Commit Graph

404 Commits

Author SHA1 Message Date
Yujun Zhao
e5adf45dde Add python unittest target to caffe2/test/TARGETS (#42766)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42766

**Summary**
Some python tests are missing in `caffe2/test/TARGETS`, add them to be more comprehension.

According to [run_test.py](https://github.com/pytorch/pytorch/blob/master/test/run_test.py#L125), some tests are slower. Slow tests are added as independent targets and others are put together into one `others` target. The reason is because we want to reduce overhead, especially for code covarge collection.  Tests in one target can be run as a bundle, and then coverage can be collected together. Typically coverage collection procedure is time-expensive, so this helps us save time.

Test Plan:
Run all the new test targets locally in dev server and record the time they cost.
**Statistics**

```
# jit target
real    33m7.694s
user    653m1.181s
sys     58m14.160s

--------- Compare to Initial Jit Target runtime: ----------------

real    32m13.057s
user    613m52.843s
sys     54m58.678s

```

```
# others target
real    9m2.920s
user    164m21.927s
sys     12m54.840s
```

```
# serialization target
real    4m21.090s
user    23m33.501s
sys     1m53.308s

```

```
# tensorexpr
real    11m28.187s
user    33m36.420s
sys     1m15.925s
```

```
# type target
real    3m36.197s
user    51m47.912s
sys     4m14.149s
```

Reviewed By: malfet

Differential Revision: D22979219

fbshipit-source-id: 12a30839bb76a64871359bc024e4bff670c5ca8b
2020-08-10 09:48:59 -07:00
Mike Ruberry
87970b70a7 Adds 'clip' alias for clamp (#42770)
Summary:
Per title. Also updates our guidance for adding aliases to clarify interned_string and method_test requirements. The alias is tested by extending test_clamp to also test clip.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42770

Reviewed By: ngimel

Differential Revision: D23020655

Pulled By: mruberry

fbshipit-source-id: f1d8e751de9ac5f21a4f95d241b193730f07b5dc
2020-08-09 02:46:02 -07:00
Peter Bell
33519e19ab Fix 64-bit indexing in GridSampler (#41923)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/41656

For the CPU version, this is a regression introduced in https://github.com/pytorch/pytorch/issues/10980 which vectorized the `grid_sampler_2d` implementation. It uses the AVX2 gather intrinsic which for `float` requires 32-bit indexing to match the number of floats in the AVX register. There is also an `i64gather_ps` variant but this only utilizes half of the vector width so would be expected to give worse performance in the more likely case where 32-bit indexing is acceptable. So, I've left the optimised AVX version as-is and reinstated the old non-vectorized version as a fallback.

For the CUDA version, this operation has never supported 32-bit indexing so this isn't a regression. I've templated the kernel on index type and added 64-bit variants. Although I gather in some places a simple `TORCH_CHECK(canUse32BitIndexMath(...))` is used instead. So, there is a decision to be made here.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41923

Reviewed By: glaringlee

Differential Revision: D22925931

Pulled By: zou3519

fbshipit-source-id: 920816107aae26360c5e7f4e9c729fa9057268bb
2020-08-06 16:08:09 -07:00
Rohan Varma
f22aa601ce All Gather and gather APIs for Python Objects (#42189)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42189

Rehash of https://github.com/pytorch/pytorch/pull/28811, which was several months old.

As part of addressing https://github.com/pytorch/pytorch/issues/23232, this PR adds support for the following APIs:

`allgather_object` and `gather_object` to support gather/allgather of generic, pickable Python objects. This has been a long-requested feature so PyTorch should provide these helpers built-in.

The methodology is what is proposed in the original issue:
1) Pickle object to ByteTensor using torch.save
2) Comm. tensor sizes
3) Copy local ByteTensor into a tensor of maximal size
4) Call tensor-based collectives on the result of (3)
5) Unpickle back into object using torch.load

Note that the API is designed to match other than supporting `async_op`. For now, it is a blocking call. If we see demand to support `async_op`, we will have to make more progress on merging work/future to support this.

If this is a suitable approach, we can support `scatter`, `broadcast` in follow up PRs.
ghstack-source-id: 109322433

Reviewed By: mrshenli

Differential Revision: D22785387

fbshipit-source-id: a265a44ec0aa3aaffc3c6966023400495904c7d8
2020-08-06 13:30:25 -07:00
Mike Ruberry
ccfce9d4a9 Adds fft namespace (#41911)
Summary:
This PR creates a new namespace, torch.fft (torch::fft) and puts a single function, fft, in it. This function is analogous to is a simplified version of NumPy's [numpy.fft.fft](https://numpy.org/doc/1.18/reference/generated/numpy.fft.fft.html?highlight=fft#numpy.fft.fft) that accepts no optional arguments. It is intended to demonstrate how to add and document functions in the namespace, and is not intended to deprecate the existing torch.fft function.

Adding this namespace was complicated by the existence of the torch.fft function in Python. Creating a torch.fft Python module makes this name ambiguous: does it refer to a function or module? If the JIT didn't exist, a solution to this problem would have been to make torch.fft refer to a callable class that mimicked both the function and module. The JIT, however, cannot understand this pattern. As a workaround it's required to explicitly `import torch.fft` to access the torch.fft.fft function in Python:

```
import torch.fft

t = torch.randn(128, dtype=torch.cdouble)
torch.fft.fft(t)
```

See https://github.com/pytorch/pytorch/issues/42175 for future work. Another possible future PR is to get the JIT to understand torch.fft as a callable class so it need not be imported explicitly to be used.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41911

Reviewed By: glaringlee

Differential Revision: D22941894

Pulled By: mruberry

fbshipit-source-id: c8e0b44cbe90d21e998ca3832cf3a533f28dbe8d
2020-08-06 00:20:50 -07:00
Luca Wehrstedt
2501e2b12d [RPC tests] Run DdpUnderDistAutogradTest and DdpComparisonTest with fork too (#42528)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42528

It seems it was an oversight that they weren't run. This allows to simplify our auto-generation logic as now all test suites are run in both modes.
ghstack-source-id: 109229969

Test Plan: CI

Reviewed By: pritamdamania87

Differential Revision: D22922151

fbshipit-source-id: 0766a6970c927efb04eee4894b73d4bcaf60b97f
2020-08-05 15:10:29 -07:00
Luca Wehrstedt
4da602b004 [RPC tests] Generate test classes automatically (#42527)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42527

ghstack-source-id: 109229468

Test Plan: CI

Reviewed By: pritamdamania87

Differential Revision: D22864698

fbshipit-source-id: 6a55f3201c544f0173493b38699a2c7e95ac1bbc
2020-08-05 15:10:26 -07:00
Luca Wehrstedt
2e7b464c43 [RPC tests] Remove global TEST_CONFIG (#40822)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40822

