Commit Graph

78 Commits

Author SHA1 Message Date
cyy
df458be4e5 [4/N] Apply py39 ruff and pyupgrade fixes (#143257)
```torch/fx/passes/annotate_getitem_nodes.py``` was changed to support the new type hinting annotations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143257
Approved by: https://github.com/justinchuby, https://github.com/albanD
2025-01-04 10:47:51 +00:00
Xuehai Pan
b6bdb67f82 [BE][Easy] use pathlib.Path instead of dirname / ".." / pardir (#129374)
Changes by apply order:

1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.

    `.parent{...}.absolute()` -> `.absolute().parent{...}`

4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)

    `.parent.parent.parent.parent` -> `.parents[3]`

5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~

    ~`.parents[3]` -> `.parents[4 - 1]`~

6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
2024-12-29 17:23:13 +00:00
Yanan Cao (PyTorch)
ba5cacbc17 [Codemod][AddExplicitStrictExportArg] caffe2/test (#143688)
Reviewed By: avikchaudhuri

Differential Revision: D67530154

Pull Request resolved: https://github.com/pytorch/pytorch/pull/143688
Approved by: https://github.com/tugsbayasgalan
2024-12-27 07:58:44 +00:00
PyTorch MergeBot
475656fd9c Revert "[BE][Easy] use pathlib.Path instead of dirname / ".." / pardir (#129374)"
This reverts commit 2293fe1024.

Reverted https://github.com/pytorch/pytorch/pull/129374 on behalf of https://github.com/malfet due to failing internal ROCM builds with error: ModuleNotFoundError: No module named hipify ([comment](https://github.com/pytorch/pytorch/pull/129374#issuecomment-2562973920))
2024-12-26 17:32:23 +00:00
Xuehai Pan
2293fe1024 [BE][Easy] use pathlib.Path instead of dirname / ".." / pardir (#129374)
Changes by apply order:

1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.

    `.parent{...}.absolute()` -> `.absolute().parent{...}`

4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)

    `.parent.parent.parent.parent` -> `.parents[3]`

5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~

    ~`.parents[3]` -> `.parents[4 - 1]`~

6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
2024-12-21 22:08:01 +00:00
Justin Chu
7c777dd587 [ONNX] Unify ONNXProgram and remove the old one (#136281)
## Note

`test_fx_to_onnx_with_onnxruntime.py` is removed for now (it has a lot of xfails anyways). A better version will be added back.

Fixes https://github.com/pytorch/pytorch/issues/136274

Pull Request resolved: https://github.com/pytorch/pytorch/pull/136281
Approved by: https://github.com/xadupre, https://github.com/albanD
2024-09-24 20:52:19 +00:00
Justin Chu
a6b9d444fb [ONNX] Refactor exporter errors (#135180)
Refactor exporter errors to combine old errors and new errors for API consistency.

This PR also

1. Removes the `_C._check_onnx_proto(proto)` call in the old exporter. We don't need the ONNX checker because it is limited.
2. Removes the `OnnxExporterError` defined in the dynamo module. This class unnecessarily stores the onnx program object, making it very bulky. Instead, we revert to use the plain OnnxExporterError defined in the `errors` module and use it as the base class for all errors.
3. Continues to expose `OnnxExporterError` in `torch.onnx` and the rest of the errors in `torch.onnx.errors`.
4. Removes the `CheckerError` and `InvalidExportOptionsError` from `torch.onnx`. This is BC breaking but should have low impact.
5. I did not rename existing errors out of compatibility considerations, even though `ExporterError` would have been more succinct.

Fixes https://github.com/pytorch/pytorch/issues/135125
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135180
Approved by: https://github.com/titaiwangms
2024-09-07 00:50:15 +00:00
PyTorch MergeBot
a681260caf Revert "[ONNX] Refactor exporter errors (#135180)"
This reverts commit 5eebd9315a.

Reverted https://github.com/pytorch/pytorch/pull/135180 on behalf of https://github.com/clee2000 due to I think this broke test_public_bindings.py::TestPublicBindings::test_correct_module_names [GH job link](https://github.com/pytorch/pytorch/actions/runs/10743909338/job/29800779403) [HUD commit link](5eebd9315a), possibly a landrace with the PR that landed before it ([comment](https://github.com/pytorch/pytorch/pull/135180#issuecomment-2334844191))
2024-09-06 21:39:18 +00:00
Justin Chu
5eebd9315a [ONNX] Refactor exporter errors (#135180)
Refactor exporter errors to combine old errors and new errors for API consistency.

