].defined()) tensor2__impl_saved[i] = tensor2_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_addcmul_(ks & c10::after_autograd_keyset, self_, tensor1_, tensor2_, scalars);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  for (size_t i=0; i<tensor1_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor1__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(tensor1_))
      TORCH_INTERNAL_ASSERT(tensor1__storage_saved[i].value().is_alias_of(tensor1_[i].storage()));
  }
  for (size_t i=0; i<tensor1_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor1__impl_saved[i] && !at::impl::tensorlist_has_dispatch(tensor1_))
      TORCH_INTERNAL_ASSERT(tensor1__impl_saved[i] == tensor1_[i].getIntrusivePtr());
  }
  for (size_t i=0; i<tensor2_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor2__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(tensor2_))
      TORCH_INTERNAL_ASSERT(tensor2__storage_saved[i].value().is_alias_of(tensor2_[i].storage()));
  }
  for (size_t i=0; i<tensor2_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor2__impl_saved[i] && !at::impl::tensorlist_has_dispatch(tensor2_))
      TORCH_INTERNAL_ASSERT(tensor2__impl_saved[i] == tensor2_[i].getIntrusivePtr());
  }
  #endif
  if (!grad_fns.empty()) {
      auto differentiable_outputs = flatten_tensor_args( self );
      TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());
      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              rebase_history(differentiable_outputs[i], grad_fns[i]);
          }
      }
  }
  std::vector<c10::optional<at::Tensor>> self_new_fw_grad_opts(self.size(), c10::nullopt);
  for (const auto& i : c10::irange(self_new_fw_grad_opts.size())) {
    if (_any_has_forward_grad_self[i]) {
        auto self_t_raw = toNonOptFwGrad(self[i]);
        auto self_tensor = toNonOptTensor(self[i]);
        auto self_t = (self_t_raw.defined() || !self_tensor.defined())
          ? self_t_raw : at::zeros(self_tensor.sizes(), self_tensor.options());
        auto tensor1_t_raw = toNonOptFwGrad(tensor1[i]);
        auto tensor1_tensor = toNonOptTensor(tensor1[i]);
        auto tensor1_t = (tensor1_t_raw.defined() || !tensor1_tensor.defined())
          ? tensor1_t_raw : at::_efficientzerotensor(tensor1_tensor.sizes(), tensor1_tensor.options());
        auto tensor1_p = toNonOptPrimal(tensor1[i]);
        auto tensor2_t_raw = toNonOptFwGrad(tensor2[i]);
        auto tensor2_tensor = toNonOptTensor(tensor2[i]);
        auto tensor2_t = (tensor2_t_raw.defined() || !tensor2_tensor.defined())
          ? tensor2_t_raw : at::_efficientzerotensor(tensor2_tensor.sizes(), tensor2_tensor.options());
        auto tensor2_p = toNonOptPrimal(tensor2[i]);
        self_t = GradMode::is_enabled() ? self_t.clone() : self_t;
        self_new_fw_grad_opts[i] = self_t_raw.defined() ? self_t_raw.copy_(self_t + maybe_multiply(tensor1_t * tensor2_p, scalars[i]) + maybe_multiply(tensor2_t * tensor1_p, scalars[i])) : self_t + maybe_multiply(tensor1_t * tensor2_p, scalars[i]) + maybe_multiply(tensor2_t * tensor1_p, scalars[i]);
    }
  }
  for (const auto& i : c10::irange(self_new_fw_grad_opts.size())) {
    auto& self_new_fw_grad_opt = self_new_fw_grad_opts[i];
    if (self_new_fw_grad_opt.has_value() && self_new_fw_grad_opt.value().defined() && self[i].defined()) {
      // The hardcoded 0 here will need to be updated once we support multiple levels.
      self[i]._set_fw_grad(self_new_fw_grad_opt.value(), /* level */ 0, /* is_inplace_op */ true);
    }
  }
}
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/100695
Approved by: https://github.com/soulitzer
2023-05-25 15:39:48 +00:00
Masaki Kozuki
ba2bc7df8f Enable backward on _foreach_zero_ (#101149)
Currently torchgen cannot find an appropriate `DifferentiabilityInfo` for `_foreach_zero_` because `gen_foreach_derivativeinfo` doesn't correctly make use of `functional_info_by_signature` and `differentiability_infos`, and `is_reference_for_foreach` a bit too strict to `_foreach_zero_`.

Generated code in `VariableType`
```c++
void _foreach_zero_(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  [[maybe_unused]] auto _any_requires_grad = compute_requires_grad( self );

  std::vector<c10::optional<at::Tensor>> original_selfs(self.size());
  std::vector<std::shared_ptr<ZeroBackward0>> grad_fns;
  if (_any_requires_grad) {
    for (const auto& i : c10::irange( self.size() )) {
      const auto ith_requires_grad = compute_requires_grad(self[i]);
      check_inplace(self[i], ith_requires_grad);
      grad_fns.push_back([&]() -> std::shared_ptr<ZeroBackward0> {
          if (!ith_requires_grad) {
              return nullptr;
          } else {
              auto grad_fn = std::shared_ptr<ZeroBackward0>(new ZeroBackward0(), deleteNode);
              grad_fn->set_next_edges(collect_next_edges( self[i] ));
              return grad_fn;
          }
      }());
    }
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_zero_(ks & c10::after_autograd_keyset, self_);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (!grad_fns.empty()) {
      auto differentiable_outputs = flatten_tensor_args( self );
      TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());
      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              rebase_history(differentiable_outputs[i], grad_fns[i]);
          }
      }
  }
}
```

Rel:
- #58833
- #96405
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101149
Approved by: https://github.com/soulitzer
2023-05-17 03:10:13 +00:00
Masaki Kozuki
6c934a89a7 Skip invalid grads in outplace foreachs' backward (#100256)
Fixes #100248
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100256
Approved by: https://github.com/soulitzer, https://github.com/albanD
2023-04-29 22:45:26 +00:00
Masaki Kozuki
674018903d per-Tensor grad_fn for in-place foreach functions (#96405)
Generate a `grad_fn` for each (tuple of) `Tensor`(s) of the same index for `_foreach_foo_` and each `grad_fn` is `FooBackward`.

The current status of foreach functions' backward support for the record:
- out-place: Implemented, but no optimized implementations like their forward path
- in-place: not implemented. I think this check 7eaaefafb3/torchgen/api/autograd.py (L309-L311) is partly responsible but the difference of signature between out-place and in-place (see https://github.com/pytorch/pytorch/pull/96405#discussion_r1154690940) would prevent in-place from using out-place versions (the logic is around 7eaaefafb3/torchgen/api/autograd.py (L495-L500))

```c++
void _foreach_abs_(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_abs_(ks & c10::after_autograd_keyset, self_);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      AT_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      AT_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
}
```

Related:
- #95431
- #95765 for multiple `grad_fn`s logic

---

Examples: outputs of `_foreach_add_.List`, `_foreach_addcmul_.ScalarList`, and `_foreach_exp`

```c++
void _foreach_addcmul__ScalarList(c10::DispatchKeySet ks, at::TensorList self, at::TensorList tensor1, at::TensorList tensor2, at::ArrayRef<at::Scalar> scalars) {
  auto self_ = unpack(self, "self", 0);
  auto tensor1_ = unpack(tensor1, "tensor1", 1);
  auto tensor2_ = unpack(tensor2, "tensor2", 2);
  auto _any_requires_grad = compute_requires_grad( self, tensor1, tensor2 );

  (void)_any_requires_grad;
  std::vector<c10::optional<at::Tensor>> original_selfs(self.size());
  std::vector<std::shared_ptr<AddcmulBackward0>> grad_fns;
  if (_any_requires_grad) {
    for (const auto& i : c10::irange( self.size() )) {
      const auto ith_requires_grad = compute_requires_grad(self[i], tensor1[i], tensor2[i]);
      check_inplace(self[i], ith_requires_grad);
      grad_fns.push_back([&]() -> std::shared_ptr<AddcmulBackward0> {
          if (!ith_requires_grad) {
              return nullptr;
          } else {
              auto grad_fn = std::shared_ptr<AddcmulBackward0>(new AddcmulBackward0(), deleteNode);
              grad_fn->set_next_edges(collect_next_edges( self[i], tensor1[i], tensor2[i] ));
              return grad_fn;
          }
      }());
    }
    if (!grad_fns.empty()) {

        for (const auto& i : c10::irange(grad_fns.size())) {
            auto grad_fn = grad_fns[i];
            if (grad_fn != nullptr) {
                grad_fn->self_scalar_type = self[i].scalar_type();
                grad_fn->tensor1_scalar_type = tensor1[i].scalar_type();
                if (grad_fn->should_compute_output(1)) {
                  grad_fn->tensor2_ = SavedVariable(tensor2[i], false);
                }
                grad_fn->value = scalars[i];
                if (grad_fn->should_compute_output(2)) {
                  grad_fn->tensor1_ = SavedVariable(tensor1[i], false);
                }
                grad_fn->tensor2_scalar_type = tensor2[i].scalar_type();
            }
        }
    }
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  std::vector<c10::optional<Storage>> tensor1__storage_saved(tensor1_.size());
  for (const Tensor& tensor : tensor1_)
    tensor1__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> tensor1__impl_saved(tensor1_.size());
  for (size_t i=0; i<tensor1_.size(); i++)
    if (tensor1_[i].defined()) tensor1__impl_saved[i] = tensor1_[i].getIntrusivePtr();
  std::vector<c10::optional<Storage>> tensor2__storage_saved(tensor2_.size());
  for (const Tensor& tensor : tensor2_)
    tensor2__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> tensor2__impl_saved(tensor2_.size());
  for (size_t i=0; i<tensor2_.size(); i++)
    if (tensor2_[i].defined()) tensor2__impl_saved[i] = tensor2_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_addcmul_(ks & c10::after_autograd_keyset, self_, tensor1_, tensor2_, scalars);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  for (size_t i=0; i<tensor1_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor1__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(tensor1_))
      TORCH_INTERNAL_ASSERT(tensor1__storage_saved[i].value().is_alias_of(tensor1_[i].storage()));
  }
  for (size_t i=0; i<tensor1_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor1__impl_saved[i] && !at::impl::tensorlist_has_dispatch(tensor1_))
      TORCH_INTERNAL_ASSERT(tensor1__impl_saved[i] == tensor1_[i].getIntrusivePtr());
  }
  for (size_t i=0; i<tensor2_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor2__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(tensor2_))
      TORCH_INTERNAL_ASSERT(tensor2__storage_saved[i].value().is_alias_of(tensor2_[i].storage()));
  }
  for (size_t i=0; i<tensor2_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (tensor2__impl_saved[i] && !at::impl::tensorlist_has_dispatch(tensor2_))
      TORCH_INTERNAL_ASSERT(tensor2__impl_saved[i] == tensor2_[i].getIntrusivePtr());
  }
  #endif
  if (!grad_fns.empty()) {
      auto differentiable_outputs = flatten_tensor_args( self );
      TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());
      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              rebase_history(differentiable_outputs[i], grad_fns[i]);
          }
      }
  }
}