Summary of the entire stack:
--

This diff is part of an attempt to refactor the RPC tests. They currently suffer from several problems:
- Several ways to specify the agent to use: there exists one "generic" fixture that uses the global variable TEST_CONFIG to look up the agent name, and is used for process group and Thrift, and then there are separate fixtures for the flaky agent and the TensorPipe one.
- These two ways lead to having two separate decorators (`requires_process_group_agent` and `@_skip_if_tensorpipe_agent`) which must both be specified, making it unclear what the effect of each of them is and what happens if only one is given.
- Thrift must override the TEST_CONFIG global variable before any other import (in order for the `requires_process_group_agent` decorator to work correctly) and for that it must use a "trap" file, which makes it even harder to track which agent is being used, and which is specific to Buck, and thus cannot be used in OSS by other agents.
- Even if the TensorPipe fixture doesn't use TEST_CONFIG, it still needs to set it to the right value for other parts of the code to work. (This is done in `dist_init`).
- There are a few functions in dist_utils.py that return some properties of the agent (e.g., a regexp to match against the error it returns in case of shutdown). These functions are effectively chained if/elses on the various agents, which has the effect of "leaking" some part of the Thrift agent into OSS.
- Each test suite (RPC, dist autograd/dist optimizer, their JIT versions, remote module, ...) must be run on each agent (or almost; the faulty one is an exception) in both fork and spawn mode. Each of these combinations is a separate file, which leads to a proliferation of scripts.
- There is no "master list" of what combinations make sense and should be run. Therefore it has happened that when adding new tests or new agents we forgot to enroll them into the right tests. (TensorPipe is still missing a few tests, it turns out).
- All of these tiny "entry point" files contain almost the same duplicated boilerplate. This makes it very easy to get the wrong content into one of them due to a bad copy-paste.

This refactoring aims to address these problems by:
- Avoiding global state, defaults/override, traps, if/elses, ... and have a single way to specify the agent, based on an abstract base class and several concrete subclasses which can be "mixed in" to any test suite.
- Instead of enabling/disabling tests using decorators, the tests that are specific to a certain agent are now in a separate class (which is a subclass of the "generic" test suite) so that they are only picked up by the agent they apply to.
- Instead of having one separate entry point script for each combination, it uses one entry point for each agent, and in that script it provides a list of all the test suites it wants to run on that agent. And it does that by trying to deduplicate the boilerplate as much as possible. (In fact, the various agent-suite combinations could be grouped in any way, not necessarily by agent as I did here).

It provides further advantages:
- It puts all the agents on equal standing, by not having any of them be the default, making it thus easier to migrate from process group to TensorPipe.
- It will make it easier to add more versions of the TensorPipe tests (e.g., one that disables the same-machine backends in order to test the TCP-based ones) without a further duplication of entry points, of boilerplate, ...

Summary of this commit
--
This is the last step of removing TEST_CONFIG. As there was no one left using it, there is really not much to it.
ghstack-source-id: 109229471

Test Plan: Sandcastle and CircleCI

Reviewed By: pritamdamania87

Differential Revision: D22307778

fbshipit-source-id: 0d9498d9367eec671e0a964ce693015f73c5638c
2020-08-05 15:10:20 -07:00
Luca Wehrstedt
e7c7eaab82 [RPC tests] Move some functions to methods of fixture (#40821)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40821

Summary of the entire stack:
--

This diff is part of an attempt to refactor the RPC tests. They currently suffer from several problems:
- Several ways to specify the agent to use: there exists one "generic" fixture that uses the global variable TEST_CONFIG to look up the agent name, and is used for process group and Thrift, and then there are separate fixtures for the flaky agent and the TensorPipe one.
- These two ways lead to having two separate decorators (`requires_process_group_agent` and `@_skip_if_tensorpipe_agent`) which must both be specified, making it unclear what the effect of each of them is and what happens if only one is given.
- Thrift must override the TEST_CONFIG global variable before any other import (in order for the `requires_process_group_agent` decorator to work correctly) and for that it must use a "trap" file, which makes it even harder to track which agent is being used, and which is specific to Buck, and thus cannot be used in OSS by other agents.
- Even if the TensorPipe fixture doesn't use TEST_CONFIG, it still needs to set it to the right value for other parts of the code to work. (This is done in `dist_init`).
- There are a few functions in dist_utils.py that return some properties of the agent (e.g., a regexp to match against the error it returns in case of shutdown). These functions are effectively chained if/elses on the various agents, which has the effect of "leaking" some part of the Thrift agent into OSS.
- Each test suite (RPC, dist autograd/dist optimizer, their JIT versions, remote module, ...) must be run on each agent (or almost; the faulty one is an exception) in both fork and spawn mode. Each of these combinations is a separate file, which leads to a proliferation of scripts.
- There is no "master list" of what combinations make sense and should be run. Therefore it has happened that when adding new tests or new agents we forgot to enroll them into the right tests. (TensorPipe is still missing a few tests, it turns out).
- All of these tiny "entry point" files contain almost the same duplicated boilerplate. This makes it very easy to get the wrong content into one of them due to a bad copy-paste.

This refactoring aims to address these problems by:
- Avoiding global state, defaults/override, traps, if/elses, ... and have a single way to specify the agent, based on an abstract base class and several concrete subclasses which can be "mixed in" to any test suite.
- Instead of enabling/disabling tests using decorators, the tests that are specific to a certain agent are now in a separate class (which is a subclass of the "generic" test suite) so that they are only picked up by the agent they apply to.
- Instead of having one separate entry point script for each combination, it uses one entry point for each agent, and in that script it provides a list of all the test suites it wants to run on that agent. And it does that by trying to deduplicate the boilerplate as much as possible. (In fact, the various agent-suite combinations could be grouped in any way, not necessarily by agent as I did here).

It provides further advantages:
- It puts all the agents on equal standing, by not having any of them be the default, making it thus easier to migrate from process group to TensorPipe.
- It will make it easier to add more versions of the TensorPipe tests (e.g., one that disables the same-machine backends in order to test the TCP-based ones) without a further duplication of entry points, of boilerplate, ...