This PR also

1. Removes the `_C._check_onnx_proto(proto)` call in the old exporter. We don't need the ONNX checker because it is limited.
2. Removes the `OnnxExporterError` defined in the dynamo module. This class unnecessarily stores the onnx program object, making it very bulky. Instead, we revert to use the plain OnnxExporterError defined in the `errors` module and use it as the base class for all errors.
3. Continues to expose `OnnxExporterError` in `torch.onnx` and the rest of the errors in `torch.onnx.errors`.
4. Removes the `CheckerError` and `InvalidExportOptionsError` from `torch.onnx`. This is BC breaking but should have low impact.
5. I did not rename existing errors out of compatibility considerations, even though `ExporterError` would have been more succinct.

Fixes https://github.com/pytorch/pytorch/issues/135125
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135180
Approved by: https://github.com/titaiwangms
2024-09-06 19:10:56 +00:00
Justin Chu
6d4287419c [ONNX] Disable op_level_debug tests (#133485)
op_level_debug is being deprecated. So we disable the tests.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133485
Approved by: https://github.com/titaiwangms
2024-08-14 22:02:12 +00:00
Xuehai Pan
fbe6f42dcf [BE][Easy][8/19] enforce style for empty lines in import segments in test/[k-p]*/ (#129759)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129759
Approved by: https://github.com/justinchuby, https://github.com/ezyang
2024-07-31 02:09:20 +00:00
Justin Chu
e880cb2fe0 [ONNX] Remove beartype usage (#130484)
beartype has served us well in identifying type errors and ensuring we call internal functions with the correct arguments (thanks!). However, the value of having beartype is diminished because of the following:

1. When beartype improves support for better Dict[] type checking, it discovered typing mistakes in some functions that were previously uncaught. This caused the exporter to fail with newer versions beartype when it used to succeed. Since we cannot fix PyTorch and release a new version just because of this, it creates confusion for users that have beartype in their environment from using torch.onnx
2. beartype adds an additional call line in the traceback, which makes the already thick dynamo stack even larger, affecting readability when users diagnose errors with the traceback.
3. Since the typing annotations need to be evaluated, we cannot use new syntaxes like `|` because we need to maintain compatibility with Python 3.8. We don't want to wait for PyTorch take py310 as the lowest supported Python before using the new typing syntaxes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130484
Approved by: https://github.com/titaiwangms
2024-07-18 22:07:40 +00:00
PyTorch MergeBot
0851de5b16 Revert "[ONNX] Remove beartype usage (#130484)"
This reverts commit 1794c35912.

Reverted https://github.com/pytorch/pytorch/pull/130484 on behalf of https://github.com/clee2000 due to test_sympy_utils failure is real https://github.com/pytorch/pytorch/actions/runs/9961499559/job/27523758780 1794c35912.  Dr CI is matching with commits in current commit? ([comment](https://github.com/pytorch/pytorch/pull/130484#issuecomment-2231575577))
2024-07-16 18:41:51 +00:00
Justin Chu
1794c35912 [ONNX] Remove beartype usage (#130484)
beartype has served us well in identifying type errors and ensuring we call internal functions with the correct arguments (thanks!). However, the value of having beartype is diminished because of the following:

1. When beartype improves support for better Dict[] type checking, it discovered typing mistakes in some functions that were previously uncaught. This caused the exporter to fail with newer versions beartype when it used to succeed. Since we cannot fix PyTorch and release a new version just because of this, it creates confusion for users that have beartype in their environment from using torch.onnx
2. beartype adds an additional call line in the traceback, which makes the already thick dynamo stack even larger, affecting readability when users diagnose errors with the traceback.
3. Since the typing annotations need to be evaluated, we cannot use new syntaxes like `|` because we need to maintain compatibility with Python 3.8. We don't want to wait for PyTorch take py310 as the lowest supported Python before using the new typing syntaxes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130484
Approved by: https://github.com/titaiwangms
2024-07-16 17:34:36 +00:00
PyTorch MergeBot
0effcb70ef Revert "[ONNX] Remove beartype usage (#130484)"
This reverts commit f44739cf42.