```

```c++
void _foreach_add__List(c10::DispatchKeySet ks, at::TensorList self, at::TensorList other, const at::Scalar & alpha) {
  auto self_ = unpack(self, "self", 0);
  auto other_ = unpack(other, "other", 1);
  auto _any_requires_grad = compute_requires_grad( self, other );

  (void)_any_requires_grad;
  std::vector<c10::optional<at::Tensor>> original_selfs(self.size());
  std::vector<std::shared_ptr<AddBackward0>> grad_fns;
  if (_any_requires_grad) {
    for (const auto& i : c10::irange( self.size() )) {
      const auto ith_requires_grad = compute_requires_grad(self[i], other[i]);
      check_inplace(self[i], ith_requires_grad);
      grad_fns.push_back([&]() -> std::shared_ptr<AddBackward0> {
          if (!ith_requires_grad) {
              return nullptr;
          } else {
              auto grad_fn = std::shared_ptr<AddBackward0>(new AddBackward0(), deleteNode);
              grad_fn->set_next_edges(collect_next_edges( self[i], other[i] ));
              return grad_fn;
          }
      }());
    }
    if (!grad_fns.empty()) {

        for (const auto& i : c10::irange(grad_fns.size())) {
            auto grad_fn = grad_fns[i];
            if (grad_fn != nullptr) {
                grad_fn->other_scalar_type = other[i].scalar_type();
                grad_fn->alpha = alpha;
                grad_fn->self_scalar_type = self[i].scalar_type();
            }
        }
    }
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  std::vector<c10::optional<Storage>> other__storage_saved(other_.size());
  for (const Tensor& tensor : other_)
    other__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> other__impl_saved(other_.size());
  for (size_t i=0; i<other_.size(); i++)
    if (other_[i].defined()) other__impl_saved[i] = other_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_add_(ks & c10::after_autograd_keyset, self_, other_, alpha);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  for (size_t i=0; i<other_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (other__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(other_))
      TORCH_INTERNAL_ASSERT(other__storage_saved[i].value().is_alias_of(other_[i].storage()));
  }
  for (size_t i=0; i<other_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (other__impl_saved[i] && !at::impl::tensorlist_has_dispatch(other_))
      TORCH_INTERNAL_ASSERT(other__impl_saved[i] == other_[i].getIntrusivePtr());
  }
  #endif
  if (!grad_fns.empty()) {
      auto differentiable_outputs = flatten_tensor_args( self );
      TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());
      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              rebase_history(differentiable_outputs[i], grad_fns[i]);
          }
      }
  }
}

...

void _foreach_exp_(c10::DispatchKeySet ks, at::TensorList self) {
  auto self_ = unpack(self, "self", 0);
  auto _any_requires_grad = compute_requires_grad( self );

  (void)_any_requires_grad;
  std::vector<c10::optional<at::Tensor>> original_selfs(self.size());
  std::vector<std::shared_ptr<ExpBackward0>> grad_fns;
  if (_any_requires_grad) {
    for (const auto& i : c10::irange( self.size() )) {
      const auto ith_requires_grad = compute_requires_grad(self[i]);
      check_inplace(self[i], ith_requires_grad);
      grad_fns.push_back([&]() -> std::shared_ptr<ExpBackward0> {
          if (!ith_requires_grad) {
              return nullptr;
          } else {
              auto grad_fn = std::shared_ptr<ExpBackward0>(new ExpBackward0(), deleteNode);
              grad_fn->set_next_edges(collect_next_edges( self[i] ));
              return grad_fn;
          }
      }());
    }
  }
  #ifndef NDEBUG
  std::vector<c10::optional<Storage>> self__storage_saved(self_.size());
  for (const Tensor& tensor : self_)
    self__storage_saved.push_back(
      tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt);
  std::vector<c10::intrusive_ptr<TensorImpl>> self__impl_saved(self_.size());
  for (size_t i=0; i<self_.size(); i++)
    if (self_[i].defined()) self__impl_saved[i] = self_[i].getIntrusivePtr();
  #endif
  {
    at::AutoDispatchBelowAutograd guard;
    at::redispatch::_foreach_exp_(ks & c10::after_autograd_keyset, self_);
  }
  #ifndef NDEBUG
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__storage_saved[i].has_value() && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__storage_saved[i].value().is_alias_of(self_[i].storage()));
  }
  for (size_t i=0; i<self_.size() && !at::impl::dispatch_mode_enabled(); i++) {
    if (self__impl_saved[i] && !at::impl::tensorlist_has_dispatch(self_))
      TORCH_INTERNAL_ASSERT(self__impl_saved[i] == self_[i].getIntrusivePtr());
  }
  #endif
  if (!grad_fns.empty()) {
      auto differentiable_outputs = flatten_tensor_args( self );
      TORCH_INTERNAL_ASSERT(differentiable_outputs.size() == grad_fns.size());
      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              rebase_history(differentiable_outputs[i], grad_fns[i]);
          }
      }
  }
  if (!grad_fns.empty()) {

      for (const auto& i : c10::irange(grad_fns.size())) {
          auto grad_fn = grad_fns[i];
          if (grad_fn != nullptr) {
              grad_fn->result_ = SavedVariable(self[i], true, self[i].is_view());
          }
      }
  }
}

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96405
Approved by: https://github.com/soulitzer
2023-04-28 00:55:04 +00:00
Masaki Kozuki
13ca08435c [test_foreach] add cases of zero size tensors (#95028)
supply zero-size tensors only if multi_tensor_apply_kernel would be called w.h.p, i.e. device is cuda and dtype is float32

rel:
- https://github.com/pytorch/pytorch/pull/94655
- https://github.com/pytorch/pytorch/issues/94865

Pull Request resolved: https://github.com/pytorch/pytorch/pull/95028
Approved by: https://github.com/ngimel
2023-03-23 00:12:13 +00:00
Masaki Kozuki
a48d518e45 test_foreach: remove skipMeta (#96599)
Happened to notice that the test doesn't seem to require the guard (at least on my local environment)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96599
Approved by: https://github.com/bdhirsh
2023-03-13 22:14:36 +00:00
Masaki Kozuki
f54233e273 [foreach] bump tensor's version and define backward via torchgen (as possible) (#93901)
## summary
- increment tensor versions in inplace foreach functions
- add a logic to take care of `ArrayRef<Scalar>`

rel: https://github.com/pytorch/pytorch/issues/58833, https://github.com/pytorch/pytorch/pull/89591

Pull Request resolved: https://github.com/pytorch/pytorch/pull/93901
Approved by: https://github.com/albanD
2023-02-20 23:18:07 +00:00
Masaki Kozuki
3e9df622fb [mta] implement _foreach_pow (#92303)
Mainly for foreach path of `Adam` and `AdamW`

rel: https://github.com/pytorch/pytorch/issues/58833
Pull Request resolved: https://github.com/pytorch/pytorch/pull/92303
Approved by: https://github.com/albanD
2023-02-16 02:28:26 +00:00
Aaron Gokaslan
67d9790985 [BE] Apply almost all remaining flake8-comprehension checks (#94676)
Applies the remaining flake8-comprehension fixes and checks. This changes replace all remaining unnecessary generator expressions with list/dict/set comprehensions which are more succinct, performant, and better supported by our torch.jit compiler. It also removes useless generators such as 'set(a for a in b)`, resolving it into just the set call.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/94676
Approved by: https://github.com/ezyang
2023-02-12 01:01:25 +00:00
Masaki Kozuki
30876229a7 [mta] Backward of unary foreach functions (#89591)
as per title, this PR defines backward of those.

This doesn't implement forward-mode automatic differentiation as [the current codegen](a747326423/tools/autograd/gen_variable_type.py (L1513)) doesn't seem to handle `ArrayRef<Tensor>`.

Rel:
- https://github.com/pytorch/pytorch/issues/53796
- https://github.com/pytorch/pytorch/issues/58833

Pull Request resolved: https://github.com/pytorch/pytorch/pull/89591
Approved by: https://github.com/albanD
2023-01-23 08:28:06 +00:00
Masaki Kozuki
32b2d8009a check if multi_tensor_apply_kernel was called (#92077)
Replacing all the hard coded number of cuda kernel launches with `multi_tensor_apply_kernel` call check, keeping the dependency on kineto profiler there

Rel: https://github.com/pytorch/pytorch/pull/91844#issuecomment-1379844523

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92077
Approved by: https://github.com/ngimel
2023-01-23 06:46:36 +00:00
milesial
a76bc410df Fix _foreach_norm on some tensor sizes (#91844)
This PR fixes 2 bugs with CUDA `_foreach_norm`:

1. Wrong norm when tensors are larger than kChunkSize = 65536
```
>>> torch._foreach_norm([torch.ones(60000, device="cuda") for _ in range(1)])
(tensor(244.9490, device='cuda:0', grad_fn=<NotImplemented>),)
>>> torch._foreach_norm([torch.ones(70000, device="cuda") for _ in range(1)])
(tensor(256., device='cuda:0', grad_fn=<NotImplemented>),)