Summary of this commit
--
This change continues the work towards removing TEST_CONFIG, by taking a few functions that were accepting the agent name (as obtained from TEST_CONFIG) and then did a bunch of if/elses on it, and replace them by new abstract methods on the fixtures, so that these functions become "decentralized".
ghstack-source-id: 109229472

Test Plan: Sandcastle and CircleCI

Reviewed By: pritamdamania87

Differential Revision: D22307776

fbshipit-source-id: 9e1f6edca79aacf0bcf9d83d50ce9e0d2beec0dd
2020-08-05 15:10:17 -07:00
Luca Wehrstedt
2acef69ce3 [RPC tests] Make generic fixture an abstract base class (#40820)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40820

Summary of the entire stack:
--

This diff is part of an attempt to refactor the RPC tests. They currently suffer from several problems:
- Several ways to specify the agent to use: there exists one "generic" fixture that uses the global variable TEST_CONFIG to look up the agent name, and is used for process group and Thrift, and then there are separate fixtures for the flaky agent and the TensorPipe one.
- These two ways lead to having two separate decorators (`requires_process_group_agent` and `@_skip_if_tensorpipe_agent`) which must both be specified, making it unclear what the effect of each of them is and what happens if only one is given.
- Thrift must override the TEST_CONFIG global variable before any other import (in order for the `requires_process_group_agent` decorator to work correctly) and for that it must use a "trap" file, which makes it even harder to track which agent is being used, and which is specific to Buck, and thus cannot be used in OSS by other agents.
- Even if the TensorPipe fixture doesn't use TEST_CONFIG, it still needs to set it to the right value for other parts of the code to work. (This is done in `dist_init`).
- There are a few functions in dist_utils.py that return some properties of the agent (e.g., a regexp to match against the error it returns in case of shutdown). These functions are effectively chained if/elses on the various agents, which has the effect of "leaking" some part of the Thrift agent into OSS.
- Each test suite (RPC, dist autograd/dist optimizer, their JIT versions, remote module, ...) must be run on each agent (or almost; the faulty one is an exception) in both fork and spawn mode. Each of these combinations is a separate file, which leads to a proliferation of scripts.
- There is no "master list" of what combinations make sense and should be run. Therefore it has happened that when adding new tests or new agents we forgot to enroll them into the right tests. (TensorPipe is still missing a few tests, it turns out).
- All of these tiny "entry point" files contain almost the same duplicated boilerplate. This makes it very easy to get the wrong content into one of them due to a bad copy-paste.

This refactoring aims to address these problems by:
- Avoiding global state, defaults/override, traps, if/elses, ... and have a single way to specify the agent, based on an abstract base class and several concrete subclasses which can be "mixed in" to any test suite.
- Instead of enabling/disabling tests using decorators, the tests that are specific to a certain agent are now in a separate class (which is a subclass of the "generic" test suite) so that they are only picked up by the agent they apply to.
- Instead of having one separate entry point script for each combination, it uses one entry point for each agent, and in that script it provides a list of all the test suites it wants to run on that agent. And it does that by trying to deduplicate the boilerplate as much as possible. (In fact, the various agent-suite combinations could be grouped in any way, not necessarily by agent as I did here).

It provides further advantages:
- It puts all the agents on equal standing, by not having any of them be the default, making it thus easier to migrate from process group to TensorPipe.
- It will make it easier to add more versions of the TensorPipe tests (e.g., one that disables the same-machine backends in order to test the TCP-based ones) without a further duplication of entry points, of boilerplate, ...

Summary of this commit
--
Now that no one is using the generic fixture anymore (i.e., the fixture that looks up the agent's name in the global TEST_CONFIG) we can make it abstract, i.e., have its methods become no-ops and add decorators that will require all subclasses to provide new implementations of those methods. This is a first step towards removing TEST_CONFIG.
ghstack-source-id: 109229475

Test Plan: Sandcastle and CircleCI

Reviewed By: pritamdamania87

Differential Revision: D22307777

fbshipit-source-id: e52abd915c37894933545eebdfdca3ecb9559926
2020-08-05 15:10:14 -07:00
Luca Wehrstedt
a94039fce5 [RPC tests] Avoid decorators to skip tests (#40819)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40819

Summary of the entire stack:
--

This diff is part of an attempt to refactor the RPC tests. They currently suffer from several problems:
- Several ways to specify the agent to use: there exists one "generic" fixture that uses the global variable TEST_CONFIG to look up the agent name, and is used for process group and Thrift, and then there are separate fixtures for the flaky agent and the TensorPipe one.
- These two ways lead to having two separate decorators (`requires_process_group_agent` and `@_skip_if_tensorpipe_agent`) which must both be specified, making it unclear what the effect of each of them is and what happens if only one is given.
- Thrift must override the TEST_CONFIG global variable before any other import (in order for the `requires_process_group_agent` decorator to work correctly) and for that it must use a "trap" file, which makes it even harder to track which agent is being used, and which is specific to Buck, and thus cannot be used in OSS by other agents.
- Even if the TensorPipe fixture doesn't use TEST_CONFIG, it still needs to set it to the right value for other parts of the code to work. (This is done in `dist_init`).
- There are a few functions in dist_utils.py that return some properties of the agent (e.g., a regexp to match against the error it returns in case of shutdown). These functions are effectively chained if/elses on the various agents, which has the effect of "leaking" some part of the Thrift agent into OSS.
- Each test suite (RPC, dist autograd/dist optimizer, their JIT versions, remote module, ...) must be run on each agent (or almost; the faulty one is an exception) in both fork and spawn mode. Each of these combinations is a separate file, which leads to a proliferation of scripts.
- There is no "master list" of what combinations make sense and should be run. Therefore it has happened that when adding new tests or new agents we forgot to enroll them into the right tests. (TensorPipe is still missing a few tests, it turns out).
- All of these tiny "entry point" files contain almost the same duplicated boilerplate. This makes it very easy to get the wrong content into one of them due to a bad copy-paste.

This refactoring aims to address these problems by:
- Avoiding global state, defaults/override, traps, if/elses, ... and have a single way to specify the agent, based on an abstract base class and several concrete subclasses which can be "mixed in" to any test suite.
- Instead of enabling/disabling tests using decorators, the tests that are specific to a certain agent are now in a separate class (which is a subclass of the "generic" test suite) so that they are only picked up by the agent they apply to.
- Instead of having one separate entry point script for each combination, it uses one entry point for each agent, and in that script it provides a list of all the test suites it wants to run on that agent. And it does that by trying to deduplicate the boilerplate as much as possible. (In fact, the various agent-suite combinations could be grouped in any way, not necessarily by agent as I did here).

It provides further advantages:
- It puts all the agents on equal standing, by not having any of them be the default, making it thus easier to migrate from process group to TensorPipe.
- It will make it easier to add more versions of the TensorPipe tests (e.g., one that disables the same-machine backends in order to test the TCP-based ones) without a further duplication of entry points, of boilerplate, ...