Reverted https://github.com/pytorch/pytorch/pull/130484 on behalf of https://github.com/huydhn due to Sorry for reverting your change but those failures show up in trunk after the commit landed f44739cf42, I am reverting it to see if it fix trunk ([comment](https://github.com/pytorch/pytorch/pull/130484#issuecomment-2226812311))
2024-07-13 07:52:59 +00:00
Justin Chu
f44739cf42 [ONNX] Remove beartype usage (#130484)
beartype has served us well in identifying type errors and ensuring we call internal functions with the correct arguments (thanks!). However, the value of having beartype is diminished because of the following:

1. When beartype improves support for better Dict[] type checking, it discovered typing mistakes in some functions that were previously uncaught. This caused the exporter to fail with newer versions beartype when it used to succeed. Since we cannot fix PyTorch and release a new version just because of this, it creates confusion for users that have beartype in their environment from using torch.onnx
2. beartype adds an additional call line in the traceback, which makes the already thick dynamo stack even larger, affecting readability when users diagnose errors with the traceback.
3. Since the typing annotations need to be evaluated, we cannot use new syntaxes like `|` because we need to maintain compatibility with Python 3.8. We don't want to wait for PyTorch take py310 as the lowest supported Python before using the new typing syntaxes.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130484
Approved by: https://github.com/titaiwangms
2024-07-13 00:08:25 +00:00
Pian Pawakapan
1b3b4c2fb9 [runtime asserts] deduplicate runtime asserts & CSE (#128599) (#130380)
original PR: https://github.com/pytorch/pytorch/pull/128599 (re-created after revert + poisoned diff train)

Summary:
This PR adds deduplication and CSE for runtime asserts. Existing size computation in the graph is CSE'd along with added runtime asserts, and redundant asserts are removed. Shape calls on intermediate tensors are also turned into compute on input sizes if possible, allowing intermediate tensors to be freed earlier. For example:
```
z = torch.cat([x, x], dim=0)  # 2*s0
w = z.repeat(y.shape[0])  # 2*s0*s1
_w = w.shape[0]

s0 = x.shape[0]
s1 = y.shape[0]
_w0 = 2 * s0
_w = _w0 * s1
```

Additionally, constrain_range calls are deduplicated. Single-symbol bound checks for unbacked symbols (e.g. u0 >= 0, u0 <= 5) and sym_constrain_range.default calls are also removed, since they accumulate range info in the ShapeEnv, and are replaced with two _assert_scalar.default calls that check the min/max bounds. For example:
```
torch.sym_constrain_range_for_size(n, min=2, max=16)
torch.sym_constrain_range(n, min=4, max=20)
torch._check(n >= 0)
torch._check(n >= 3)
torch._check(n <= 14)

torch.sym_constrain_range_for_size(n)
torch._check(n >= 4)
torch._check(n <= 14)
```

Test Plan:
contbuild & OSS CI, see 940e4477ab

Original Phabricator Test Plan:
Imported from GitHub, without a `Test Plan:` line.

Differential Revision: D59543603

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130380
Approved by: https://github.com/izaitsevfb
2024-07-10 19:23:37 +00:00
PyTorch MergeBot
9c9744c3ac Revert "[runtime asserts] deduplicate runtime asserts & CSE (#128599)"
This reverts commit 940e4477ab.

Reverted https://github.com/pytorch/pytorch/pull/128599 on behalf of https://github.com/izaitsevfb due to breaking internal APS tests, see D59498864 ([comment](https://github.com/pytorch/pytorch/pull/128599#issuecomment-2218724762))
2024-07-09 21:03:49 +00:00
Pian Pawakapan
940e4477ab [runtime asserts] deduplicate runtime asserts & CSE (#128599)
This PR adds deduplication and CSE for runtime asserts. Existing size computation in the graph is CSE'd along with added runtime asserts, and redundant asserts are removed. Shape calls on intermediate tensors are also turned into compute on input sizes if possible, allowing intermediate tensors to be freed earlier. For example:
```
z = torch.cat([x, x], dim=0)  # 2*s0
w = z.repeat(y.shape[0])  # 2*s0*s1
_w = w.shape[0]
# something with _w ...

# turns into ->
s0 = x.shape[0]
s1 = y.shape[0]
_w0 = 2 * s0
_w = _w0 * s1
```

Additionally, constrain_range calls are deduplicated. Single-symbol bound checks for unbacked symbols (e.g. u0 >= 0, u0 <= 5) and sym_constrain_range.default calls are also removed, since they accumulate range info in the ShapeEnv, and are replaced with two _assert_scalar.default calls that check the min/max bounds. For example:
```
torch.sym_constrain_range_for_size(n, min=2, max=16)
torch.sym_constrain_range(n, min=4, max=20)
torch._check(n >= 0)
torch._check(n >= 3)
torch._check(n <= 14)

# turns into
torch.sym_constrain_range_for_size(n)
torch._check(n >= 4)
torch._check(n <= 14)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128599
Approved by: https://github.com/ezyang
2024-07-07 20:10:14 +00:00
PyTorch MergeBot
963f430d13 Revert "[runtime asserts] deduplicate runtime asserts & CSE (#128599)"
This reverts commit 0267b2ddcb.