>>> torch.ones(60000, device="cuda").norm()
tensor(244.9490, device='cuda:0', grad_fn=<LinalgVectorNormBackward0>)
>>> torch.ones(70000, device="cuda").norm()
tensor(264.5751, device='cuda:0', grad_fn=<LinalgVectorNormBackward0>)
```

2. Error when a tensor numel is smaller than the number of tensors

```
>> torch._foreach_norm([torch.ones(9, device="cuda") for _ in range(10)])
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: select(): index 9 out of range for tensor of size [9] at dimension 0
```

This bug could have been caught by tests if `PYTORCH_TEST_WITH_SLOW` was 1, because it would have tested tensors of size 300*300=90000. It's not enabled by default, does someone know if it's ever enabled?

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91844
Approved by: https://github.com/ngimel
2023-01-12 05:48:01 +00:00
Masaki Kozuki
554a796aef Implement torch._foreach_lerp (#87562)
As per title.

- [ ] ~~Q: Do we want `torch._foreach_lerp.ScalarList` as well?~~
- [ ] ~~we might want to have `ATen/native/cuda/lerp.cuh` and include it in `ATen/native/cuda/Lerp.cu` and `ATen/native/cuda/ForeachTernaryOp.cu`~~

Related:
- https://github.com/pytorch/pytorch/issues/58833
- https://github.com/pytorch/pytorch/issues/71683

Pull Request resolved: https://github.com/pytorch/pytorch/pull/87562
Approved by: https://github.com/ngimel
2023-01-11 02:52:04 +00:00
milesial
9d20d6d5ec Foreach clamp_min clamp_max (#91384)
Adds `_foreach_clamp_min` and `_foreach_clamp_max` as binary ops, with scalar, scalarlist and tensorlist support.

Timing example for `_foreach_clamp_min_` on a GTX3070Ti across a list of tensors with varying count and item size (times are in microseconds (us)):

CUDA:

```
[------------------ (tensors, scalar) -------------------]
                                   |  for loop  |  foreach
      10 tensors of size 4         |     29.0   |     10.2
      100 tensors of size 4        |    234.4   |     18.3
      1000 tensors of size 4       |   2194.1   |    113.5
      10000 tensors of size 4      |  21745.6   |   1144.5
      10 tensors of size 16        |     29.5   |     12.0
      100 tensors of size 16       |    256.9   |     19.9
      1000 tensors of size 16      |   2499.7   |    123.6
      10000 tensors of size 16     |  25022.2   |   1295.6
      10 tensors of size 256       |     32.8   |     11.2
      100 tensors of size 256      |    258.8   |     19.7
      1000 tensors of size 256     |   2509.2   |    123.7
      10000 tensors of size 256    |  25016.2   |   1295.4
      10 tensors of size 65536     |     32.9   |     18.7
      100 tensors of size 65536    |    327.1   |    150.3
      1000 tensors of size 65536   |   3051.3   |   1388.0
      10000 tensors of size 65536  |  30476.9   |  14021.5

[------------------ (tensors, tensors) ------------------]
                                   |  for loop  |  foreach
      10 tensors of size 4         |     26.8   |     17.3
      100 tensors of size 4        |    206.8   |     90.5
      1000 tensors of size 4       |   1993.0   |    828.9
      10000 tensors of size 4      |  19851.0   |   9063.3
      10 tensors of size 16        |     34.7   |     20.0
      100 tensors of size 16       |    232.2   |    102.1
      1000 tensors of size 16      |   2220.9   |    977.3
      10000 tensors of size 16     |  22644.5   |  10361.4
      10 tensors of size 256       |     30.5   |     19.7
      100 tensors of size 256      |    231.6   |    102.4
      1000 tensors of size 256     |   2251.9   |    978.7
      10000 tensors of size 256    |  22680.3   |  10405.8
      10 tensors of size 65536     |     30.6   |     34.4
      100 tensors of size 65536    |    315.1   |    223.6
      1000 tensors of size 65536   |   3252.1   |   2114.4
      10000 tensors of size 65536  |  30578.0   |  22826.3

```

CPU:
```
[------------------- (tensors, scalar) -------------------]
                                   |  for loop  |  foreach
      10 tensors of size 4         |      13.0  |       9.6
      100 tensors of size 4        |      62.4  |      31.6
      1000 tensors of size 4       |     562.2  |     245.6
      10000 tensors of size 4      |    5552.2  |    2517.7
      10 tensors of size 16        |      14.9  |      11.3
      100 tensors of size 16       |      74.1  |      36.9
      1000 tensors of size 16      |     663.7  |     285.5
      10000 tensors of size 16     |    6765.2  |    2947.5
      10 tensors of size 256       |      15.2  |      11.8
      100 tensors of size 256      |      76.0  |      37.7
      1000 tensors of size 256     |     728.8  |     323.9
      10000 tensors of size 256    |    7274.4  |    3800.3
      10 tensors of size 65536     |     105.6  |     124.5
      100 tensors of size 65536    |     982.8  |     939.7
      1000 tensors of size 65536   |   14993.1  |   14579.2
      10000 tensors of size 65536  |  163091.0  |  151555.8

[------------------- (tensors, tensors) ------------------]
                                   |  for loop  |  foreach
      10 tensors of size 4         |      11.8  |      10.5
      100 tensors of size 4        |      53.1  |      38.2
      1000 tensors of size 4       |     465.1  |     316.1
      10000 tensors of size 4      |    4616.9  |    3625.9
      10 tensors of size 16        |      13.5  |      12.3
      100 tensors of size 16       |      63.0  |      46.5
      1000 tensors of size 16      |     560.1  |     359.9
      10000 tensors of size 16     |    5586.8  |    3765.9
      10 tensors of size 256       |      15.2  |      13.7
      100 tensors of size 256      |      64.4  |      48.3
      1000 tensors of size 256     |     653.7  |     410.0
      10000 tensors of size 256    |    5916.6  |    3901.3
      10 tensors of size 65536     |     109.1  |     106.8
      100 tensors of size 65536    |    1128.9  |    1105.0
      1000 tensors of size 65536   |   16245.0  |   15950.8
      10000 tensors of size 65536  |  171111.3  |  163540.2
```

Example use:

```
tensors = [torch.randn(16, device='cuda') for _ in range(10)]

out = torch._foreach_clamp_min(tensors, 0.1)
out = torch._foreach_clamp_min(tensors, [0.1] * len(tensors))
out = torch._foreach_clamp_min(tensors, tensors)
torch._foreach_clamp_min_(tensors, 0.1)
torch._foreach_clamp_min_(tensors, [0.1] * len(tensors))
torch._foreach_clamp_min_(tensors, tensors)
```

Does not support complex types.
Changes the existing `foreach_minimum/maximum` to use this new implementation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/91384
Approved by: https://github.com/ngimel
2023-01-09 19:28:47 +00:00
Christian Puhrsch
6fd416650a Add _foreach_addc(div/mul)(_).Tensor (#88157)
Support passing value scalars as a flat 1D Tensor.

Currently we can only pass either an individual scalar or a ScalarList.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88157
Approved by: https://github.com/ngimel, https://github.com/albanD
2022-11-02 23:24:35 +00:00
Elias Ellison
f701cb04fb Test Dynamo CI w Fake Tensors (#84282)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84282
Approved by: https://github.com/anijain2305
2022-09-01 00:15:05 +00:00
Masaki Kozuki
3139722679 [foreach][mta] Inplace maximum and minimum (#82523)
### Description
<!-- What did you change and why was it needed? -->
Implement `torch._foreach_maximum_` and `torch._foreach_minimum_` mainly for `_multi_tensor_adam` and `_multi_tensor_adamw` with `amsgrad=True` to correctly update their `max_exp_avg_sqs`.

### Issue
<!-- Link to Issue ticket or RFP -->
- https://github.com/pytorch/pytorch/issues/78807
- https://github.com/pytorch/pytorch/pull/81894
- https://github.com/pytorch/pytorch/pull/81348
- https://github.com/pytorch/pytorch/pull/81705
- https://github.com/pytorch/pytorch/issues/58833
- https://github.com/pytorch/pytorch/issues/68041

### Testing
<!-- How did you test your change? -->
Updated `test_foreach.py::TestForeach::_minmax_test` to compare the outputs of `_foreach_maximum_` (and `_foreach_minimum_`) against those of `[torch.maximum(a, b) for a, b in zip(tensors1, tensors2)]`

cc @ngimel @albanD @mikaylagawarecki
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82523
Approved by: https://github.com/albanD
2022-08-03 03:40:42 +00:00
Nikita Shulga
bfac65dfe5
[testing] Update dispatch macros (#74977)
This PR is reland of #74289 
Co-authored-by: Khushi Agrawal <khushiagrawal411@gmail.com>
2022-03-30 14:13:21 -07:00
PyTorch MergeBot
2e4152b118 Revert "[testing] Update dispatch macros"
This reverts commit eed19a0f38.

Reverted https://github.com/pytorch/pytorch/pull/74289 on behalf of https://github.com/malfet
2022-03-30 19:52:37 +00:00
Khushi Agrawal
eed19a0f38 [testing] Update dispatch macros
Hi,
This PR is the follow-up PR of #71561. (the previous PR had a couple of merge conflicts and was reverted, this PR resolves that).
Please take a look. Thanks!

cc: @pmeier @mruberry @kshitij12345
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74289
Approved by: https://github.com/pmeier, https://github.com/mruberry
2022-03-30 16:10:16 +00:00
Masaki Kozuki
105e58a552 [Foreach Reduction] Use OpMathType tensor for intermediate results
Follow-up of https://github.com/pytorch/pytorch/pull/62646

In APEX, multi_tensor_norm only supports float and half and the dtype of `output` and `output_per_tensor` is hardcoded as single-precision (see ae757634ef/csrc/multi_tensor_l2norm_kernel.cu (L318)).

But in my previous PR, any tensor created in the kernel has the same dtype as the input tensors.
I'm not quite sure why I didn't see any failures in the previous PR but internal math should be performed in 32 bits for 16-bit tensors, in my opinion.

rel: https://github.com/pytorch/pytorch/issues/58833

cc @ptrblck @mcarilli @ngimel
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68107
Approved by: https://github.com/ngimel
2022-03-23 17:16:37 +00:00
Jeff Daily
1e08448435 [ROCm] enable foreach fastpath
Reverts #46216 now that rocm is fixed.

Benchmark to verify:

```python
import torch
import time
import torch.optim as optim
from torch.autograd import Variable
from torch.optim.lr_scheduler import ExponentialLR, ReduceLROnPlateau, StepLR
import torch.nn as nn
import time
import torchvision
import torch.utils.benchmark as benchmark_utils

device = "cuda"
model = torchvision.models.resnet.resnet101(pretrained=True).to(device)
targets = torch.randint(0, 1000, (100, 100), device=device)
criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=1e-3, momentum=0.1) # <----------------------- optimizer.
                                                          # would compare optim.SGD vs optim._multi_tensor.SGD
optimizer_mta = optim._multi_tensor.SGD(model.parameters(), lr=1e-3, momentum=0.1)
running_loss = 0.0
target = torch.empty(128, dtype=torch.long, device=device).random_(5)

optimizer.zero_grad()
inputs = torch.rand(128, 3, 100, 100, device=device , requires_grad=True)
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()

def main():
    timer = benchmark_utils.Timer(
        stmt="torch.cuda.synchronize();optimizer.step()",
        globals=globals(),
        label="str(optimizer)",
    )

    timer_mta = benchmark_utils.Timer(
        stmt="torch.cuda.synchronize(); optimizer_mta.step()",
        globals=globals(),
        label="str(optimizer_mta)",
    )
    for _ in range(1):
        for i in range(1):
           print(f"Run: {i}\n{'-' * 40}")
           print(f"autorange:\n{timer.blocked_autorange()}\n\n")

        for i in range(1):
            print(f"Run: {i}\n{'-' * 40}")
            print(f"autorange:\n{timer_mta.blocked_autorange()}\n\n")

if __name__ == "__main__":
    main()
```

Before revert:
```
Run: 0
----------------------------------------
autorange:
<torch.utils.benchmark.utils.common.Measurement object at 0x7f253e67c910>
str(optimizer)
  7.33 ms
  1 measurement, 100 runs , 1 thread

Run: 0
----------------------------------------
autorange:
<torch.utils.benchmark.utils.common.Measurement object at 0x7f253e67c510>
str(optimizer_mta)
  5.76 ms
  1 measurement, 100 runs , 1 thread
```

After revert:
```
Run: 0
----------------------------------------
autorange:
<torch.utils.benchmark.utils.common.Measurement object at 0x7fa2aa15e8d0>
str(optimizer)
  7.35 ms
  1 measurement, 100 runs , 1 thread

Run: 0
----------------------------------------
autorange:
<torch.utils.benchmark.utils.common.Measurement object at 0x7fa2aa15e4d0>
str(optimizer_mta)
  3.53 ms
  1 measurement, 100 runs , 1 thread
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/74417
Approved by: https://github.com/ngimel
2022-03-21 17:37:06 +00:00
Nikita Shulga
ef066f0832 Revert D34856571: [pytorch][PR] Replace get_all_ type macros with the ATen dispatch macros.
Test Plan: revert-hammer

Differential Revision:
D34856571 (3ded7b1da3)

Original commit changeset: 0dca038bcad5

Original Phabricator Diff: D34856571 (3ded7b1da3)

fbshipit-source-id: 594553fa0b710d78beba59d5d2b646f1f1270386
(cherry picked from commit 8090eb9b12dcf452a9e7dc01792a66fb91b563b6)
2022-03-15 22:07:11 +00:00
Khushi Agrawal
3ded7b1da3 Replace get_all_ type macros with the ATen dispatch macros. (#71561)
Summary:
Hi, Team!
The PR is motivated from https://github.com/pytorch/pytorch/pull/71153#discussion_r782446738. It aims to replace `get_all` type macros with the ATen dispatch macros.

The files it iterates over are: (Thanks, Lezcano, for the idea!!)

<details>
<summary>

`test/test_autograd.py`</summary>

<p>

```python
43:from torch.testing._internal.common_dtype import get_all_dtypes
8506:        floating_dt = [dt for dt in get_all_dtypes() if dt.is_floating_point]
```

</p>
</details>

<details>
<summary>

`test/test_binary_ufuncs.py`</summary>

<p>

```python
26:    all_types_and_complex_and, integral_types_and, get_all_dtypes, get_all_int_dtypes, get_all_math_dtypes,
27:    get_all_complex_dtypes, get_all_fp_dtypes,
935:    dtypes(*get_all_dtypes(include_bool=False, include_complex=False))
1035:    dtypes(*get_all_dtypes(
1488:    dtypes(*(get_all_dtypes(include_bool=False, include_bfloat16=False)))
1879:    dtypes(*product(get_all_dtypes(include_complex=False), get_all_dtypes(include_complex=False)))
1887:    dtypes(*(get_all_int_dtypes() + [torch.bool]))
1913:    dtypes(*(get_all_fp_dtypes()))
1941:    dtypes(*(get_all_fp_dtypes()))
1977:    dtypes(*product(get_all_complex_dtypes(), get_all_dtypes()))
2019:    dtypes(*product(get_all_fp_dtypes(), get_all_fp_dtypes()))
2048:    dtypes(*get_all_dtypes())
2110:    dtypes(*product(get_all_dtypes(include_complex=False),
2111:                     get_all_dtypes(include_complex=False)))
2128:            types = [torch.bool, torch.bfloat16] + get_all_int_dtypes()
2173:        if dtypes[1] in get_all_fp_dtypes():
2178:    dtypes(*product(get_all_fp_dtypes(),
2179:                     get_all_fp_dtypes()))
2260:    dtypesIfCUDA(*set(get_all_math_dtypes('cuda')) - {torch.complex64, torch.complex128})
2261:    dtypes(*set(get_all_math_dtypes('cpu')) - {torch.complex64, torch.complex128})
2273:    dtypesIfCUDA(*set(get_all_math_dtypes('cuda')) - {torch.complex64, torch.complex128})
2274:    dtypes(*set(get_all_math_dtypes('cpu')) - {torch.complex64, torch.complex128})
2307:    dtypes(*get_all_math_dtypes('cpu'))
2319:    dtypes(*get_all_fp_dtypes(include_bfloat16=False))
2331:    dtypes(*get_all_int_dtypes())
2356:    dtypes(*get_all_dtypes(include_bfloat16=False, include_bool=False, include_complex=False))
2393:        if dtype in get_all_int_dtypes():
2614:    dtypes(*get_all_dtypes())
2624:    dtypes(*tuple(itertools.combinations_with_replacement(get_all_dtypes(), 2)))
2806:    dtypes(*list(product(get_all_dtypes(include_complex=False),
2807:                          get_all_dtypes(include_complex=False))))
2866:    dtypes(*list(product(get_all_complex_dtypes(),
2867:                          get_all_complex_dtypes())))
2902:    dtypes(*product(get_all_dtypes(), get_all_dtypes()))
2906:    dtypes(*product(get_all_dtypes(), get_all_dtypes()))
2910:    dtypes(*product(get_all_dtypes(), get_all_dtypes()))
3019:        dtypes = [torch.float, torch.double] + get_all_complex_dtypes()
3221:    dtypes(*get_all_dtypes(include_complex=False))
3407:    dtypes(*list(product(get_all_dtypes(include_bool=False),
3408:                          get_all_dtypes(include_bool=False))))
3504:    dtypes(*product(get_all_dtypes(include_complex=False, include_bfloat16=False),
3505:                     get_all_dtypes(include_complex=False, include_bfloat16=False)))
3516:            if x.dtype in get_all_int_dtypes() + [torch.bool]:
3643:    dtypes(*product(get_all_dtypes(include_complex=False,
3645:                     get_all_dtypes(include_complex=False,
```

</p>
</details>

<details>
<summary>

`test/test_complex.py`</summary>

<p>

```python
6:from torch.testing._internal.common_dtype import get_all_complex_dtypes
11:    dtypes(*get_all_complex_dtypes())
```