Summary of this commit
--
This diff removes the two decorators (`requires_process_group_agent` and `@_skip_if_tensorpipe_agent`) which were used to skip tests. They were only used to prevent the TensorPipe agent from running tests that were using the process group agent's options. The converse (preventing the PG agent from using the TP options) is achieved by having those tests live in a `TensorPipeAgentRpcTest` class. So here we're doing the same for process group, by moving those tests to a `ProcessGroupAgentRpcTest` class.
ghstack-source-id: 109229473

Test Plan: Sandcastle and CircleCI

Reviewed By: pritamdamania87

Differential Revision: D22283179

fbshipit-source-id: b9315f9fd67f35e88fe1843faa161fc53a4133c4
2020-08-05 15:10:11 -07:00
Luca Wehrstedt
935fcc9580 [RPC tests] Merge process group tests into single entry point (#40818)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40818

Summary of the entire stack:
--

This diff is part of an attempt to refactor the RPC tests. They currently suffer from several problems:
- Several ways to specify the agent to use: there exists one "generic" fixture that uses the global variable TEST_CONFIG to look up the agent name, and is used for process group and Thrift, and then there are separate fixtures for the flaky agent and the TensorPipe one.
- These two ways lead to having two separate decorators (`requires_process_group_agent` and `@_skip_if_tensorpipe_agent`) which must both be specified, making it unclear what the effect of each of them is and what happens if only one is given.
- Thrift must override the TEST_CONFIG global variable before any other import (in order for the `requires_process_group_agent` decorator to work correctly) and for that it must use a "trap" file, which makes it even harder to track which agent is being used, and which is specific to Buck, and thus cannot be used in OSS by other agents.
- Even if the TensorPipe fixture doesn't use TEST_CONFIG, it still needs to set it to the right value for other parts of the code to work. (This is done in `dist_init`).
- There are a few functions in dist_utils.py that return some properties of the agent (e.g., a regexp to match against the error it returns in case of shutdown). These functions are effectively chained if/elses on the various agents, which has the effect of "leaking" some part of the Thrift agent into OSS.
- Each test suite (RPC, dist autograd/dist optimizer, their JIT versions, remote module, ...) must be run on each agent (or almost; the faulty one is an exception) in both fork and spawn mode. Each of these combinations is a separate file, which leads to a proliferation of scripts.
- There is no "master list" of what combinations make sense and should be run. Therefore it has happened that when adding new tests or new agents we forgot to enroll them into the right tests. (TensorPipe is still missing a few tests, it turns out).
- All of these tiny "entry point" files contain almost the same duplicated boilerplate. This makes it very easy to get the wrong content into one of them due to a bad copy-paste.

This refactoring aims to address these problems by:
- Avoiding global state, defaults/override, traps, if/elses, ... and have a single way to specify the agent, based on an abstract base class and several concrete subclasses which can be "mixed in" to any test suite.
- Instead of enabling/disabling tests using decorators, the tests that are specific to a certain agent are now in a separate class (which is a subclass of the "generic" test suite) so that they are only picked up by the agent they apply to.
- Instead of having one separate entry point script for each combination, it uses one entry point for each agent, and in that script it provides a list of all the test suites it wants to run on that agent. And it does that by trying to deduplicate the boilerplate as much as possible. (In fact, the various agent-suite combinations could be grouped in any way, not necessarily by agent as I did here).

It provides further advantages:
- It puts all the agents on equal standing, by not having any of them be the default, making it thus easier to migrate from process group to TensorPipe.
- It will make it easier to add more versions of the TensorPipe tests (e.g., one that disables the same-machine backends in order to test the TCP-based ones) without a further duplication of entry points, of boilerplate, ...

Summary of this commit
--
This diff does the changes described above for the process group agent. It defines a fixture for it (instead of using the generic fixture in its default behavior) and then merges all the entry points into a single script. Note that after this change there won't be anymore a "vanilla" RPC test: all test scripts now specify what agent they are using. This puts all agents on equal standing.
ghstack-source-id: 109229474

Test Plan: Sandcastle and CircleCI

Reviewed By: pritamdamania87

Differential Revision: D22283182

fbshipit-source-id: 7e3626bbbf37d88b892077a03725f0598576b370
2020-08-05 15:10:07 -07:00
Luca Wehrstedt
b93c7c54eb [RPC tests] Merge tests for faulty agent into single script (#40817)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40817

Summary of the entire stack:
--

This diff is part of an attempt to refactor the RPC tests. They currently suffer from several problems:
- Several ways to specify the agent to use: there exists one "generic" fixture that uses the global variable TEST_CONFIG to look up the agent name, and is used for process group and Thrift, and then there are separate fixtures for the flaky agent and the TensorPipe one.
- These two ways lead to having two separate decorators (`requires_process_group_agent` and `@_skip_if_tensorpipe_agent`) which must both be specified, making it unclear what the effect of each of them is and what happens if only one is given.
- Thrift must override the TEST_CONFIG global variable before any other import (in order for the `requires_process_group_agent` decorator to work correctly) and for that it must use a "trap" file, which makes it even harder to track which agent is being used, and which is specific to Buck, and thus cannot be used in OSS by other agents.
- Even if the TensorPipe fixture doesn't use TEST_CONFIG, it still needs to set it to the right value for other parts of the code to work. (This is done in `dist_init`).
- There are a few functions in dist_utils.py that return some properties of the agent (e.g., a regexp to match against the error it returns in case of shutdown). These functions are effectively chained if/elses on the various agents, which has the effect of "leaking" some part of the Thrift agent into OSS.
- Each test suite (RPC, dist autograd/dist optimizer, their JIT versions, remote module, ...) must be run on each agent (or almost; the faulty one is an exception) in both fork and spawn mode. Each of these combinations is a separate file, which leads to a proliferation of scripts.
- There is no "master list" of what combinations make sense and should be run. Therefore it has happened that when adding new tests or new agents we forgot to enroll them into the right tests. (TensorPipe is still missing a few tests, it turns out).
- All of these tiny "entry point" files contain almost the same duplicated boilerplate. This makes it very easy to get the wrong content into one of them due to a bad copy-paste.

This refactoring aims to address these problems by:
- Avoiding global state, defaults/override, traps, if/elses, ... and have a single way to specify the agent, based on an abstract base class and several concrete subclasses which can be "mixed in" to any test suite.
- Instead of enabling/disabling tests using decorators, the tests that are specific to a certain agent are now in a separate class (which is a subclass of the "generic" test suite) so that they are only picked up by the agent they apply to.
- Instead of having one separate entry point script for each combination, it uses one entry point for each agent, and in that script it provides a list of all the test suites it wants to run on that agent. And it does that by trying to deduplicate the boilerplate as much as possible. (In fact, the various agent-suite combinations could be grouped in any way, not necessarily by agent as I did here).

