Commit Graph

84 Commits

Author SHA1 Message Date
Justin Chu
79c5e33349 [BE] Enable ruff's UP rules and autoformat nn/ mps/ and torch/ (#105436)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105436
Approved by: https://github.com/malfet, https://github.com/albanD
2023-07-21 07:38:46 +00:00
Siyuan
9590228303 Fix device of lengths in pack_padded_sequence when the default device is GPU (#103967)
Fixes #103964

Always create the `lengths` tensor on cpu
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103967
Approved by: https://github.com/mikaylagawarecki
2023-06-21 21:14:37 +00:00
Anton Bushuiev
fa1a8b9f96 Fix device handling in nn.utils.rnn.unpad_sequence (#98042)
Without this change I get the following error.
```
line 444, in unpad_sequence
    mask = idx < length
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/98042
Approved by: https://github.com/mikaylagawarecki
2023-03-31 16:00:49 +00:00
Aaron Gokaslan
5471621497 [BE] Remove unnecessary dict comprehensions (#97116)
Removes unnecessary dict comprehensions that optimize creation of dicts from iterables

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97116
Approved by: https://github.com/kit1980
2023-03-20 00:56:57 +00:00
Boris Fomitchev
96c745dfdc Fix int() casting in torch.nn.RNN to have correctly traced JIT and ONNX graph. (#92970)
Signed-off-by: Boris Fomitchev <bfomitchev@nvidia.com>

Fixes #91351

As for unit tests - in this PR I only fixed LSTM unit test to properly use dynamic axes and expose export issue by running test with same ONNX for additional inputs.
If the changes approved, we should also fix the rest of the tests (RNN/GRU and beyond).

I have verified the following updated tests are working with new code and failing with the old code:
test/onnx/test_pytorch_onnx_onnxruntime.py::TestONNXRuntime_opset_version_14_is_script_False_keep_initializers_as_inputs_True::test_rnn_name_lstm_nonlinearity_None_unilayer_bidirectional_no_initial_state_with_variable_length_sequences_with_dropout
test/onnx/test_pytorch_onnx_onnxruntime.py::TestONNXRuntime_opset_version_14_is_script_False_keep_initializers_as_inputs_True::test_rnn_name_lstm_nonlinearity_None_unilayer_bidirectional_with_initial_state_with_variable_length_sequences_with_dropout

Pull Request resolved: https://github.com/pytorch/pytorch/pull/92970
Approved by: https://github.com/titaiwangms, https://github.com/kit1980
2023-03-15 05:33:41 +00:00
Xuehai Pan
ef731cdaf0 [2/3] Update .pyi Python stub files: Prettify rnn.py by using type annotated NamedTuple (#95267)
Changes:

- #95200

1. Recognize `.py.in` and `.pyi.in` files as Python in VS Code for a better development experience.
2. Fix deep setting merge in `tools/vscode_settings.py`.

- => this PR: #95267

3. Use `Namedtuple` rather than `namedtuple + __annotations__` for `torch.nn.utils.rnn.PackedSequence_`:

    `namedtuple + __annotations__`:

    ```python
    PackedSequence_ = namedtuple('PackedSequence_',
                                 ['data', 'batch_sizes', 'sorted_indices', 'unsorted_indices'])

    # type annotation for PackedSequence_ to make it compatible with TorchScript
    PackedSequence_.__annotations__ = {'data': torch.Tensor, 'batch_sizes': torch.Tensor,
                                       'sorted_indices': Optional[torch.Tensor],
                                       'unsorted_indices': Optional[torch.Tensor]}
    ```

    `Namedtuple`: Python 3.6+

    ```python
    class PackedSequence_(NamedTuple):
        data: torch.Tensor
        batch_sizes: torch.Tensor