</p>
</details>

<details>
<summary>

`test/test_foreach.py`</summary>

<p>

```python
18:    get_all_dtypes, get_all_int_dtypes, get_all_complex_dtypes, get_all_fp_dtypes,
142:            if dtype in get_all_int_dtypes():
179:            disable_fastpath = op.ref == torch.div and dtype in get_all_int_dtypes() + [torch.bool]
201:            disable_fastpath = op.ref == torch.div and dtype in get_all_int_dtypes() + [torch.bool]
205:                disable_fastpath |= dtype in get_all_int_dtypes() + [torch.bool]
211:                disable_fastpath |= dtype not in get_all_complex_dtypes()
241:                bool_int_div = op.ref == torch.div and dtype in get_all_int_dtypes() + [torch.bool]
246:                    disable_fastpath |= dtype in get_all_int_dtypes() + [torch.bool]
248:                    disable_fastpath |= dtype not in get_all_complex_dtypes()
250:                    disable_fastpath |= True and dtype not in get_all_complex_dtypes()
307:        disable_fastpath = dtype in get_all_int_dtypes() + [torch.bool]
365:        if opinfo.name == "_foreach_abs" and dtype in get_all_complex_dtypes():
376:    ops(foreach_unary_op_db, dtypes=get_all_dtypes())
393:         dtypes=get_all_dtypes(include_half=True, include_bfloat16=True, include_complex=False))
401:    ops(foreach_minmax_op_db, dtypes=get_all_fp_dtypes(include_bfloat16=True, include_half=True))
426:            if ord in (1, 2) and dtype in torch.testing.get_all_fp_dtypes():
439:    dtypes(*get_all_dtypes())
449:    ops(foreach_binary_op_db, dtypes=get_all_dtypes())
481:    ops(foreach_binary_op_db, dtypes=get_all_dtypes())
536:            if dtype in get_all_int_dtypes() + [torch.bool] and foreach_op == torch._foreach_div:
545:    ops(foreach_binary_op_db, dtypes=get_all_dtypes())
637:    ops(foreach_pointwise_op_db, allowed_dtypes=get_all_fp_dtypes(include_half=False, include_bfloat16=False))
```

</p>
</details>

<details>
<summary>

`test/test_linalg.py`</summary>

<p>

```python
29:    all_types, floating_types, floating_and_complex_types, get_all_dtypes, get_all_int_dtypes, get_all_complex_dtypes,
30:    get_all_fp_dtypes,
111:    dtypes(*(get_all_dtypes()))
794:        float_and_complex_dtypes = get_all_fp_dtypes() + get_all_complex_dtypes()
807:    dtypes(*(get_all_int_dtypes()))
828:    dtypes(*(get_all_fp_dtypes() + get_all_complex_dtypes()))
841:        if dtype in get_all_complex_dtypes():
844:    dtypes(*itertools.product(get_all_dtypes(),
845:                               get_all_dtypes()))
855:        for dtypes0, dtypes1, dtypes2 in product(get_all_dtypes(), repeat=3):
5607:                  *get_all_fp_dtypes(include_half=not CUDA9, include_bfloat16=(CUDA11OrLater and SM53OrLater)))
5608:    dtypes(*(set(get_all_dtypes()) - {torch.half, torch.bool}))
5644:    dtypes(*(get_all_complex_dtypes() + get_all_fp_dtypes()))
6255:    dtypesIfCUDA(*get_all_complex_dtypes(),
6256:                  *get_all_fp_dtypes(include_bfloat16=(TEST_WITH_ROCM or (CUDA11OrLater and SM53OrLater)),
6292:    dtypesIfCUDA(*get_all_fp_dtypes(include_bfloat16=(TEST_WITH_ROCM or (CUDA11OrLater and SM53OrLater))))
6323:    dtypesIfCUDA(*get_all_complex_dtypes(),
6324:                  *get_all_fp_dtypes(include_bfloat16=(TEST_WITH_ROCM or (CUDA11OrLater and SM53OrLater))))
6325:    dtypes(*get_all_complex_dtypes(), *get_all_fp_dtypes())
6358:    dtypesIfCUDA(*([torch.float, torch.double] + get_all_complex_dtypes()))
6556:    dtypes(*get_all_fp_dtypes(), *get_all_complex_dtypes())
6668:    dtypes(*get_all_fp_dtypes(), *get_all_complex_dtypes())
6741:    dtypes(*get_all_fp_dtypes(), *get_all_complex_dtypes())
```

</p>
</details>

<details>
<summary>

`test/test_nn.py`</summary>

<p>

```python
37:from torch.testing._internal.common_dtype import integral_types, get_all_fp_dtypes, get_all_math_dtypes
50:    onlyNativeDeviceTypes, deviceCountAtLeast, largeTensorTest, expectedFailureMeta, skipMeta, get_all_device_types, \
8862:                for device in get_all_device_types():
9629:            for dt1 in get_all_math_dtypes(device):
9630:                for dt2 in get_all_math_dtypes(device):
9631:                    for dt3 in get_all_math_dtypes(device):
9648:            for input_dtype in get_all_math_dtypes(device):
9664:            for input_dtype in get_all_math_dtypes(device):
13015:    dtypes(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM))
13034:    dtypes(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM))
13159:    dtypes(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM))
17400:    dtypesIfCUDA(*get_all_fp_dtypes(include_bfloat16=AMPERE_OR_ROCM))
17768:    dtypesIfCUDA(*get_all_fp_dtypes())
17773:    dtypesIfCUDA(*get_all_fp_dtypes())
17778:    dtypesIfCUDA(*get_all_fp_dtypes())
17783:    dtypesIfCUDA(*get_all_fp_dtypes())
17788:    dtypesIfCUDA(*get_all_fp_dtypes())
17793:    dtypesIfCUDA(*get_all_fp_dtypes())
17798:    dtypesIfCUDA(*get_all_fp_dtypes())
17963:    dtypesIfCUDA(*get_all_fp_dtypes())
17977:    dtypesIfCUDA(*get_all_fp_dtypes())
18684:    def test_cross_entropy_loss_prob_target_all_reductions(self, device):
```

</p>
</details>

<details>
<summary>

`test/test_numpy_interop.py`</summary>

<p>

```python
12:from torch.testing._internal.common_dtype import get_all_dtypes
399:    dtypes(*get_all_dtypes())
```

</p>
</details>

<details>
<summary>

`test/test_ops.py`</summary>

<p>

```python
12:from torch.testing._internal.common_dtype import floating_and_complex_types_and, get_all_dtypes
86:        for dtype in get_all_dtypes():
```

</p>
</details>

<details>
<summary>

`test/test_reductions.py`</summary>

<p>

```python
16:    get_all_dtypes, get_all_math_dtypes, get_all_int_dtypes, get_all_complex_dtypes, get_all_fp_dtypes,
360:         allowed_dtypes=get_all_dtypes(include_bfloat16=False))
366:         allowed_dtypes=get_all_dtypes(include_bfloat16=False))
394:         allowed_dtypes=get_all_dtypes(include_bfloat16=False))
750:        for dtype in [dtype for dtype in get_all_math_dtypes('cpu') if dtype != torch.float16]:
1404:    dtypes(*get_all_dtypes(include_bool=False, include_complex=False))
1457:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) +
1458:              get_all_complex_dtypes()))
1465:            return dtype in get_all_int_dtypes()
1494:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False)))
1501:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False)))
1507:    dtypes(*(get_all_complex_dtypes()))
1514:        dtypes = list(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False))
1523:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False)))
1531:        if dtype in get_all_fp_dtypes():
1608:    dtypes(*(get_all_dtypes(include_half=True, include_bfloat16=False,
1837:    dtypes(*get_all_dtypes(include_bool=False, include_complex=False))
1855:    dtypes(*(set(get_all_dtypes(include_bool=False, include_complex=False)) - {torch.uint8}))
3219:        for dtype in get_all_dtypes(include_half=True, include_bfloat16=False,
```

</p>
</details>

<details>
<summary>

`test/test_serialization.py`</summary>

<p>

```python
26:from torch.testing._internal.common_dtype import get_all_dtypes
586:        for device, dtype in product(devices, get_all_dtypes()):
589:            for other_dtype in get_all_dtypes():
```

</p>
</details>

<details>
<summary>

`test/test_shape_ops.py`</summary>

<p>

```python
18:from torch.testing._internal.common_dtype import get_all_dtypes
230:    dtypes(*get_all_dtypes(include_complex=False, include_bool=False, include_half=False,
232:    dtypesIfCUDA(*get_all_dtypes(include_complex=False, include_bool=False, include_bfloat16=False))
344:    dtypes(*get_all_dtypes())
443:    dtypes(*get_all_dtypes())
461:    dtypes(*get_all_dtypes())
570:    dtypes(*get_all_dtypes(include_complex=False))
```

</p>
</details>

<details>
<summary>

`test/test_sort_and_select.py`</summary>

<p>

```python
12:    all_types, all_types_and, floating_types_and, get_all_dtypes, get_all_int_dtypes, get_all_fp_dtypes,
136:    dtypes(*set(get_all_dtypes()) - {torch.bool, torch.complex64, torch.complex128})
231:    dtypes(*set(get_all_dtypes()) - {torch.bool, torch.complex64, torch.complex128})
296:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
647:    dtypesIfCUDA(*get_all_fp_dtypes())
678:    dtypesIfCUDA(*(get_all_dtypes(include_complex=False,
682:    dtypes(*(get_all_dtypes(include_complex=False, include_bool=False, include_half=False, include_bfloat16=False)))
739:    dtypesIfCPU(*set(get_all_dtypes()) - {torch.complex64, torch.complex128})
740:    dtypes(*set(get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
799:    dtypesIfCPU(*set(get_all_dtypes()) - {torch.complex64, torch.complex128})
800:    dtypes(*set(get_all_dtypes()) - {torch.bfloat16, torch.complex64, torch.complex128})
```