It provides further advantages:
- It puts all the agents on equal standing, by not having any of them be the default, making it thus easier to migrate from process group to TensorPipe.
- It will make it easier to add more versions of the TensorPipe tests (e.g., one that disables the same-machine backends in order to test the TCP-based ones) without a further duplication of entry points, of boilerplate, ...

Summary of this commit
--
This diff does the changes described above for the faulty agent, which is its own strange beast. It merges all the test entry points (i.e., the combinations of agent, suite and fork/spawn) into a single file. It also modifies the test suites that are intended to be run only on the faulty agent, which used to inherit from its fixture, to inherit from the generic fixture, as they will be mixed in with the faulty fixture at the very end, inside the entry point script.
ghstack-source-id: 109229477

Test Plan: Sandcastle and CircleCI

Reviewed By: pritamdamania87

Differential Revision: D22283178

fbshipit-source-id: 72659efe6652dac8450473642a578933030f2c74
2020-08-05 15:10:04 -07:00
Luca Wehrstedt
edf6c4bc4d [RPC tests] Merge TensorPipe tests into single entry point (#40816)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40816

Summary of the entire stack:
--

This diff is part of an attempt to refactor the RPC tests. They currently suffer from several problems:
- Several ways to specify the agent to use: there exists one "generic" fixture that uses the global variable TEST_CONFIG to look up the agent name, and is used for process group and Thrift, and then there are separate fixtures for the flaky agent and the TensorPipe one.
- These two ways lead to having two separate decorators (`requires_process_group_agent` and `@_skip_if_tensorpipe_agent`) which must both be specified, making it unclear what the effect of each of them is and what happens if only one is given.
- Thrift must override the TEST_CONFIG global variable before any other import (in order for the `requires_process_group_agent` decorator to work correctly) and for that it must use a "trap" file, which makes it even harder to track which agent is being used, and which is specific to Buck, and thus cannot be used in OSS by other agents.
- Even if the TensorPipe fixture doesn't use TEST_CONFIG, it still needs to set it to the right value for other parts of the code to work. (This is done in `dist_init`).
- There are a few functions in dist_utils.py that return some properties of the agent (e.g., a regexp to match against the error it returns in case of shutdown). These functions are effectively chained if/elses on the various agents, which has the effect of "leaking" some part of the Thrift agent into OSS.
- Each test suite (RPC, dist autograd/dist optimizer, their JIT versions, remote module, ...) must be run on each agent (or almost; the faulty one is an exception) in both fork and spawn mode. Each of these combinations is a separate file, which leads to a proliferation of scripts.
- There is no "master list" of what combinations make sense and should be run. Therefore it has happened that when adding new tests or new agents we forgot to enroll them into the right tests. (TensorPipe is still missing a few tests, it turns out).
- All of these tiny "entry point" files contain almost the same duplicated boilerplate. This makes it very easy to get the wrong content into one of them due to a bad copy-paste.

This refactoring aims to address these problems by:
- Avoiding global state, defaults/override, traps, if/elses, ... and have a single way to specify the agent, based on an abstract base class and several concrete subclasses which can be "mixed in" to any test suite.
- Instead of enabling/disabling tests using decorators, the tests that are specific to a certain agent are now in a separate class (which is a subclass of the "generic" test suite) so that they are only picked up by the agent they apply to.
- Instead of having one separate entry point script for each combination, it uses one entry point for each agent, and in that script it provides a list of all the test suites it wants to run on that agent. And it does that by trying to deduplicate the boilerplate as much as possible. (In fact, the various agent-suite combinations could be grouped in any way, not necessarily by agent as I did here).

It provides further advantages:
- It puts all the agents on equal standing, by not having any of them be the default, making it thus easier to migrate from process group to TensorPipe.
- It will make it easier to add more versions of the TensorPipe tests (e.g., one that disables the same-machine backends in order to test the TCP-based ones) without a further duplication of entry points, of boilerplate, ...

Summary of this commit
--
This diff does the changes described above for the TensorPipe agent. It fixes its fixture (making it inherit from the generic fixture) and merges all the entry point scripts into a single one, so that it's easier to have a clear overview of all the test suites which we run on TensorPipe (you'll notice that many are missing: the JIT ones, the remote module one, ...).
ghstack-source-id: 109229476

Test Plan: Sandcastle and CircleCI

Reviewed By: pritamdamania87

Differential Revision: D22283180

fbshipit-source-id: d5e9f9f4e6d4bfd6fbcae7ae56eed63d2567a02f
2020-08-05 15:08:32 -07:00
Kurt Mohler
df7c059428 Throw error if torch.set_deterministic(True) is called with nondeterministic CuBLAS config (#41377)
Summary:
For CUDA >= 10.2, the `CUBLAS_WORKSPACE_CONFIG` environment variable must be set to either `:4096:8` or `:16:8` to ensure deterministic CUDA stream usage. This PR adds some logic inside `torch.set_deterministic()` to raise an error if this environment variable is not set properly and CUDA >= 10.2.

Issue https://github.com/pytorch/pytorch/issues/15359

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41377

Reviewed By: malfet

Differential Revision: D22758459

Pulled By: ezyang

fbshipit-source-id: 4b96f1e9abf85d94ba79140fd927bbd0c05c4522
2020-08-05 12:42:24 -07:00
Shen Li
326d777e53 Convert _wait_all_workers to _all_gather (#42276)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42276

This commit converts `_wait_all_workers()` to `_all_gather()` by
allowing each worker to provide its own data object. The `_all_gather()`
function blocks and returns the gathered results. This API can be
converted to `rpc.barrier()` latter.

Test Plan: Imported from OSS

Reviewed By: lw

Differential Revision: D22853480

Pulled By: mrshenli

fbshipit-source-id: 9d506813b9fd5b7c144885e2b76a863cbd19466a
2020-08-03 08:48:45 -07:00
Shen Li
ebde590864 Remove debug vestige (#42277)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42277

Test Plan: Imported from OSS

Reviewed By: lw

Differential Revision: D22853481

Pulled By: mrshenli

fbshipit-source-id: 74e58c532d8f872c1dd830573b2a4c4c86410de2
2020-08-03 08:46:38 -07:00
Yanan Cao
bdcf320bed Support custom exception message (#41907)
Summary:
Raise and assert used to have a hard-coded error message "Exception". User provided error message was ignored. This PR adds support to represent user's error message in TorchScript.