        sorted_indices: Optional[torch.Tensor]
        unsorted_indices: Optional[torch.Tensor]
    ```

- #95268

4. Sort import statements and remove unnecessary imports in `.pyi`, `.pyi.in` files.
5. Format `.pyi`, `.pyi.in` files and remove unnecessary ellipsis `...` in type stubs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95267
Approved by: https://github.com/janeyx99
2023-03-01 19:37:23 +00:00
joncrall
ad782ff7df Enable xdoctest runner in CI for real this time (#83816)
Builds on #83317 and enables running the doctests. Just need to figure out what is causing the failures.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/83816
Approved by: https://github.com/ezyang, https://github.com/malfet
2022-12-29 05:32:42 +00:00
joncrall
4618371da5 Integrate xdoctest - Rebased (#82797)
This is a new version of #15648 based on the latest master branch.

Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.

In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)

Fixes https://github.com/pytorch/pytorch/issues/71105

@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
2022-08-12 02:08:01 +00:00
PyTorch MergeBot
9db3c517de Add __all__ for torch.nn.modules, torch.distributed.elastic, torch.nn.utils submodules (#80240)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80240
Approved by: https://github.com/rohan-varma
2022-06-27 17:11:12 +00:00
Brian Hirsh
7b3a0ff87a Port index.Tensor to structured kernels.
Tracking issue: #55070

Pull Request resolved: https://github.com/pytorch/pytorch/pull/69607

Approved by: https://github.com/bdhirsh
2022-06-10 17:27:47 +00:00
PyTorch MergeBot
4b82ef7928 Revert "Port index.Tensor to structured kernels."
This reverts commit cfd84125bd.

Reverted https://github.com/pytorch/pytorch/pull/69607 on behalf of https://github.com/zengk95 due to This is breaking mac trunk tests cfd84125bd
2022-06-08 20:16:10 +00:00
Brian Hirsh
cfd84125bd Port index.Tensor to structured kernels.
Tracking issue: #55070

Pull Request resolved: https://github.com/pytorch/pytorch/pull/69607

Approved by: https://github.com/bdhirsh
2022-06-08 18:17:52 +00:00
PyTorch MergeBot
fca1f495c2 Revert "Port index.Tensor to structured kernels."
This reverts commit 9fe6f1baf5.

Reverted https://github.com/pytorch/pytorch/pull/69607 on behalf of https://github.com/suo due to this broke master, see: 9fe6f1baf5
2022-06-01 00:12:15 +00:00
Brian Hirsh
9fe6f1baf5 Port index.Tensor to structured kernels.
Tracking issue: #55070

Pull Request resolved: https://github.com/pytorch/pytorch/pull/69607

Approved by: https://github.com/bdhirsh
2022-05-31 22:15:20 +00:00
Steven Troxler
33b7e6ff23 Convert type comments to annotations in torch/nn (#72662)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72662

This commit was produced by running
```
python -m libcst.tool codemod --no-format --jobs=1 convert_type_comments.ConvertTypeComments caffe2/torch/nn/ --no-quote-annotations
```
and then manually fixing unreadable lines by breaking up very
long function defintiion (unfortuantely
it's very difficult to fully automate tranforms of code that
isn't autoformatted).

Test Plan:
Wait for CI. This should be safe, the types all appear to be valid - but it's
always good to let the jit tests run, in some cases we find typing errors that
crash tests.

Reviewed By: jbschlosser, albanD

Differential Revision: D34147388

fbshipit-source-id: 40701228837a927b54239ab87699b4b3169546b7
(cherry picked from commit 05a900c43f)
2022-02-11 06:35:42 +00:00
kshitij12345
