Significant bytecode generation API change!
The new suggested convention to generating bytecode to call a function is now to wrap instructions that push a callable to the stack with `add_push_null`, then that callable is called with `create_call_function` with `push_null=False` (see diff for examples).
In Python 3.13, NULL is now expected to be pushed after the callable. In <=3.12, the NULL was pushed before the callable. This change abstracts away the exact placement of the NULL, but the developer must be aware that a NULL may be needed when codegen'ing a callable.
This abstraction also reduces the need for the `push_null=True` option in `create_call_function`, which removes the need to rotate a NULL to the right place on the stack with a sequence of `SWAP` instructions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129172
Approved by: https://github.com/jansel
Adds support for `Variable._execution_engine.queue_callback()`, which is used in FSDP2.
Important tests:
- `pytest -rA test/inductor/test_compiled_autograd.py::TestCompiledAutograd::test_callback_graph_break_throws_error`
- `pytest -rA test/inductor/test_compiled_autograd.py::TestAutogradWithCompiledAutograd::test_callback_adds_callback`
- `PYTORCH_TEST_WITH_DYNAMO=1 python test/test_autograd.py -k TestAutograd.test_callback_adds_callback`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126366
Approved by: https://github.com/xmfan
Tracing through `__init__` is important because it initializes (calls STORE_ATTR) on members. By doing that, we kick in the mutation tracking for these objects. So, things like mutating `_modules` etc is tracked automatically.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126578
Approved by: https://github.com/jansel
ghstack dependencies: #128001
I wasn't paying enough attention and didn't notice that LOAD_DEREF is
defined differently for InliningInstructionTranslator. Match it up with
the code there.
This also fixes comptime.print(), which was broken, because closing over
an argument turned it into a cell rather than a regular local.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126637
Approved by: https://github.com/yanboliang
- `FakeContext` hides all fields other than ctx.saved_tensors, this dynamo errors when the autograd.Function.backward uses other attrs on ctx and it also doesn't allow fallback to eager.
- If we remove it, we still can't fallback to eager: node variables are already freed (ctx.saved_tensors throws)
- However, we can fallback to "pseudo-eager" by using a duck-typed ctx and routing the ctx.saved_tensors to lifted tensors
- Dynamo tries to inline external_utils.call_backward, treats BackwardCFunction as a AutogradFunctionContextVariable (only used up until we create the fake context: FakeBackwardCFunction)
- we call_function backward from the forward class AutogradFunctionVariable, and we still pass in the fake context as a UserDefinedObjectVariable (can later use AutogradFunctionContextVariable + HOO graph speculate)
Fixes#125489#124827
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125661
Approved by: https://github.com/jansel
I'm going to setup some extra behavior when we set example value, so
I need a convenient place to interpose. I cannot easily do it on
meta itself because its a generic dict with no interposition point.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124176
Approved by: https://github.com/oulgen
ghstack dependencies: #124105, #124059
I was originally trying to solve https://github.com/pytorch/pytorch/issues/120799 but got sidetracked along the way.
This PR contains a couple fixes. Let me know if you want me to split them up!
- Properly handle invalid user code when "super()" is called from non-method/classmethod. It will now properly raise the same error as CPython
- Fix base VariableTracker `__str__` method shadowing all `__repr__` methods defined in subclasses
- Fix accessing a classmethod on a user object to bind "cls" and not "self"
- Fix custom class handling of super() call to properly handle mixed regular/class/static methods
Locally , test_repros.py -k test_batch_norm_act still fails where the generated graph module is:
```
Call using an FX-traced Module, line 8 of the traced Module's generated forward function:
x = self.forward(l_x_); self = l_x_ = None
x_1 = self.L__self___act(x); x = None
```
note that "self" is being unset on the first line even though it is used on the second one.