This breaks backward compatibility because now we actually need to script the user's error message, which can potentially contain unscriptable expressions. Such programs can break when scripting, but saved models can still continue to work.

Increased an op count in test_mobile_optimizer.py because now we need aten::format to form the actual exception message.

This is built upon an WIP PR:  https://github.com/pytorch/pytorch/pull/34112 by driazati

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41907

Reviewed By: ngimel

Differential Revision: D22778301

Pulled By: gmagogsfm

fbshipit-source-id: 2b94f0db4ae9fe70c4cd03f4048e519ea96323ad
2020-08-01 13:03:45 -07:00
Elias Ellison
f502290e91 [JIT] Make create autodiff subgraphs do in place updates to aliasDb (#42141)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42141

Update alias db in-place instead of having to construct alias db from scratch on each change, causing O(n^2) behavior.

Description from https://github.com/pytorch/pytorch/pull/37106 holds pretty well:
"""
Recomputing the aliasdb on every fusion iteration + in every subblock
is hugely expensive. Instead, update it in-place when doing fusion.

The graph fuser pass operates by pushing nodes into a fusion group. So
we start with

`x, y = f(a, b, c)`

and end with:
```
x_out, y_out = prim::fusionGroup(a, b, c)
   x_in, y_in = f(a_in, b_in, c_in)
   -> x_in, y_in
```

We destroy the x and y Value*s in the process. This operation is
easy to express as an update to the aliasDb--x_out just takes on all
the aliasing information x used to have. In particular, since we know
f and prim::fusionGroup are purely functional, we don't have to mess
with any write information.
"""

The one difficulty here is mapping x, y to x_out, y_out is not trivial in merging nodes into the autodiff subgraph node.
There are a few options:
- attempt to make all subgraph utils & ir cloning logic update a map
- mirror the subgraph utils implementation in create_autodiff_subgraph
- uniquely map x, y and x_in, y_in so you can back out the correspondence.

I went with the third option.

This shouldn't affect the results of the pass at all. LMK if you think there's anything else I should be doing to test, I was thinking about maybe exposing an option to run create autodiff subgraphs without the post processor and check that the alias db was correctly updated.

Test Plan: Imported from OSS

Reviewed By: SplitInfinity

Differential Revision: D22798377

Pulled By: eellison

fbshipit-source-id: 9a133bcaa3b051c0fb565afb23a3eed56dbe71f9
2020-07-31 15:13:32 -07:00
Supriya Rao
6bd46b583e [quant][graph] Add support for FP16 dynamic quant (#42222)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42222

This change adds the necessary passes to perform FP16 dynamic quantization.
We skip inserting observers for activations based on the dtype (torch.float16) and only insert the Fp16Observer for weights

Test Plan:
python test/test_quantization.py TestQuantizeJitOps

Imported from OSS

Reviewed By: jerryzh168

Differential Revision: D22849220

fbshipit-source-id: 2c53594ecd2485e9e3dd0b380eceaf7c5ab5fc50
2020-07-31 12:33:53 -07:00
Pritam Damania
872237c1f2 Output to stderr in distributed tests. (#42139)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/42139

A bunch of tests were failing with buck since we would output to
stdout and buck would fail parsing stdout in some cases.

Moving these print statements to stderr fixes this issue.
ghstack-source-id: 108606579

Test Plan: Run the offending unit tests.

Reviewed By: mrshenli

Differential Revision: D22779135

fbshipit-source-id: 789af3b16a03b68a6cb12377ed852e5b5091bbad
2020-07-29 19:23:34 -07:00
Elias Ellison
0a64f99162 [JIT] Dont include view ops in autodiff graphs (#42027)
Summary:
View ops as outputs of differentiable subgraphs can cause incorrect differentiation. For now, do not include them in the subgraph. This was observed with our autograd tests for MultiheadAttention and nn.Transformer, which currently fail with the legacy executor. This commit fixes those test failures.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/42027

Reviewed By: pbelevich

Differential Revision: D22798133

Pulled By: eellison

fbshipit-source-id: 2f6c08953317bbe013933c6faaad20100376c039
2020-07-29 10:17:33 -07:00
chengjinfang
f0c46878c6 Fix the issue GPU skip message(#41378) (#41973)
Summary:
Related https://github.com/pytorch/pytorch/issues/41378

Fix the issue GPU skip message

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41973

Reviewed By: pbelevich

Differential Revision: D22753459

Pulled By: mrshenli

fbshipit-source-id: d24b531926e28b860ae90b9ae07e8ca3438d21db
2020-07-28 08:28:31 -07:00
mattip
672ed3c06b replace onnx producer_version when updating results (#41910)
Summary:
xref gh-39002 which handled the reading but not the writing of the onnx expect files, and the last comment in that PR which points out `XXX` was suboptimal.
xref [this comment](https://github.com/pytorch/pytorch/pull/37091#discussion_r456460168) which pointed out the problem.

This PR:
- replaces `XXX` with `CURRENT_VERSION` in the stored files
- ensures that updating the results with the `--accept` flag will maintain the change

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41910

Reviewed By: pbelevich

Differential Revision: D22758671

Pulled By: ezyang

fbshipit-source-id: 47c345c66740edfc8f0fb9ff358047a41e19b554
2020-07-28 08:15:01 -07:00
Haixin Liu
c5b4f60fc2 Move qconfig removal into convert() (#41930)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41930

As title
ghstack-source-id: 108517079

Test Plan: CI

Reviewed By: jerryzh168

Differential Revision: D22698386

fbshipit-source-id: 4f748c9bae4a0b615aa69c7cc8d8e451e5d26863
2020-07-25 13:27:13 -07:00
Shen Li
d4736ef95f Add done() API to Future (#42013)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42013

Test Plan: Imported from OSS

Reviewed By: rohan-varma

Differential Revision: D22729596

Pulled By: mrshenli

fbshipit-source-id: ed31021a35af6e2c3393b9b14e4572cf51013bc0
2020-07-24 14:13:41 -07:00
Kurt Mohler
ec683299eb Reland Add non-deterministic alert to CUDA operations that use atomicAdd() (#41538)
Summary:
Reland PR https://github.com/pytorch/pytorch/issues/40056

A new overload of upsample_linear1d_backward_cuda was added in a recent commit, so I had to add the nondeterministic alert to it.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41538

Reviewed By: zou3519

Differential Revision: D22608376

Pulled By: ezyang

fbshipit-source-id: 54a2aa127e069197471f1feede6ad8f8dc6a2f82
2020-07-22 13:12:29 -07:00
Luca Wehrstedt
fced54aa67 [RPC tests] Fix test_init_(rpc|pg)_then_(rpc|pg) not shutting down RPC (#41558)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41558

The problem was due to non-deterministic destruction order of two global static variables: the mutexes used by glog and the RPC agent (which was still set because we didn't call `rpc.shutdown()`). When the TensorPipe RPC agent shuts down some callbacks may fire with an error and thus attempt to log something. If the mutexes have already been destroyed this causes a SIGABRT.

