Commit Graph

7 Commits

Author SHA1 Message Date
Sudarshan Raghunathan
e45fa1a581 Back out "[core][pruning][be] rename BaseSparsifier to BasePruner (#98747)" (#99171)
Summary: Back out D44856390 since renaming the type breaks backwards compatibility of existing models used in integration tests and likely in prod as well.

Test Plan:
buck2 run //aiplatform/modelstore/model_generation/integration_tests:cogwheel_igr_tab_offline_and_recurring_model_generation_v1_api_test-launcher -- --build-fbpkg --run-disabled --run-harness-in-tupperware

Now fails with an OOM: https://www.internalfb.com/servicelab/experiment/100000000259121/trial/100000000331723/run

It was failing with an import error without this revert.

Differential Revision: D44991351

Pull Request resolved: https://github.com/pytorch/pytorch/pull/99171
Approved by: https://github.com/izaitsevfb, https://github.com/osalpekar
2023-04-15 00:37:45 +00:00
Jesse Cai
4584851da5 [core][pruning][be] rename BaseSparsifier to BasePruner (#98747)
Summary:

att

Test Plan:
`python test/test_ao_sparsity.py -- TestBasePruner`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98747
Approved by: https://github.com/jerryzh168
2023-04-10 21:25:19 +00:00
Jesse Cai
93063768da [pruning][core][feature] Implement convert for pruner (#97545)
Summary:

This PR implements `BaseSparsifier.convert()`, which performs module swapping.
The modules and mappings will be merged in a future PR.

Test Plan:
`python test/test_ao_sparsity.py -- TestBaseSparsifier.test_convert`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97545
Approved by: https://github.com/jerryzh168
2023-04-05 16:57:11 +00:00
Jesse Cai
86ab4d49d4 [pruning][core][feature] LSTM Structured Pruning prune_functions + pattern (#90801)
Summary:

This PR adds in support for LSTM Structured Pruning.

- Adds in LSTMSaliencyPruner, an implemented pruner that splits the packed weights, finds the appropriate mask for each piece individually based on saliency, and then combines to create an overall mask for the LSTM.
- Adds in pruning functions for LSTM pruning, which will split the weights, apply the masks, and then recombine the pruned weights. Works for both single and multiple-layer LSTMs.

Also added a basic pattern to the default set of of patterns for
LSTM -> Linear pruning
LSTM -> LayerNorm -> Linear pruning

Adds in test to check that LSTM pruning works, as well as for LSTMSaliencyPruner

Test Plan:
`python test/test_ao_sparsity.py -- TestBaseStructuredSparsifier.test_prune_lstm_linear_single_layer`
`python test/test_ao_sparsity.py -- TestBaseStructuredSparsifier.test_prune_lstm_linear_multiple_layer`
`python test/test_ao_sparsity.py -- TestBaseStructuredSparsifier.test_prune_lstm_layernorm_linear_single_layer`
`python test/test_ao_sparsity.py -- TestBaseStructuredSparsifier.test_prune_lstm_layernorm_linear_multiple_layer`
`python test/test_ao_sparsity.py -- TestSaliencyPruner.test_lstm_saliency_pruner_update_mask`
Reviewers:

Subscribers:

Tasks:

Tags:

Differential Revision: [D42199001](https://our.internmc.facebook.com/intern/diff/D42199001)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90801
Approved by: https://github.com/jerryzh168
2023-02-01 19:29:03 +00:00
Jesse Cai
de016b3799 [pruning][core][feature] Implement prune for structured pruning (#89777)
Summary:

This PR implements `prune` in BaseStructuredSparsifier:

`prune` is a function that takes in a model with structured sparsity parametritizations (the result of `prepare`) and will return a resized model with the masked out weights removed.

`prune` is defined by a mapping from **patterns** to different **pruning functions**.
	- **patterns** are just sequences of operations, for example `(nn.Linear, activation, nn.Linear)`
	- **pruning functions** are functions that take in an matched pattern as args and will resize the appropriate layer sizes and weights.
	  ```
	  def prune_linear_activation_linear(linear1, activation, linear2):
		pass
	  ```
	- This is one line in the pattern config `(nn.Linear, activation, nn.Linear): prune_linear_activation_linear`

At a high level `prune` works by finding instances of the graph that match different patterns and then calling the mapped pruning functions on those matched patterns.
This is unlike the previous code which attempted to do both at the same time.

There may be some gaps in the patterns compared to the previous implementation, but the conversion functionality support should be the same.

Currently we have pruning functions for the following patterns:
    - linear -> linear
    - linear -> activation -> linear
    - conv2d -> conv2d
    - conv2d -> activation -> conv2d
    - conv2d -> activation -> pool -> conv2d
    - conv2d -> pool -> activation -> conv2d
    - conv2d -> adaptive pool -> flatten -> linear

Added in MyPy type hints as well for the prune_functions.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89777
Approved by: https://github.com/vkuzo
2022-12-08 07:13:24 +00:00
PyTorch MergeBot
1b1301f16a Revert "[pruning][core][feature] Implement prune for structured pruning (#89777)"
This reverts commit 3531e44307.

Reverted https://github.com/pytorch/pytorch/pull/89777 on behalf of https://github.com/clee2000 due to breaking test_ao_sparcity due to import 3531e44307 https://github.com/pytorch/pytorch/actions/runs/3641476330/jobs/6147830487, probably a landrace with 824641b083860df4d7ffef06a798ea2702bc4bde?
2022-12-07 19:41:15 +00:00
Jesse Cai
3531e44307 [pruning][core][feature] Implement prune for structured pruning (#89777)
Summary:

This PR implements `prune` in BaseStructuredSparsifier:

`prune` is a function that takes in a model with structured sparsity parametritizations (the result of `prepare`) and will return a resized model with the masked out weights removed.

`prune` is defined by a mapping from **patterns** to different **pruning functions**.
	- **patterns** are just sequences of operations, for example `(nn.Linear, activation, nn.Linear)`
	- **pruning functions** are functions that take in an matched pattern as args and will resize the appropriate layer sizes and weights.
	  ```
	  def prune_linear_activation_linear(linear1, activation, linear2):
		pass
	  ```
	- This is one line in the pattern config `(nn.Linear, activation, nn.Linear): prune_linear_activation_linear`

At a high level `prune` works by finding instances of the graph that match different patterns and then calling the mapped pruning functions on those matched patterns.
This is unlike the previous code which attempted to do both at the same time.

There may be some gaps in the patterns compared to the previous implementation, but the conversion functionality support should be the same.

Currently we have pruning functions for the following patterns:
    - linear -> linear
    - linear -> activation -> linear
    - conv2d -> conv2d
    - conv2d -> activation -> conv2d
    - conv2d -> activation -> pool -> conv2d
    - conv2d -> pool -> activation -> conv2d
    - conv2d -> adaptive pool -> flatten -> linear

Added in MyPy type hints as well for the prune_functions.

Test Plan:

Reviewers:

Subscribers:

Tasks:

Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89777
Approved by: https://github.com/vkuzo
2022-12-07 17:52:01 +00:00