a2e545e6c5 pad_sequence: fix regression - support tensor (#72436)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/71365

Based on https://github.com/pytorch/pytorch/pull/72343

Thanks jbschlosser

Pull Request resolved: https://github.com/pytorch/pytorch/pull/72436

Reviewed By: bdhirsh

Differential Revision: D34117724

Pulled By: jbschlosser

fbshipit-source-id: e5d6599d0791025e18ab36ae16c417a91554bf64
(cherry picked from commit ffe8a0e41b)
2022-02-10 22:36:33 +00:00
Dani El-Ayyass
f171c78c04 add unpack_sequence and unpad_sequence functions (#66550)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/66549

Pull Request resolved: https://github.com/pytorch/pytorch/pull/66550

Reviewed By: malfet

Differential Revision: D32299193

Pulled By: jbschlosser

fbshipit-source-id: 96c92d73d3d40b7424778b2365e0c8bb1ae56cfb
2021-11-10 15:15:08 -08:00
Eddie Yan
18edb77a28 Add pad_sequence as a native function (#57868)
Summary:
https://github.com/pytorch/pytorch/issues/56229

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57868

Reviewed By: mruberry

Differential Revision: D28334174

Pulled By: ngimel

fbshipit-source-id: f1647718ada596686117703b682c0af7e92e16f5
2021-05-11 11:18:13 -07:00
Sam Estep
e3900d2ba5 Add lint for unqualified noqa (#56272)
Summary:
As this diff shows, currently there are a couple hundred instances of raw `noqa` in the codebase, which just ignore all errors on a given line. That isn't great, so this PR changes all existing instances of that antipattern to qualify the `noqa` with respect to a specific error code, and adds a lint to prevent more of this from happening in the future.

Interestingly, some of the examples the `noqa` lint catches are genuine attempts to qualify the `noqa` with a specific error code, such as these two:
```
test/jit/test_misc.py:27:            print(f"{hello + ' ' + test}, I'm a {test}") # noqa E999
test/jit/test_misc.py:28:            print(f"format blank") # noqa F541
```
However, those are still wrong because they are [missing a colon](https://flake8.pycqa.org/en/3.9.1/user/violations.html#in-line-ignoring-errors), which actually causes the error code to be completely ignored:

- If you change them to anything else, the warnings will still be suppressed.
- If you add the necessary colons then it is revealed that `E261` was also being suppressed, unintentionally:
  ```
  test/jit/test_misc.py:27:57: E261 at least two spaces before inline comment
  test/jit/test_misc.py:28:35: E261 at least two spaces before inline comment
  ```

I did try using [flake8-noqa](https://pypi.org/project/flake8-noqa/) instead of a custom `git grep` lint, but it didn't seem to work. This PR is definitely missing some of the functionality that flake8-noqa is supposed to provide, though, so if someone can figure out how to use it, we should do that instead.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56272

Test Plan:
CI should pass on the tip of this PR, and we know that the lint works because the following CI run (before this PR was finished) failed:

- https://github.com/pytorch/pytorch/runs/2365189927

Reviewed By: janeyx99

Differential Revision: D27830127

Pulled By: samestep

fbshipit-source-id: d6dcf4f945ebd18cd76c46a07f3b408296864fcb
2021-04-19 13:16:18 -07:00
Samuel Marks
e6779d4357 [*.py] Rename "Arguments:" to "Args:" (#49736)
Summary:
I've written custom parsers and emitters for everything from docstrings to classes and functions. However, I recently came across an issue when I was parsing/generating from the TensorFlow codebase: inconsistent use of `Args:` and `Arguments:` in its docstrings.