Fixes https://github.com/pytorch/pytorch/issues/41474
ghstack-source-id: 108231453

Test Plan: Verified in https://github.com/pytorch/pytorch/issues/41474.

Reviewed By: fmassa

Differential Revision: D22582779

fbshipit-source-id: 63e34d8a020c4af996ef079cfb7041b2474e27c9
2020-07-22 06:33:19 -07:00
wudenggang
9600ed9af3 typo fixes (#41632)
Summary:
typo fixes

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41632

Reviewed By: ezyang

Differential Revision: D22617827

Pulled By: mrshenli

fbshipit-source-id: c2bfcb7cc36913a8dd32f13fc9adc3aa0a9b682f
2020-07-20 07:23:00 -07:00
Ilia Cherniavskii
e7a09b4d17 RecordFunction in Dispatcher (#37587)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37587

Lifting RecordFunction up into the dispatcher code

Test Plan: Imported from OSS

Differential Revision: D21374246

fbshipit-source-id: 19f9c1719e6fd3990e451c5bbd771121e91128f7
2020-07-17 22:20:05 -07:00
Stanislau Hlebik
b774ce54f8 remediation of S205607
fbshipit-source-id: 798decc90db4f13770e97cdce3c0df7d5421b2a3
2020-07-17 17:19:47 -07:00
Stanislau Hlebik
8fdea489af remediation of S205607
fbshipit-source-id: 5113fe0c527595e4227ff827253b7414abbdf7ac
2020-07-17 17:17:03 -07:00
Nathan Goldbaum
1e230a5c52 rewrite C++ __torch_function__ handling to work with TensorList operands (#41575)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41575

Fixes https://github.com/pytorch/pytorch/issues/34294

This updates the C++ argument parser to correctly handle `TensorList` operands. I've also included a number of updates to the testing infrastructure, this is because we're now doing a much more careful job of testing the signatures of aten kernels, using the type information about the arguments as read in from `Declarations.yaml`. The changes to the tests are required because we're now only checking for `__torch_function__` attributes on `Tensor`, `Optional[Tensor]` and elements of `TensorList` operands, whereas before we were checking for `__torch_function__` on all operands, so the relatively simplistic approach the tests were using before -- assuming all positional arguments might be tensors -- doesn't work anymore. I now think that checking for `__torch_function__` on all operands was a mistake in the original design.

The updates to the signatures of the `lambda` functions are to handle this new, more stringent checking of signatures.

I also added override support for `torch.nn.functional.threshold` `torch.nn.functional.layer_norm`, which did not yet have python-level support.

Benchmarks are still WIP.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/34725

Reviewed By: mruberry

Differential Revision: D22357738

Pulled By: ezyang

fbshipit-source-id: 0e7f4a58517867b2e3f193a0a8390e2ed294e1f3
2020-07-17 08:54:29 -07:00
Rohan Varma
1ac4692489 Remove unnecessary test in rpc_test.py (#41218)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41218

This test doesn't assert anything and was accidentally committed as
part of a larger diff a few months ago.
ghstack-source-id: 107882848

Test Plan: CI

Reviewed By: ezyang

Differential Revision: D22469852

fbshipit-source-id: 0baa23da56b08200e16cf66df514566223dd9b15
2020-07-16 11:23:52 -07:00
Rohan Varma
b5e32528d0 Fix flaky test_udf_remote_message_delay_timeout_to_self (#41217)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41217

Fixes this flaky test. Due to the possibility of callback
finishCreatingOwnerRRef running after request_callback has processed and
created the owner RRef, we could actually end up with 0 owners on the node,
since the callback removes from the owners_ map. In this case, shutdown is fine
since there are no owners. On the other hand, if the callback runs first, there
will be 1 owner which we will delete in shutdown when we detect it has no
forks. So either way, shutdown works fine and we don't need to enforce there to
be 1 owner.
ghstack-source-id: 107883497

Test Plan: Ran the test 500 times with TSAN.

Reviewed By: ezyang

Differential Revision: D22469806

fbshipit-source-id: 02290d6d5922f91a9e2d5ede21d1cf1c4598cb46
2020-07-16 11:20:56 -07:00
Mike Ruberry
b2b8af9645 Removes assertAlmostEqual (#41514)
Summary:
This test function is confusing since our `assertEqual` behavior allows for tolerance to be specified, and this is a redundant mechanism.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41514

Reviewed By: ngimel

Differential Revision: D22569348

Pulled By: mruberry

fbshipit-source-id: 2b2ff8aaa9625a51207941dfee8e07786181fe9f
2020-07-16 10:35:12 -07:00
Xiang Gao
23174ca71b [reland] Enable TF32 support for cuBLAS (#41498)
Summary:
fix rocm

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41498

Reviewed By: mruberry

Differential Revision: D22560572

Pulled By: ngimel

fbshipit-source-id: 5ee79e96cb29e70d9180830d058efb53d1c6c041
2020-07-15 21:00:55 -07:00
Shen Li
954c260061 Revert D22480638: [pytorch][PR] Add non-deterministic alert to CUDA operations that use atomicAdd()
Test Plan: revert-hammer

Differential Revision:
D22480638 (6ff306b8b5)

Original commit changeset: 4cc913cb3ca6

fbshipit-source-id: e47fa14b5085bb2b74a479bd0830efc2d7604eea
2020-07-15 12:10:05 -07:00
Kurt Mohler
6ff306b8b5 Add non-deterministic alert to CUDA operations that use atomicAdd() (#40056)
Summary:
Issue https://github.com/pytorch/pytorch/issues/15359

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40056

Differential Revision: D22480638

Pulled By: ezyang

fbshipit-source-id: 4cc913cb3ca6d4206de80f4665bbc9031aa3ca01
2020-07-15 10:57:32 -07:00
Shen Li
3a63a939d4 Revert D22517785: [pytorch][PR] Enable TF32 support for cuBLAS
Test Plan: revert-hammer

Differential Revision:
D22517785 (288ece89e1)

Original commit changeset: 87334c893561

fbshipit-source-id: 0a0674f49c1bcfc98f7f88af5a8c7de93b76e458
2020-07-15 08:15:48 -07:00
Rohan Varma
fd0329029f Fix flaky profiler and test_callback_simple RPC tests (#41287)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41287

Profiler tests that test profiling with builtin functions and `test_callback_simple` test has been broken for a while. This diff fixes that by preferring c10 ops to non-c10 ops in our operation matching logic.