Reverted https://github.com/pytorch/pytorch/pull/128599 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it seems to cause a landrace and fails inductor/test_cudagraph_trees in trunk 0267b2ddcb ([comment](https://github.com/pytorch/pytorch/pull/128599#issuecomment-2211690518))
2024-07-06 07:20:05 +00:00
Pian Pawakapan
0267b2ddcb [runtime asserts] deduplicate runtime asserts & CSE (#128599)
This PR adds deduplication and CSE for runtime asserts. Existing size computation in the graph is CSE'd along with added runtime asserts, and redundant asserts are removed. Shape calls on intermediate tensors are also turned into compute on input sizes if possible, allowing intermediate tensors to be freed earlier. For example:
```
z = torch.cat([x, x], dim=0)  # 2*s0
w = z.repeat(y.shape[0])  # 2*s0*s1
_w = w.shape[0]
# something with _w ...

# turns into ->
s0 = x.shape[0]
s1 = y.shape[0]
_w0 = 2 * s0
_w = _w0 * s1
```

Additionally, constrain_range calls are deduplicated. Single-symbol bound checks for unbacked symbols (e.g. u0 >= 0, u0 <= 5) and sym_constrain_range.default calls are also removed, since they accumulate range info in the ShapeEnv, and are replaced with two _assert_scalar.default calls that check the min/max bounds. For example:
```
torch.sym_constrain_range_for_size(n, min=2, max=16)
torch.sym_constrain_range(n, min=4, max=20)
torch._check(n >= 0)
torch._check(n >= 3)
torch._check(n <= 14)

# turns into
torch.sym_constrain_range_for_size(n)
torch._check(n >= 4)
torch._check(n <= 14)
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128599
Approved by: https://github.com/ezyang
2024-07-06 03:44:49 +00:00
PyTorch MergeBot
3d96217891 Revert "[BE][Easy] use pathlib.Path instead of dirname / ".." / pardir (#129374)"
This reverts commit 9e1f3ecaa7.

Reverted https://github.com/pytorch/pytorch/pull/129374 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it is still failing with the same error ([comment](https://github.com/pytorch/pytorch/pull/129374#issuecomment-2197801405))
2024-06-29 00:47:15 +00:00
Xuehai Pan
9e1f3ecaa7 [BE][Easy] use pathlib.Path instead of dirname / ".." / pardir (#129374)
Changes by apply order:

1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.

    `.parent{...}.absolute()` -> `.absolute().parent{...}`

4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)

    `.parent.parent.parent.parent` -> `.parents[3]`

5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~

    ~`.parents[3]` -> `.parents[4 - 1]`~

6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
2024-06-28 00:35:15 +00:00
PyTorch MergeBot
895316119d Revert "[BE][Easy] use pathlib.Path instead of dirname / ".." / pardir (#129374)"
This reverts commit 0314c4c101.

Reverted https://github.com/pytorch/pytorch/pull/129374 on behalf of https://github.com/huydhn due to Sorry for reverting your change but it causes lots of internal build failures where they fail to find hipify module ([comment](https://github.com/pytorch/pytorch/pull/129374#issuecomment-2192437052))
2024-06-26 19:03:57 +00:00
Xuehai Pan
0314c4c101 [BE][Easy] use pathlib.Path instead of dirname / ".." / pardir (#129374)
Changes by apply order:

1. Replace all `".."` and `os.pardir` usage with `os.path.dirname(...)`.
2. Replace nested `os.path.dirname(os.path.dirname(...))` call with `str(Path(...).parent.parent)`.
3. Reorder `.absolute()` ~/ `.resolve()`~ and `.parent`: always resolve the path first.

    `.parent{...}.absolute()` -> `.absolute().parent{...}`

4. Replace chained `.parent x N` with `.parents[${N - 1}]`: the code is easier to read (see 5.)

    `.parent.parent.parent.parent` -> `.parents[3]`

5. ~Replace `.parents[${N - 1}]` with `.parents[${N} - 1]`: the code is easier to read and does not introduce any runtime overhead.~

    ~`.parents[3]` -> `.parents[4 - 1]`~

6. ~Replace `.parents[2 - 1]` with `.parent.parent`: because the code is shorter and easier to read.~

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129374
Approved by: https://github.com/justinchuby, https://github.com/malfet
2024-06-25 08:28:38 +00:00
Xuehai Pan
26f4f10ac8 [5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
2024-05-27 14:49:57 +00:00
PyTorch MergeBot
55c0ab2887 Revert "[5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)"
This reverts commit 7763c83af6.