```sh
(pytorch#c348fae)$ for name in 'Args:' 'Arguments:'; do
    printf '%-10s %04d\n' "$name" "$(rg -IFtpy --count-matches "$name" | paste -s -d+ -- | bc)"; done
Args:      1095
Arguments: 0336
```

It is easy enough to extend my parsers to support both variants, however it looks like `Arguments:` is wrong anyway, as per:

  - https://google.github.io/styleguide/pyguide.html#doc-function-args @ [`ddccc0f`](https://github.com/google/styleguide/blob/ddccc0f/pyguide.md)

  - https://chromium.googlesource.com/chromiumos/docs/+/master/styleguide/python.md#describing-arguments-in-docstrings @ [`9fc0fc0`](https://chromium.googlesource.com/chromiumos/docs/+/9fc0fc0/styleguide/python.md)

  - https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html @ [`c0ae8e3`](https://github.com/sphinx-contrib/napoleon/blob/c0ae8e3/docs/source/example_google.rst)

Therefore, only `Args:` is valid. This PR replaces them throughout the codebase.

PS: For related PRs, see tensorflow/tensorflow/pull/45420

PPS: The trackbacks automatically appearing below are sending the same changes to other repositories in the [PyTorch](https://github.com/pytorch) organisation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/49736

Reviewed By: albanD

Differential Revision: D25710534

Pulled By: soumith

fbshipit-source-id: 61e8ff01abb433e9f78185c2d1d0cbd7c22c1619
2020-12-28 09:34:47 -08:00
Alban Desmaison
9c3a75527b Update doc to reflect current behavior (#46937)
Summary:
This behavior was changed by side effect by https://github.com/pytorch/pytorch/pull/41984
Update the doc to reflect the actual behavior of the function.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/46937

Reviewed By: mruberry

Differential Revision: D24682750

Pulled By: albanD

fbshipit-source-id: 89b94b61f54dbcfc6a6988d7e7d361bd24ee4964
2020-11-03 11:02:19 -08:00
Wanchao Liang
4b028a8e07 [jit] support pad_sequence/pack_sequence (#39844)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39844

Test Plan: Imported from OSS

Reviewed By: jamesr66a

Differential Revision: D22026720

Pulled By: wanchaol

fbshipit-source-id: cc51ea77eff3689e319ec7e89a54c788646b5940
2020-06-19 19:03:14 -07:00
davidriazati
a4716d0e26 Fix lint (#34094)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34094

Pulled By: driazati

Differential Revision: D20201433

fbshipit-source-id: d8292b329aebd232556db517b71daeee3f266bfc
2020-03-02 15:34:52 -08:00
davidriazati
11843049d5 [jit] Fix flipped PackedSequence outputs in script (#32955)
Summary:
Stacked PRs
 * **#32955 - [jit] Fix flipped PackedSequence outputs in script**
 * #32953 - [jit] Support properties on `Device`

Fixes #32605

Pull Request resolved: https://github.com/pytorch/pytorch/pull/32955

Pulled By: driazati

Differential Revision: D20165514

fbshipit-source-id: a130c438b40e51ec27d36f021b0dc7869570aa6a
2020-03-02 13:50:36 -08:00
Brian Vaughan
243af17d65 Revert D20103905: [jit] Fix flipped PackedSequence outputs in script
Test Plan: revert-hammer

Differential Revision:
D20103905

Original commit changeset: 84081213ed21

fbshipit-source-id: 2b260654fac87e52fbaf8035018e4ea484928af1
2020-02-27 13:29:35 -08:00
Brian Vaughan
a7cf5c859f Revert D20136865: fix lint
Test Plan: revert-hammer

Differential Revision:
D20136865

Original commit changeset: 4bf7ac324a0a

fbshipit-source-id: 94cc83cda180f744cec174d269f1b82babff0e5c
2020-02-27 13:21:44 -08:00
Michael Suo
f5952cf7cb fix lint (#33861)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/33861

Test Plan: Imported from OSS

Differential Revision: D20136865

Pulled By: suo

fbshipit-source-id: 4bf7ac324a0abce9b45121ac5ab438448a6f3149
2020-02-27 00:33:51 -08:00
davidriazati
2b9fa4a756 [jit] Fix flipped PackedSequence outputs in script (#32955)
Summary:
Stacked PRs
 * **#32955 - [jit] Fix flipped PackedSequence outputs in script**
 * #32953 - [jit] Support properties on `Device`

Fixes #32605
](https://our.intern.facebook.com/intern/diff/20103905/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32955

Pulled By: driazati

Differential Revision: D20103905

fbshipit-source-id: 84081213ed214846e563b9f05bcab0210bb1a71b
2020-02-26 18:53:27 -08:00
Elias Ellison
fddf73250d [JIT] fix resolving of functions in torch/functional. fix compilation of torch.stft (#33504)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33504

Fix resolution fo functions that are bound onto torch in torch/functional.py. This does not fix compilation of all of those functions, those will be done in follow ups. Does torch.stft as a start.

Fixes #21478

Test Plan: Imported from OSS

Differential Revision: D20014591

Pulled By: eellison

fbshipit-source-id: bb362f1b5479adbb890e72a54111ef716679d127
2020-02-26 18:35:43 -08:00
Stas Bekman
9a5ea71380 pad_packed_sequence: doc improvement (#33768)
Summary:
pad_packed_sequence:
1. clarify that batch's order is restored to the original one
2. add example

This is a follow up to https://github.com/pytorch/pytorch/issues/33746
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33768

Differential Revision: D20102792

Pulled By: ngimel

fbshipit-source-id: 5ef511e5e3833edcb85cc01af0e92568b6d7a3cf
2020-02-25 18:00:04 -08:00
Stas Bekman
ca8e025cdf improve the doc of enforce_sorted in pack_padded_sequence (#33617)
Summary:
this is a follow up PR to https://github.com/pytorch/pytorch/issues/33602:

torch/nn/utils/rnn.html:

`pack_padded_sequence` has a confusing and incomplete description of the `enforce_sorted` param. Currently it goes:

```
        enforce_sorted (bool, optional): if ``True``, the input is expected to
            contain sequences sorted by length in a decreasing order. If
            ``False``, this condition is not checked. Default: ``True``.
```

The second part "this condition is not checked" (1) makes no sense since the alluded to condition is not described and (2) it's incomplete as it doesn't reflect the important part, that it actually does the sorting. I think it should say something like:

```
        enforce_sorted (bool, optional): if ``True``, the input is expected to
            contain sequences sorted by length in a decreasing order. If
            ``False``, the input will get sorted unconditionally. Default: ``True``.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33617

Differential Revision: D20035131

Pulled By: albanD

fbshipit-source-id: 654382eb0cb62b5abc78497faa5b4bca42db5fda
2020-02-21 11:51:08 -08:00
Vitaly Fedyunin
a4f60b64dc explicitly provide memory format when calling to *_like operators
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/29391

Test Plan: Imported from OSS

Differential Revision: D18429726

Pulled By: VitalyFedyunin

fbshipit-source-id: 07dfff568ad776cf792122913530566d53be55fa
2019-11-18 21:47:52 -08:00
Mike Ruberry
527b10c2d1 Fixes PackedSequence.to (and unifies PackedSequence conversions) (#27245)
Summary:
PackedSequence.to(device) incorrectly places one of three tensors on the device and leaves the other two tensors where they are. If these devices are distinct then further operations on PackedSequence will fail. This behavior is inconsistent with Tensor.to and PackedSequence's behavior when .cuda() is called.

Additionally, PackedSequence defines multiple other conversion functions that were independently and inconsistently implemented.

This PR unifies all implementations and makes the PackedSequence.to behavior more consistent with Tensor.to. It is not completely consistent per comments. test_device_mask in test_nn.py is updated to validate the new functionality.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27245

Differential Revision: D17757850

Pulled By: mruberry

fbshipit-source-id: 58f0bd40f1aa300fb0a91ee743483d645f977dc5
2019-10-04 02:22:41 -07:00
Ailing Zhang
3acab233b5 Add device check before accessing data_ptr in PackLayer (#26056)
Summary:
fixes https://github.com/pytorch/xla/issues/927
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26056

Differential Revision: D17331859

Pulled By: ailzhang

fbshipit-source-id: bdc334f03c8dcbb4ef4f5e059a63ef188a0b8b61
2019-09-12 19:25:42 -07:00
Wanchao Liang
8fb0d198e9 make nn.LSTM accept PackedSequence instead of Tuples
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23643

Differential Revision: D16615531

fbshipit-source-id: af508838cac21d271d3470f0f16fd75473a6e68d
2019-08-05 17:16:18 -07:00
Wanchao Liang
9d2cc2c987 Support nn.GRU in script
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23266

Test Plan: Imported from OSS

Differential Revision: D16466586

Pulled By: wanchaol

fbshipit-source-id: 0f5b8013167bb7b246bd7e28d87a4a9e9c3b34d5
2019-08-01 17:19:26 -07:00
Wanchao Liang
f4eb93f7bc Support pack_padded_sequence and pad_packed_sequence
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/23249

Test Plan: Imported from OSS

Differential Revision: D16466587

Pulled By: wanchaol

fbshipit-source-id: a721da01b2da0ef90cac80b77f1285102e3b1118
2019-07-29 15:36:47 -07:00
Tongzhou Wang
f212fd9fd6 Customized pin_memory for PackedSequence (#18079)
Summary:
fixes https://github.com/pytorch/pytorch/issues/18078
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18079

Reviewed By: ezyang

Differential Revision: D14521192

Pulled By: zou3519

fbshipit-source-id: cec773a3a6f2c405a0d9701e213b7caf81649181
2019-03-19 13:41:30 -07:00
David Riazati
2370c989d8 Add LSTM to standard library (#15744)
Summary:
**WIP**

Attempt 2 at #14831

This adds `nn.LSTM` to the jit standard library. Necessary changes to the module itself are detailed in comments. The main limitation is the lack of a true `PackedSequence`, instead this PR uses an ordinary `tuple` to stand in for `PackedSequence`.

Most of the new code in `rnn.py` is copied to `nn.LSTM` from `nn.RNNBase` to specialize it for LSTM since `hx` is a `Tuple[Tensor, Tensor]` (rather than just a `Tensor` as in the other RNN modules) for LSTM.