</p>
</details>

<details>
<summary>

`test/test_sparse.py`</summary>

<p>

```python
20:from torch.testing import get_all_complex_dtypes, get_all_fp_dtypes
29:    floating_and_complex_types, floating_and_complex_types_and, get_all_dtypes, get_all_int_dtypes,
1963:            return dtype in get_all_int_dtypes()
1994:    dtypes(*get_all_dtypes(include_bool=False, include_half=False,
2103:            return dtype in get_all_int_dtypes()
2138:    dtypes(*get_all_dtypes(include_bool=False, include_half=False,
2626:        all_sparse_dtypes = get_all_dtypes(include_complex=True)
2633:        all_sparse_dtypes = get_all_dtypes(include_complex=True)
3230:    dtypes(*get_all_complex_dtypes(),
3231:            *get_all_fp_dtypes(include_half=False, include_bfloat16=False))
3234:                  *get_all_fp_dtypes(
```

</p>
</details>

<details>
<summary>

`test/test_sparse_csr.py`</summary>

<p>

```python
7:from torch.testing import get_all_complex_dtypes, get_all_fp_dtypes, floating_and_complex_types, make_tensor
17:from torch.testing._internal.common_dtype import floating_types, get_all_dtypes
120:    dtypes(*get_all_dtypes())
133:    dtypes(*get_all_dtypes())
150:    dtypes(*get_all_dtypes())
180:    dtypes(*get_all_dtypes())
201:    dtypes(*get_all_dtypes())
210:    dtypes(*get_all_dtypes())
225:    dtypes(*get_all_dtypes())
244:    dtypes(*get_all_dtypes())
263:    dtypes(*get_all_dtypes())
285:    dtypes(*get_all_dtypes())
411:    dtypes(*get_all_dtypes())
482:    dtypes(*get_all_dtypes())
502:    dtypes(*get_all_dtypes())
562:    dtypes(*get_all_dtypes())
588:    dtypesIfCUDA(*get_all_complex_dtypes(),
589:                  *get_all_fp_dtypes(include_half=SM53OrLater, include_bfloat16=SM80OrLater))
745:    dtypesIfCUDA(*get_all_complex_dtypes(),
746:                  *get_all_fp_dtypes(include_half=SM53OrLater and TEST_CUSPARSE_GENERIC,
765:    dtypesIfCUDA(*get_all_complex_dtypes(),
766:                  *get_all_fp_dtypes(include_half=SM53OrLater and TEST_CUSPARSE_GENERIC,
801:                  *torch.testing.get_all_fp_dtypes(include_bfloat16=SM80OrLater,
841:                  *torch.testing.get_all_fp_dtypes(include_bfloat16=SM80OrLater,
1182:    dtypes(*get_all_dtypes())
1276:    dtypes(*get_all_dtypes(include_bool=False, include_half=False, include_bfloat16=False))
1286:    dtypes(*get_all_dtypes())
```

</p>
</details>

<details>
<summary>

`test/test_tensor_creation_ops.py`</summary>

<p>

```python
21:    onlyCUDA, skipCPUIf, dtypesIfCUDA, skipMeta, get_all_device_types)
23:    get_all_dtypes, get_all_math_dtypes, get_all_int_dtypes, get_all_fp_dtypes, get_all_complex_dtypes
150:        for dt in get_all_dtypes():
160:        for dt in get_all_dtypes():
314:        dtypes = [dtype for dtype in get_all_dtypes() if dtype != torch.bfloat16]
1012:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) +
1013:              get_all_complex_dtypes()))
1032:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) +
1033:              get_all_complex_dtypes()))
1050:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) +
1051:              get_all_complex_dtypes()))
1745:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
1779:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
1868:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
1926:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
1954:            do_test_empty_full(self, get_all_math_dtypes('cpu'), torch.strided, torch_device)
1956:            do_test_empty_full(self, get_all_math_dtypes('cpu'), torch.strided, None)
1957:            do_test_empty_full(self, get_all_math_dtypes('cpu'), torch.strided, torch_device)
2538:        for device in get_all_device_types():
2645:        for dtype in get_all_dtypes():
2678:    dtypes(*(get_all_fp_dtypes(include_half=False, include_bfloat16=False) +
2679:              get_all_complex_dtypes()))
2716:    dtypes(*get_all_fp_dtypes(include_half=False, include_bfloat16=False))
2827:            for dt in get_all_dtypes():
2913:    dtypes(*get_all_dtypes(include_bool=False, include_half=False))
2914:    dtypesIfCUDA(*get_all_dtypes(include_bool=False, include_half=True))
3028:    dtypes(*(get_all_fp_dtypes() + get_all_complex_dtypes()))
3033:    dtypes(*(get_all_fp_dtypes() + get_all_complex_dtypes()))
3074:    dtypes(*get_all_dtypes(include_bool=False, include_half=False, include_complex=False))
3075:    dtypesIfCUDA(*((get_all_int_dtypes() + [torch.float32, torch.float16, torch.bfloat16])
3077:                    else get_all_dtypes(include_bool=False, include_half=True, include_complex=False)))
3873:    dtypes(*get_all_dtypes())
3884:    dtypes(*get_all_dtypes(include_bool=False))
3916:            for other in get_all_dtypes():
3922:    dtypes(*get_all_dtypes())
3932:    dtypes(*get_all_dtypes(include_bool=False))
3955:    dtypes(*get_all_dtypes(include_bool=False))
3961:    dtypes(*get_all_dtypes(include_bool=False))
3965:    dtypes(*get_all_dtypes())
```

</p>
</details>

<details>
<summary>

`test/test_testing.py`</summary>

<p>

```python
25:from torch.testing._internal.common_dtype import get_all_dtypes
31:    dtypes(*(get_all_dtypes(include_half=True, include_bfloat16=False,
```

</p>
</details>

<details>
<summary>

`test/test_torch.py`</summary>

<p>

```python
51:    expectedAlertNondeterministic, get_all_device_types, skipXLA)
57:    get_all_fp_dtypes, get_all_int_dtypes, get_all_math_dtypes, get_all_dtypes, get_all_complex_dtypes
296:            for d in get_all_device_types():
323:            for device in get_all_device_types():
324:                for dt1 in get_all_dtypes():
325:                    for dt2 in get_all_dtypes():
343:            all_dtypes = get_all_dtypes()
350:            all_dtypes = get_all_dtypes()
781:            for dtype in get_all_dtypes():
986:            for device in get_all_device_types():
1017:            for device in get_all_device_types():
1018:                for dtype in get_all_math_dtypes(device):
2792:            for device in get_all_device_types():
3186:    dtypes(*get_all_dtypes())
3195:        for error_dtype in get_all_dtypes():
3203:    dtypes(*get_all_dtypes())
3212:        for error_dtype in get_all_dtypes():
4539:    dtypes(*get_all_fp_dtypes())
4545:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
4577:    dtypes(*get_all_fp_dtypes(include_half=False, include_bfloat16=False))
4578:    dtypesIfCPU(*(get_all_fp_dtypes(include_half=False, include_bfloat16=True)))
4579:    dtypesIfCUDA(*(get_all_fp_dtypes(include_bfloat16=False)))
4599:    dtypes(*(get_all_fp_dtypes(include_half=False, include_bfloat16=False)))
4600:    dtypesIfCPU(*(get_all_dtypes(include_half=False, include_bfloat16=False, include_complex=False)))
4601:    dtypesIfCUDA(*(get_all_dtypes(include_bfloat16=False, include_complex=False)))
4613:        for p_dtype in get_all_fp_dtypes(include_half=device.startswith('cuda'), include_bfloat16=False):
4628:    dtypes(*(get_all_fp_dtypes(include_half=False, include_bfloat16=False)))
4629:    dtypesIfCUDA(*(get_all_fp_dtypes(include_bfloat16=False)))
4640:    dtypes(*get_all_fp_dtypes())
4723:    dtypes(*get_all_fp_dtypes())
4735:    dtypes(*get_all_fp_dtypes(include_bfloat16=False))
4736:    dtypesIfCUDA(*get_all_fp_dtypes())
4747:    dtypes(*get_all_fp_dtypes())
4761:    dtypes(*get_all_fp_dtypes())
4771:    dtypes(*get_all_fp_dtypes())
4792:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
5302:    dtypes(*get_all_dtypes(include_bfloat16=False))
5322:    dtypes(*get_all_dtypes(include_half=False, include_bfloat16=False))
5323:    dtypesIfCPU(*get_all_dtypes(include_bfloat16=False))
5324:    dtypesIfCUDA(*get_all_dtypes(include_bfloat16=False))
5591:        for dt in get_all_dtypes():
5611:        for dt in get_all_dtypes():
5678:        for dt in get_all_dtypes():
5696:    dtypesIfCUDA(*set(get_all_math_dtypes('cuda')))
5697:    dtypes(*set(get_all_math_dtypes('cpu')))
5746:    dtypes(*get_all_dtypes())
5780:    dtypes(*get_all_dtypes())
5885:    dtypes(*get_all_dtypes())
5902:    dtypes(*get_all_dtypes())
5945:    dtypes(*get_all_dtypes())
5979:    dtypes(*get_all_dtypes(include_bool=False))
6049:    dtypes(*get_all_dtypes(include_bool=False))
6092:    dtypes(*(get_all_fp_dtypes(include_bfloat16=False, include_half=False) +
6093:              get_all_complex_dtypes()))
6094:    dtypesIfCPU(*get_all_dtypes())
6095:    dtypesIfCUDA(*get_all_dtypes())
6122:    dtypes(*(get_all_fp_dtypes(include_bfloat16=False, include_half=False) +
6123:              get_all_complex_dtypes()))
6124:    dtypesIfCPU(*get_all_dtypes())
6125:    dtypesIfCUDA(*get_all_dtypes())
6163:    dtypes(*(get_all_fp_dtypes(include_bfloat16=False, include_half=False) +
6164:              get_all_complex_dtypes()))
6165:    dtypesIfCPU(*get_all_dtypes())
6166:    dtypesIfCUDA(*get_all_dtypes())
6190:    dtypes(*(get_all_complex_dtypes() +
6191:              get_all_int_dtypes()))
6238:    dtypes(*get_all_dtypes())
6323:    dtypes(*get_all_dtypes())
6389:    dtypes(*product(get_all_dtypes(), (torch.uint8, torch.bool)))
6699:    dtypesIfCUDA(*set(get_all_math_dtypes('cuda')))
6700:    dtypes(*set(get_all_math_dtypes('cpu')))
7452:    dtypes(*get_all_dtypes(include_bool=False))
7461:    dtypes(*get_all_dtypes(include_bool=False))
7477:    dtypes(*get_all_dtypes(include_bool=False))
7496:    dtypes(*get_all_dtypes(include_bool=False))
7538:    dtypes(*get_all_dtypes(include_bool=False))
8162:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes() +
8163:              get_all_complex_dtypes()))
8175:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes() +
8176:              get_all_complex_dtypes()))
```