The result of this is that these ops go through the c10 dispatch and thus have profiling enabled. For `test_callback_simple` this results in the effect that we choose `aten::add.Tensor` over `aten::add.Int` which fixes the type issue.

Test Plan:
Ensured that the tests are no longer flaky by running them a bunch
of times.

Reviewed By: vincentqb

Differential Revision: D22489197

fbshipit-source-id: 8452b93e4d45703453f77d968350c0d32f3f63fe
2020-07-14 19:26:44 -07:00
Xiang Gao
288ece89e1 Enable TF32 support for cuBLAS (#40800)
Summary:
Benchmark on a fully connected network and torchvision models (time in seconds) on GA100:

| model              | batch size | forward(TF32) | forward(FP32) | backward(TF32) | backward(FP32) |
|--------------------|------------|---------------|---------------|----------------|----------------|
| FC 512-128-32-8    | 512        | 0.000211      | 0.000321      | 0.000499       | 0.000532       |
| alexnet            | 512        | 0.0184        | 0.0255        | 0.0486         | 0.0709         |
| densenet161        | 128        | 0.0665        | 0.204         | 0.108          | 0.437          |
| googlenet          | 256        | 0.0925        | 0.110         | 0.269          | 0.326          |
| inception_v3       | 256        | 0.155         | 0.214         | 0.391          | 0.510          |
| mnasnet1_0         | 512        | 0.108         | 0.137         | 0.298          | 0.312          |
| mobilenet_v2       | 512        | 0.114         | 0.294         | 0.133          | 0.303          |
| resnet18           | 512        | 0.0722        | 0.100         | 0.182          | 0.228          |
| resnext50_32x4d    | 256        | 0.170         | 0.237         | 0.373          | 0.479          |
| shufflenet_v2_x1_0 | 512        | 0.0463        | 0.0473        | 0.125          | 0.123          |
| squeezenet1_0      | 512        | 0.0870        | 0.0948        | 0.205          | 0.214          |
| vgg16              | 256        | 0.167         | 0.234         | 0.401          | 0.502          |
| wide_resnet50_2    | 512        | 0.186         | 0.310         | 0.415          | 0.638          |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40800

Reviewed By: mruberry

Differential Revision: D22517785

Pulled By: ngimel

fbshipit-source-id: 87334c8935616f72a6af5abbd3ae69f76923dc3e
2020-07-14 13:21:10 -07:00
Xiaomeng Yang
80d5b3785b Add torch.logit function (#41062)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41062

Add torch.logit function

Test Plan: buck test mode/dev-nosan //caffe2/test:torch -- "logit"

Reviewed By: hl475

Differential Revision: D22406912

fbshipit-source-id: b303374f4c68850eb7477eb0645546a24b844606
2020-07-13 19:33:20 -07:00
Michael Suo
ca1b8ebbcb move misc implementation out of jit/__init__.py (#41154)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41154

Test Plan: Imported from OSS

Reviewed By: ailzhang

Differential Revision: D22445213

Pulled By: suo

fbshipit-source-id: 200545715c5ef13beb1437f49e01efb21498ddb7
2020-07-13 16:59:55 -07:00
Natalia Gimelshein
e568b3fa2d test nan and inf in TestTorchMathOps (#41225)
Summary:
Per title. `lgamma` produces a different result for `-inf` compared to scipy, so there comparison is skipped.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41225

Differential Revision: D22473346

Pulled By: ngimel

fbshipit-source-id: e4ebda1b10e2a061bd4cef38d1d7b5bf0f581790
2020-07-10 09:46:46 -07:00
Shen Li
f6eb92a354 Expose private APIs to enable/disable pickling ScriptModules without RPC (#39631)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39631

Background:
Currently, we cannot send ScriptModule over RPC as an argument.
Otherwise, it would hit the following error:

> _pickle.PickleError: ScriptModules cannot be deepcopied using
> copy.deepcopy or saved using torch.save. Mixed serialization of
> script and non-script modules is not supported. For purely
> script modules use my_script_module.save(<filename>) instead.

Failed attempt:
tried to install `torch.jit.ScriptModule` to RPC's
dispatch table, but it does not work as the dispatch table only
matches exact types and using base type `torch.jit.ScriptModule`
does not work for derived typed.

Current solution:
The current solution exposes `_enable_jit_rref_pickle` and
`_disable_jit_rref_pickle` APIs to toggle the `allowJitRRefPickle`
flag. See `test_pickle_script_module_with_rref` as an example.

Test Plan: Imported from OSS

Differential Revision: D21920870

Pulled By: mrshenli

fbshipit-source-id: 4d58afce5d0b4b81249b383c173488820b1a47d6
2020-07-10 07:27:51 -07:00
Jerry Zhang
c1fa74b2d7 [quant][refactor] test_only_eval_fn (#41078)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/41078

Test Plan: Imported from OSS

Differential Revision: D22420699

fbshipit-source-id: cf105cd41d83036df65c6bb3147cc14aaf755897
2020-07-09 12:34:05 -07:00
Natalia Gimelshein
155fb22e77 Run single-threaded gradgradcheck in testnn (#41147)
Summary:
Reland https://github.com/pytorch/pytorch/issues/40999

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41147

Reviewed By: mruberry

Differential Revision: D22450357

Pulled By: ngimel

fbshipit-source-id: 02b6e020af5e6ef52542266bd9752b9cfbec4159
2020-07-08 22:53:27 -07:00
Michael Suo
c93e96fbd9 [jit] move script-related implementation out of torch/jit/__init__.py (#40902)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40902

See the bottom of this stack for context.

Test Plan: Imported from OSS

Reviewed By: eellison

Differential Revision: D22360210

Pulled By: suo

fbshipit-source-id: 4275127173a36982ce9ad357aa344435b98e1faf
2020-07-08 11:38:34 -07:00
rohithkrn
6c9b869930 [ROCm] Skip Conv2d, Conv3d transpose fp16 test for ROCm3.5 (#41088)
Summary:
There's a regression in MIOpen in ROCm3.5 that results in failure of autocast tests. Skipping the tests for now and will re-enable once the fixes are in MIOpen.

ezyang jeffdaily sunway513

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41088

Differential Revision: D22419823

Pulled By: xw285cornell

fbshipit-source-id: 347fb9a03368172fe0b263d14d27ee0c3efbf4f6
2020-07-08 11:13:49 -07:00