As a hack it adds an internal annotation `@_parameter_list` to mark that a function returns all the parameters of a module. The weights for `RNN` modules are passed to the corresponding op as a `List[Tensor]`. In Python this has to be gathered dynamically since Parameters could be moved from CPU to GPU or be deleted and replaced (i.e. if someone calls `weight_norm` on their module, #15766), but in the JIT parameter lists are immutable, hence a builtin to handle this differently in Python/JIT.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15744

Differential Revision: D14173198

Pulled By: driazati

fbshipit-source-id: 4ee8113159b3a8f29a9f56fe661cfbb6b30dffcd
2019-02-21 16:24:19 -08:00
ZhuBaohe
8852e21245 Correct recurrent/linear/dropout/sparse layers docstrings
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17238

Differential Revision: D14130811

Pulled By: soumith

fbshipit-source-id: d3998ca7da46aec5a59220c6af489f71f3d60735
2019-02-19 05:23:04 -08:00
Richard Zou
3353064060 Add option to automatically handle unsorted variable-length sequences in RNNs (#15225)
Summary:
Fixes #3584.

Motivation: manually sorting sequences, packing them, and then unsorting them
is something a lot of users have complained about doing, especially when we can
offer library support for them.

Overview: we internally sort sequences before packing them and store a list of
`unsorted_indices` that represent how to unsort the sequences inside
PackedSequence. The packing helper functions return PackedSequence with the
`permutation` field and the unpacking helper functions use it to unsort.

To implement this, the following changes were made:
- PackedSequence now keeps `sorted_indices` and `unsorted_indices`.
  These two can be thought of as permutations and are inverses of each other.
  `sorted_indices` is how the sequences were sorted; `unsorted_indices` is how
  to unsort the sequences.
- Added an `enforce_sorted` argument to pack_sequence and pack_padded_sequence
  that maintains the legacy behavior of error-ing out on unsorted-sequences.
  When `enforce_sorted=True`, these functions maintain their ONNX exportability.
- pack_sequence(sequences, enforce_sorted) takes in unsorted sequences.
- pack_padded_sequence can take in a padded tensor that represents padded,
  unsorted sequences.
- pad_packed_sequence unsorts the PackedSequence such that it is still the
  inverse operation of packed_padded_sequence.
- RNNs apply `sort_indices` to their input hidden state and apply
  `unsort_indices` to their output hidden state. This is to ensure that the
  hidden state batches correspond to the user's ordering of input sequences.

NOT BC-Breaking
- The default for pack_sequence and pack_padded_sequence is
  `enforce_sorted=True` to avoid breaking ONNX export. To use the new
  functionality, pass in `enforce_sorted=False`

Testing Plan
- Modified TestNN.test_pack_sequence, TestNN.test_packed_padded_sequence,
  and TestNN.test_variable_sequence (RNN test) to check the behavior
  of unsorted sequences, sorted sequences, and sorted sequences with
  enforce_sorted=True
- test/test_jit.py has a test to see if RNNs are exportable with
  enforce_sorted=True

cc colesbury
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15225

Reviewed By: soumith

Differential Revision: D13507138

Pulled By: zou3519

fbshipit-source-id: b871dccd6abefffca81bc4e3efef1873faa242ef
2018-12-20 17:37:18 -08:00
Tongzhou Wang
de460c7ad3 Improvements on conv/pool/fold/stft/ParamDict docs (#11106)
Summary:
Also fixes some incorrect formula rendering.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11106

Differential Revision: D9752433

Pulled By: SsnL

fbshipit-source-id: 535fc8498638e8b645757fc7535d8771992b7d21
2018-09-11 08:56:21 -07:00
Adam Paszke
6d6655e6be Port PackedSequences functions to C++ (#11224)
Summary:
zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11224

Differential Revision: D9652703

Pulled By: apaszke

fbshipit-source-id: 558e39457e590cad07516e5bb2ecb12789564950
2018-09-05 06:35:15 -07:00
Tongzhou Wang
841d779598 Increase BC for PackedSequence ctor (#9864)
Summary:
PackedSequence is never supposed to be created by user, but unfortunately some community repo is already doing this (e.g., [here](7c191048ce/torchmoji/model_def.py (L218-L229))). Some change we made break the calling pattern `PackedSequence(data=x, batch_sizes=y)`. This patch adds back support for that.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9864

Differential Revision: D9011739

Pulled By: SsnL

fbshipit-source-id: 0e2012655d7f4863ec54803550df30874ec35d75
2018-08-27 08:25:23 -07:00
Adam Paszke
c8b246abf3 Prevent JIT from overspecializing to every single size configuration (#10844)
Summary:
Please review the expects carefully to make sure there are no regressions. I tried to go over them one by one when they changed, but it's sometimes easy to miss finer details.