</p>
</details>

<details>
<summary>

`test/test_type_promotion.py`</summary>

<p>

```python
14:    get_all_dtypes, get_all_math_dtypes, get_all_int_dtypes, get_all_fp_dtypes
187:        for dtype in get_all_dtypes():
262:        dtypes1 = get_all_math_dtypes('cuda')
263:        dtypes2 = get_all_math_dtypes(device)
339:    dtypes(*itertools.product(get_all_dtypes(), get_all_dtypes()))
468:            for dt1 in get_all_math_dtypes(device):
469:                for dt2 in get_all_math_dtypes(device):
519:            for dt1 in get_all_math_dtypes(device):
520:                for dt2 in get_all_math_dtypes(device):
528:        for dt in get_all_math_dtypes(device):
561:        for dtype in get_all_dtypes():
766:                                          dtypes=get_all_math_dtypes(device))
771:                                          dtypes=get_all_math_dtypes(device))
782:                                          dtypes=get_all_math_dtypes(device))
879:        dtypes = get_all_dtypes(include_bfloat16=False)
898:        dtypes = get_all_dtypes(include_bfloat16=False, include_bool=False)
965:    dtypesIfCUDA(*itertools.product(get_all_dtypes(include_bfloat16=False, include_complex=False),
966:                                     get_all_dtypes(include_bfloat16=False, include_complex=False)))
967:    dtypes(*itertools.product(get_all_dtypes(include_half=False, include_bfloat16=False,
969:                               get_all_dtypes(include_half=False, include_bfloat16=False,
976:            return dtype in get_all_int_dtypes() + [torch.bool]
979:            return dtype in get_all_fp_dtypes(include_half=True, include_bfloat16=False)
```

</p>
</details>

<details>
<summary>

`test/test_unary_ufuncs.py`</summary>

<p>

```python
24:    floating_types_and, all_types_and_complex_and, floating_and_complex_types_and, get_all_dtypes, get_all_math_dtypes,
25:    get_all_int_dtypes, get_all_fp_dtypes, get_all_complex_dtypes
517:    dtypes(*(get_all_int_dtypes() + [torch.bool] +
518:              get_all_fp_dtypes(include_bfloat16=False)))
596:    dtypes(*get_all_fp_dtypes(include_half=True, include_bfloat16=False))
611:        invalid_input_dtypes = get_all_int_dtypes() + \
612:            get_all_complex_dtypes() + \
619:        for dtype in get_all_fp_dtypes(include_half=True, include_bfloat16=False):
1048:    dtypes(*get_all_math_dtypes('cpu'))
1182:    dtypesIfCUDA(*get_all_fp_dtypes())
1190:    dtypesIfCUDA(*get_all_fp_dtypes())
1205:    dtypesIfCUDA(*get_all_fp_dtypes())
1215:    dtypesIfCUDA(*get_all_fp_dtypes())
1307:    dtypes(*(get_all_dtypes(include_bool=False)))
1349:    dtypes(*(get_all_fp_dtypes(include_half=False) +
1350:              get_all_complex_dtypes()))
1351:    dtypesIfCUDA(*(get_all_fp_dtypes(include_half=True) +
1352:                    get_all_complex_dtypes()))
```

</p>
</details>

<details>
<summary>

`test/test_view_ops.py`</summary>

<p>

```python
19:    get_all_dtypes, get_all_int_dtypes, get_all_fp_dtypes, get_all_complex_dtypes
124:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
131:    dtypes(*get_all_dtypes(include_bfloat16=False))
213:            for view_dtype in [*get_all_fp_dtypes(), *get_all_complex_dtypes()]:
220:    dtypes(*get_all_dtypes())
224:        for view_dtype in get_all_dtypes():
305:    dtypes(*get_all_complex_dtypes(include_complex32=True))
343:    dtypes(*get_all_dtypes())
354:    dtypes(*get_all_dtypes())
364:    dtypes(*get_all_dtypes())
374:    dtypes(*get_all_dtypes())
384:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes()))
395:    dtypes(*get_all_complex_dtypes())
426:    dtypes(*get_all_complex_dtypes())
451:    dtypes(*product(get_all_complex_dtypes(), get_all_dtypes()))
1263:    dtypes(*(torch.testing.get_all_dtypes()))
1279:    dtypes(*(torch.testing.get_all_dtypes()))
1405:    dtypes(*(get_all_int_dtypes() + get_all_fp_dtypes(include_bfloat16=False) +
1406:              get_all_complex_dtypes()))
1471:    dtypes(*get_all_dtypes(include_bfloat16=False))
1574:    dtypes(*get_all_dtypes())
1601:    dtypes(*get_all_dtypes(include_bfloat16=False))
1632:    dtypes(*get_all_dtypes(include_bfloat16=False))
1711:        for dt in get_all_dtypes():
1717:        for dt in get_all_dtypes():
1724:        for dt in get_all_dtypes():
```

</p>
</details>

I'm looking forward to your viewpoints. Thanks :)

cc: mruberry kshitij12345 anjali411

Pull Request resolved: https://github.com/pytorch/pytorch/pull/71561

Reviewed By: samdow

Differential Revision: D34856571

Pulled By: mruberry

fbshipit-source-id: 0dca038bcad5cf69906245c496d2e61ac3876335
(cherry picked from commit b058f67b4313143efa714ab105f36e74083131b9)
2022-03-15 20:31:41 +00:00
Philip Meier
d4d0ab71b3 use torch.testing.assert_equal in TestCase.assertEqual (#67796)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67796

Supersedes #58981.

cc mruberry

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D33542994

Pulled By: mruberry

fbshipit-source-id: 527099f5fdc154fd95ee48cd19f0a85eeec43443
(cherry picked from commit 1a58915e2c)
2022-01-27 08:33:55 +00:00
Joel Schlosser
61ea2fc35e Fix device type / dtype handling for parametrized test names (#65217)
Summary:
This PR absolves `_TestParametrizer`s (e.g. `ops`, `modules`, `parametrize`) of the responsibility of adding device type (e.g. `'cpu'`, `'cuda'`, etc.) / dtype (e.g. 'float32') to generated test names. This fixes repeated instances of the device string being added to generated test names (e.g. `test_batch_norm_training_True_cuda_track_running_stats_True_cuda_affine_True_cuda`).

The responsibility for placing device / dtype suffixes is now handled by `instantiate_device_type_tests()` instead so it is added a single time. It will place `<device>_<dtype>` at the end of the test name unconditionally, maintaining the current naming convention.

As part of this work, I also tightened the semantics through some additional error case handling:
* Composing multiple decorators that each try to handle the same parameter will error out with a nice message. This includes the case to trying to compose `modules` + `ops`, as they each try to handle `dtype`. Similarly, `ops` + `dtypes` is forbidden when both try to handle `dtype`. This required changes in the following test files:
  * `test/test_unary_ufuncs.py`
  * `test/test_foreach.py`
* The `modules` / `ops` decorators will now error out with a nice message if used with `instantiate_parametrized_tests()` instead of `instantiate_device_type_tests()`, since they're not (currently) written to work outside of a device-specific context.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/65217

Reviewed By: mruberry

Differential Revision: D32627303

Pulled By: jbschlosser

fbshipit-source-id: c2957228353ed46a0b7da8fa1a34c67598779312
2021-11-29 19:02:23 -08:00
Masaki Kozuki
cdd5d16489 [Foreach] Implement L1&L2 norm (#62646)
Summary:
Implement L1 & L2 norm in fast path with the reference of [nvidia/apex](https://github.com/NVIDIA/apex/blob/master/csrc/multi_tensor_l2norm_kernel.cu).
When `ord` is neither 1 nor 2, then slow path is chosen.