For reference, this is the test c268ce4a6d/test/dynamo/test_repros.py (L1368-L1369)
I cannot figure out where the generated forward function comes from though, any hint would be welcome!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121365
Approved by: https://github.com/jansel
Currently when there is a print/warning in the graph, dynamo graph breaks causing export to fail. However export would like to just skip over these print/warning calls: https://github.com/pytorch/pytorch/issues/113792.
Additionally there's a torch.compile feature request to "reorder prints" so that instead of graph breaking when hitting prints/logging, we can skip over these prints to create larger compiled graphs, and then print the results out after those compiled graphs: https://github.com/pytorch/pytorch/issues/93739. This PR also adds the `reorderable_logging_functions` config for users to register logging functions to be reordered (like `print` or a custom logging function). Printout of the bytecode after reordering the prints looks like the following: P914736600
There are some limitations to the printing right now:
* You can only register logging functions, not methods
* Inputs to the logging functions can only be tensors, constants, and format strings
* Inputs to the logging functions which will later be mutated in-place will not be printed correctly
TODO: Add the following tests
* print function with argument of nested data structure;
* print function with argument of nested data structure being updated inside of compile region (this would test if we handle side effect correctly);
* custom defined logging functions with nn.Module or nn.Module attribute arguments;
* custom defined logging functions with submodule input/output as arguments (we need to handle the mapping and fused-out value);
* custom defined logging functions with tensor argument and mutation inside of the function (TBD: this may increase memory usage);
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116106
Approved by: https://github.com/yanboliang
Currently when there is a print/warning in the graph, dynamo graph breaks causing export to fail. However export would like to just skip over these print/warning calls: https://github.com/pytorch/pytorch/issues/113792.
Additionally there's a torch.compile feature request to "reorder prints" so that instead of graph breaking when hitting prints/logging, we can skip over these prints to create larger compiled graphs, and then print the results out after those compiled graphs: https://github.com/pytorch/pytorch/issues/93739. This PR also adds the `reorderable_logging_functions` config for users to register logging functions to be reordered (like `print` or a custom logging function). Printout of the bytecode after reordering the prints looks like the following: P914736600
There are some limitations to the printing right now:
* You can only register logging functions, not methods
* Inputs to the logging functions can only be tensors, constants, and format strings
* Inputs to the logging functions which will later be mutated in-place will not be printed correctly
TODO: Add the following tests
* print function with argument of nested data structure;
* print function with argument of nested data structure being updated inside of compile region (this would test if we handle side effect correctly);
* custom defined logging functions with nn.Module or nn.Module attribute arguments;
* custom defined logging functions with submodule input/output as arguments (we need to handle the mapping and fused-out value);
* custom defined logging functions with tensor argument and mutation inside of the function (TBD: this may increase memory usage);
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116106
Approved by: https://github.com/yanboliang
The original motivation for MYPYINDUCTOR was a faster type checking configuration that only checked a subset of files. With the removal of `follow_imports = ignore`, we are now able to use dmypy to do fast incremental typechecking, eliminating the need for this.
Perhaps erroneously, when I tee'ed up this PR I elected to delete the `follow_imports = skip` designations in the mypy-inductor.ini. This lead to a number of extra type error suppressions that I manually edited. You will need to review.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118432
Approved by: https://github.com/Skylion007
ghstack dependencies: #118414, #118418
For training graphs (when inputs require grad), previously, we would speculate the forward and backward graph to determine if there are any graph breaks, side effect and etc but would not actually use these speculated graphs. We would just insert a call function node on the graph and later rely on autograd's tracing.
This approach does not work for more generalized graphs like graphs that include user defined triton kernels because autograd is not able to do the higher order function conversation.
This PR speculates the forward and backward functions and emits them in a HOF that later gets used via templating mechanism.
While working on this PR, I have exposed some bugs in the current tracing due to trampoline functions losing the source information resulting in incorrect graphs being produced. I have fixed these source information bugs and killed the trampolines.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116897
Approved by: https://github.com/Skylion007, https://github.com/jansel, https://github.com/voznesenskym