Summary of changes:

- Renamed `TensorType` to `CompleteTensorType`. Added a new `TensorType` which records only the scalar type, number of dimensions, and device of a value. The argument behind the rename is to encourage people to use `CompleteTensorType` less, as most passes will only have limited information available. To make transition easier `complete_type->cast<TensorType>()` works, and makes our passes work with both kinds of specialization if they don't need extra the extra detail.
- Renamed `ArgumentSpec` to `CompleteArgumentSpec`. Added a new `ArgumentSpec`, which matches argument only at the level of the new `TensorType`.
- Shape analysis can process graphs with both `CompleteTensorType` and `TensorType`.
- Fuser was a part that heavily relied on full shape information being available. Now, we simply try to fuse the largest possible graphs, and have to do run-time checks to make sure they match the code we generate. If they don't, we fall back to regular interpretation. The shape checks are implementing using an optimized method exploiting algebraic properties of shapes with broadcasting, and the relations of broadcasting with pointwise ops. A full written proof of correctness of the shape checking algorithm is included in a comment in `graph_fuser.cpp`.

zdevito ezyang mruberry ngimel csarofeen
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10844

Differential Revision: D9498705

Pulled By: apaszke

fbshipit-source-id: 0c53c2fcebd871cc2a29c260f8d012276479cc61
2018-08-26 09:54:48 -07:00
James Reed
279b836675 Add some user-friendly checks in pack padded symbolic to ensure thing… (#9731)
Summary:
…s are the right type
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9731

Reviewed By: soumith

Differential Revision: D8958693

Pulled By: jamesr66a

fbshipit-source-id: 7db1f86a85188fd2c84d0edaaaac6a096d64ba52
2018-07-25 11:25:42 -07:00
Adam Paszke
aa7af94656 Make JIT tracing a thread-local property (#9414)
Summary:
As in the title. Lets us simplify a lot of code.

Depends on #9363, so please review only the last commit.

zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9414

Reviewed By: zdevito

Differential Revision: D8836496

Pulled By: apaszke

fbshipit-source-id: 9b3c3d1f001a9dc522f8478abc005b6b86cfa3e3
2018-07-19 19:09:39 -07:00
Richard Zou
0656ef483d remove sort requirement from pad-sequence (#7928)
* pad-sequence no longer requires sorting entries

pad-sequence can get the max_len from the list of sequences. entries only need to be sorted if output will be used for pack_padded_sequence, which can throw the error itself.

* remove sort requirement from pad-sequence

Picks up from #5974.

Removes the requirement that input sequences to pad_sequence have to be
sorted. Addressed the comments in the PR:
- Updated docstring for pad_sequence
- Remove sort requirement in pad_sequence test
- Test unsorted and sorted sequences in pad_sequence test
2018-05-30 16:36:55 -04:00
James Reed
5e50993be7 Better type checking for pack_padded_sequence symbolic (#7874) 2018-05-26 11:16:41 -04:00
bddppq
f94ae3ba1d
Update from facebook (#7696)
* Fix handling of empty batches in SumReduceDimsOp

As titled

* Deferrable async_scheduling finishRun fix

Proper order of finishing run operations in deferrable_async_scheduling net

* Simplify exception handling in async_scheduling

Simplify exception handling, no need to busy wait, thread that processes the
last task can finish the run

* [C2]worker_coordinator_memorize_worker_ids

As titled. This is related to T28689868, where the number of blobs we want to create is equal to the number of worker ids

* Add unit test for nets with no type set

* Ignore total length argument in sympolic_pad_packed_sequence

1- There was a mistake in the code that total_length was added to the wrong symbolic function (pack_padded_sequence) instead of (pad_packed_sequence)
2- No need to throw an exception if total_length is given since it is only used to enable data_parallel training on multi-gpus and doesn't have anything to do with onnx export, so just ignore it. https://fburl.com/tk4gciqp

* Add support for MKLDNN to async_scheduling

Just add MKLDNN as a possible CPU option to async_scheduling's pool function

* [AuFL][ensemble] support branch output for prediction

This diff supports using predictions from different branches and thus enables model ensembling (not fully independent).