Related: https://github.com/pytorch/pytorch/issues/58833

cc ptrblck mcarilli ngimel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62646

Reviewed By: malfet

Differential Revision: D32173421

Pulled By: ngimel

fbshipit-source-id: 14b7544601658a979b83509df351e1848ded7675
2021-11-05 11:23:00 -07:00
Jane Xu
c19cda5782 [skip ci] Add test owners for a special hi-pri class of tests (#67553)
Summary:
Action following https://github.com/pytorch/pytorch/issues/66232

This change does require some context: there were several suggestions regarding what to do about this group of tests: tests that are core and crucial to all of PyTorch and are too broad to be owned by one team.
1. Let's add a "module: core" and put people behind it! This idea sounds appealing unless you are one of the people backing the label. From talking to albanD among others, this idea of putting all these core tests on the shoulder of a few people or one team isn't super fair and I have not yet found anyone willing to take on this job.
2. Taking advantage of the fact that we already have a triaging oncall that takes turns triaging issues, we can leave these tests essentially unlabeled and allow the oncall to triage these tests. Since these tests are crucial to PyTorch, we'll add the "high priority" label to mark them different from other unowned tests (see https://github.com/pytorch/pytorch/issues/67552).
3. I _could_ still create an unbacked label "module: core" and attribute these tests there, but I don't like the idea of creating a facade that the tests are "triaged" to a label when no one is actually taking a look.

Now we could potentially break these tests down into smaller files so that each piece _could_ be owned by a team, but 1. I don't know if this is currently feasible and 2. This approach does not prevent that from happening in the future.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/67553

Reviewed By: albanD

Differential Revision: D32025004

Pulled By: janeyx99

fbshipit-source-id: 1fb1aa4c27e305695ab6e80ae3d02f90519939c0
2021-10-29 12:17:21 -07:00
Philip Meier
26b7ff5aea deprecate dtype getters from torch.testing namespace (#63554)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63554

Following https://github.com/pytorch/pytorch/pull/61840#issuecomment-884087809, this deprecates all the dtype getters publicly exposed in the `torch.testing` namespace. The reason for this twofold:

1. If someone is not familiar with the C++ dispatch macros PyTorch uses, the names are misleading. For example `torch.testing.floating_types()` will only give you `float32` and `float64` skipping `float16` and `bfloat16`.
2. The dtype getters provide very minimal functionality that can be easily emulated by downstream libraries.

We thought about [providing an replacement](https://gist.github.com/pmeier/3dfd2e105842ad0de4505068a1a0270a), but ultimately decided against it. The major problem is BC: by keeping it, either the namespace is getting messy again after a new dtype is added or we need to somehow version the return values of the getters.

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D30662206

Pulled By: mruberry

fbshipit-source-id: a2bdb10ab02ae665df1b5b76e8afa9af043bbf56
2021-09-07 08:58:51 -07:00
Kushashwa Ravi Shrimali
d37636901e [Doc] make_tensor to torch.testing module (#63925)
Summary:
This PR aims to add `make_tensor` to the `torch.testing` module in PyTorch docs.

TODOs:

* [x] Add examples

cc: pmeier mruberry brianjo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/63925

Reviewed By: ngimel

Differential Revision: D30633487

Pulled By: mruberry

fbshipit-source-id: 8e5a1f880c6ece5925b4039fee8122bd739538af
2021-08-30 12:25:40 -07:00
Shen Li
1022443168 Revert D30279364: [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: revert-hammer

Differential Revision:
D30279364 (b004307252)

Original commit changeset: c1ed77dfe43a

fbshipit-source-id: eab50857675c51e0088391af06ec0ecb14e2347e
2021-08-12 11:45:01 -07:00
Zsolt Dollenstein
b004307252 [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle

Reviewed By: zertosh

Differential Revision: D30279364

fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
2021-08-12 10:58:35 -07:00
Yukio Siraichi
693b0af996 Port addcmul kernels to structured kernels. (#62318)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62318

Tracking issue: #55070

This PR introduces the method `TensorIteratorBase::build_ternary_op` for building a
`TensorIteratorBase` for 3-input 1-output kernel.

Test Plan: Imported from OSS

Reviewed By: ejguan

Differential Revision: D29961997

Pulled By: bdhirsh

fbshipit-source-id: 2208d24823bad6e74c8d508f363716d8125b8619
2021-08-04 15:34:01 -07:00
Ilia Cherniavskii
773a8eede4 [profiler][refactor] Refactor the usage of legacy profiler implementation (#61931)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61931

This PR consolidates the profiling code around a new C++ implementation
(profiler_kineto.h/cpp) and uses it unconditionally from
torch.autograd.profiler/torch.profiler:
1. Always use profiler_kineto.h/cpp as the C++ implementation
2. Simplify profiler.py to remove unneeded parts depending on legacy
impl
3. Move some of the legacy logic into profiler_legacy.py (to be fully
deleted later)

Test Plan:
USE_KINETO=1 USE_CUDA=1 USE_MKLDNN=1 BLAS=MKL BUILD_BINARY=1 python setup.py develop install --cmake
python test/test_profiler.py -v
USE_KINETO=0 USE_CUDA=1 USE_MKLDNN=1 BLAS=MKL BUILD_BINARY=1 python setup.py develop install --cmake
python test/test_profiler.py -v

Imported from OSS

Reviewed By: gdankel

Differential Revision: D29801599

fbshipit-source-id: 9794d29f2af38dddbcd90dbce4481fc8575fa29e
2021-08-03 18:51:29 -07:00
Masaki Kozuki
43d4fe68cd [Foreach] support implicit broadcasting in slow path (#62167)
Summary:
This PR has foreach functions support implicit broadcasting via slow path.

rel: https://github.com/pytorch/pytorch/issues/58833

cc: ptrblck  ngimel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62167

Reviewed By: mruberry

Differential Revision: D30005109

Pulled By: ngimel

fbshipit-source-id: f48c0a13e304411763541ffcfcfc6154adb26bac
2021-07-30 13:29:56 -07:00
Masaki Kozuki
8a2063e58a Foreach Test Refactor: Pointwise, Min/Max-imum (#61327)
Summary:
- rewrite pointwise unittests using `ops` decorator
- rewrite minimum&maximum unittests using `ops` decorator
- enable minimum/maximum fastpath for BFloat16
- remove _test_data method

https://github.com/pytorch/pytorch/issues/58833

cc: ptrblck ngimel

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61327

Reviewed By: albanD

Differential Revision: D29830209

Pulled By: ngimel

fbshipit-source-id: fa7805262b86c40fc32750b16629d80ad48ea4b5
2021-07-21 21:59:57 -07:00
Masaki Kozuki
fac744e116 Foreach Binary Test Refactor (#59907)
Summary:
Related: https://github.com/pytorch/pytorch/issues/58833

## Changes I'm a bit concerned
- binary ops with one tensorlist and one scalarlist support complex dtypes. To realize this, I added a specialization of [`TensorListScalarListMetadata<c10::complex<double>, 1>` ](https://github.com/pytorch/pytorch/pull/59907/files#diff-131eb9b310905b15b3528da6a23e542a3a3aa952bc88f7423c98a23a8a28cca1R49). This might be out of the scope of this pull request.

cc ptrblck ngimel mcarilli

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59907

Reviewed By: mruberry

Differential Revision: D29551001

Pulled By: ngimel

fbshipit-source-id: 46b25fdba85dd4d6332a77b27376fe96cd422384
2021-07-06 11:49:38 -07:00
Natalia Gimelshein
52b2ed65c0 Revert D29007258: Revert D28926135: [pytorch][PR] Refactor Foreach Tests: Unary Functions
Test Plan: revert-hammer

Differential Revision:
D29007258

Original commit changeset: c15f51661641

fbshipit-source-id: 98236153136a5c6b6c2911079b7bd214da6cb424
2021-06-09 21:02:56 -07:00
Natalia Gimelshein
171142f9cc Revert D28926135: [pytorch][PR] Refactor Foreach Tests: Unary Functions
Test Plan: revert-hammer

Differential Revision:
D28926135 (0897df18a3)

Original commit changeset: 4eb21dcebbff

fbshipit-source-id: c15f51661641f455ae265cdf048051a3c01198f9
2021-06-09 14:05:56 -07:00
Masaki Kozuki
0897df18a3 Refactor Foreach Tests: Unary Functions (#58960)
Summary:
Related issue: https://github.com/pytorch/pytorch/issues/58833

__changes__
- slowpath tests: pass every dtype&device tensors and compare the behavior with regular functions including inplace
- check of #cudaLaunchKernel
- rename `ForeachUnaryFuncInfo` -> `ForeachFuncInfo`: This change is mainly for the future binary/pointwise test refactors

cc: ngimel ptrblck mcarilli

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58960

Reviewed By: ejguan

Differential Revision: D28926135

Pulled By: ngimel

fbshipit-source-id: 4eb21dcebbffffaf79259e31961626e0707fb8d1
2021-06-09 09:45:16 -07:00
Masaki Kozuki
7eade660c6 [PyTorch] Reduce errors of foreach functions (#56993)
Summary:
This is based on  https://github.com/pytorch/pytorch/issues/48224.

To make `foreach` more flexible, this PR pushes unsupported cases to slow path.
Also, this adds some tests to verify that
- `foreach` functions work with tensors of different dtypes and/or memory layouts in 7bd4b2c89f
- `foreach` functions work with tensors on different devices in a list, but are on the same device if the indices are the same: def4b9b5a1

Future plans:
1. Improve the coverage of unittests using `ops` decorator & updating `foreach_unary_op_db` and creating `foreach_(binary|pointwise|minmax)_db`.
2. Support broadcasting in slow path. Ref:  https://github.com/pytorch/pytorch/pull/52448
3. Support type promotion in fast path. Ref https://github.com/pytorch/pytorch/pull/52449

CC: ngimel mcarilli  ptrblck

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56993

Reviewed By: zou3519

Differential Revision: D28630580

Pulled By: ngimel

fbshipit-source-id: e26ee74a39a591025e18c1ead48948cb7ec53c19
2021-05-25 10:50:20 -07:00