* Fix a bug in add_loss in layer_model_helper

As titled.

* Support lradaption for adam

1.lr adaption operator
2.apply to dense adam

* Perf tweaks for async_scheduling

Restore single pool option + remove unnecessary (no-ops) calls

* add quantization to SparseSimdAdagradOp

add a bunch of quantization signatures to SparseSimdAdagradOp, implementations to come next

* [sr] [codemod] Change all SR callsites to use new API

@allow-large-files

This diff refactors all callsites of SR to use the slightly changed API introduced in the diff below. Really what this means is that you need to include the correct header. Also if you were using `ClientFactory::newFactory` you need to not prefix it with `ClientFactory::`.

```
cd ~/fbsource/fbcode
find ./ -type f -exec sed -i -e 's:#include "servicerouter/client/cpp2/ClientFactory.h":#include "servicerouter/client/cpp2/ServiceRouter.h":' -e 's:#include <servicerouter/client/cpp2/ClientFactory.h>:#include <servicerouter/client/cpp2/ServiceRouter.h>:' -e 's/ClientFactory::newFactory(/newFactory(/g' {} \;
```

Also manually fixed spots that couldn't be done automatically (or broke because they depended on transitive includes).

* Back out "Fix handling of empty batches in SumReduceDimsOp"

Original commit changeset: 282da1730cc2 This commit is blocking the
Github->fbcode sync, which really needs to get merged ASAP. D7881937 which this
diff depends on will be reverted in the sync D7990948 which causes this to
break. The sync diff cannot be patched with this reversion because it must be
landed against base revision 5c8c099 , and D7881937 must not be included in the
sync diff because it is breaking GPU tests that are not available in sandcastle
: https://ci.pytorch.org/jenkins/job/caffe2-builds/job/py2-cuda8.0-cudnn6-ubuntu16.04-test/3638/console
for one example.

* Add the flow to support operator benchmark

1) generate model with the operator 2) upload to everstore 3) generate model spec into json file 4) start running the benchmark

* [tum][gpu] Connect DPM trainer with flow and unit tests

This diff:
- Fix some small bugs for Yiming's recent changes to parallelizer, so it suits real use cases.
- Add correct tags to the TUM code, so we can do data parallel transform
- pass extra info when instantiation.
- add unit test for using DPM in TUM model

After this diff, we can do simple box, multi-gpu fully-sync trainer for TUM in Fblearner workflow, but may still need to do speed benchmarking.

* w/o normalized lradaption for adam dense only

The previous lr adaption includes a normalization step when performing the dot product operation. This is not exactly same as what is proposed in the paper. I add normalization as an option. Without it, the operator performs exactly what the paper proposed. With the option, we add the normalization step

* [fb] Use SharedPromise in DeferrableAsyncSchedulingNet

This code is to simplify DeferrableAsyncSchedulingNet by removing condition
variable + small fixes

* [tum] implement cuda sparseLengthsMean and LengthsMean

as title

* Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function.

Adding an optional parameter to allow use of protobufs in InferShapesAndTypes function.

* Move feature_to_index to FeatureSpec.feature_to_index

move feature_to_index to FeatureSpec.feature_to_index to avoid override other fields

* [Caffe2] Rename bytes_moved to bytes_written

Just a rename in preparation for supporting bytes_read.

* [c2] fix ReduceFrontSumOp for empty case by setting 0

otherwise, it may use the results from last iteration when it's empty batch.

* [Caffe2] [Int8] Improve Intel CPU performance

* [Easy] Improve PrependDim op logging

as titled

* DBFileReader expand db_path using os.path.expanduser(..)

Since there are a lot of possible use cases of `DBFileReader` to read from user home path, like `~/local/sample.db`, I want to save people's trouble of calling `os.path.expanduser(db_path)` themselves.

* [Caffe2] Add bytes_read to cost structure

We're adding analytical read bytes to cost functions.  This extends the structure accordingly for all CostInference defined operators.
Additionally, some small bug fixes were performed:
1) Cost functions now extract type information of operands instead of assuming float

* Fix sleef on aarch64 for hhvm

@bypass-lint

Rename flag

* Remove duplicated part in caffe2/ideep/operators/conv_op.cc

should be sync error

* Rename test helper function test_adagrad_sparse_helper to adagrad_sparse_test_helper to avoid confusing pytest
2018-05-19 23:10:48 -07:00