Reverted https://github.com/pytorch/pytorch/pull/127126 on behalf of https://github.com/XuehaiPan due to Broken CI ([comment](https://github.com/pytorch/pytorch/pull/127126#issuecomment-2133044286))
2024-05-27 09:22:08 +00:00
Xuehai Pan
7763c83af6 [5/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort torch (#127126)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127126
Approved by: https://github.com/kit1980
ghstack dependencies: #127122, #127123, #127124, #127125
2024-05-27 04:22:18 +00:00
titaiwangms
77bed8f7f2 [ONNX] model_type flag is only supported under SKIP_XFAIL_SUBTESTS (#122336)
Fixes #120918

To address the confusion that developers usually have on which list to put xfail and skip. This PR provides guidance that `model_type` and `matcher` specified xfail/skip should go to `SKIP_XFAIL_SUBTESTS`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122336
Approved by: https://github.com/BowenBao, https://github.com/thiagocrepaldi
2024-03-21 04:10:32 +00:00
Angela Yi
4b49bc19e8 [export][reland] Disable exported_program.__call__ (#120019)
Summary: Reland of D53075378 / https://github.com/pytorch/pytorch/pull/119466

Test Plan: CI

Differential Revision: D53827930

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120019
Approved by: https://github.com/ydwu4
2024-03-05 05:29:46 +00:00
PyTorch MergeBot
65fd8b6730 Revert "[export] Disable exported_program.__call__ (#119466)"
This reverts commit c26884f063.

Reverted https://github.com/pytorch/pytorch/pull/119466 on behalf of https://github.com/facebook-github-bot due to Diff reverted internally ([comment](https://github.com/pytorch/pytorch/pull/119466#issuecomment-1947384298))
2024-02-15 21:42:32 +00:00
Angela Yi
c26884f063 [export] Disable exported_program.__call__ (#119466)
Summary: `ExportedProgram` is an artifact produced by torch.export, containing the graph that is exported, along with other attributes about the original program such as the graph signature, state dict, and constants. One slightly confusing thing that users run into is that they treat the `ExportedProgram` as a `torch.nn.Module`, since the object is callable. However, as we do not plan to support all features that `torch.nn.Module`s have, like hooks, we want to create a distinction between it and the `ExportedProgram` by removing the `__call__` method. Instead users can create a proper `torch.nn.Module` through `exported_program.module()` and use that as a callable.

Test Plan: CI

Differential Revision: D53075378

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119466
Approved by: https://github.com/zhxchen17, https://github.com/thiagocrepaldi
2024-02-15 08:49:34 +00:00
titaiwangms
bb287d73ec [ONNX] Apply modularizarion to exported program exporting (#119498)
Apply modularization pass to exported program exporting. The only two things that needs to be taken care of are (1) the extra call stack generated by `torch.export.export` and (2) lifted placeholder has call stack (different from original placeholder).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119498
Approved by: https://github.com/thiagocrepaldi
2024-02-09 22:57:42 +00:00
titaiwangms
a3cec6a7fa [ONNX] Eliminate redundant TODOs (#119060)
Remove titaiwangms/AllenTiTaiWang/titaiwang created TODOs:

1. Resolved TODOs
2. Turned TODOs to NOTEs if they are not actionable
3. Merge duplicated TODOs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119060
Approved by: https://github.com/kit1980, https://github.com/thiagocrepaldi
2024-02-02 23:37:52 +00:00
titaiwangms
5ae221a214 [ONNX] Refactor op consistency tests (#116319)
Fixes #105338

This PR changes the ops consistency tests from manual adding ops into testing list to automated testing all ops in registry. It also spots more complex dtype bugs in the converter.

Overall, this PR provides:
(1) Whole test coverage on ONNX registry
(2) More completed complex supports
(3) Only test the same dtypes as torchlib
(4) Auto xfail unsupported nodes

Follow-up issue: https://github.com/pytorch/pytorch/issues/117118
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116319
Approved by: https://github.com/justinchuby
2024-01-11 05:17:40 +00:00
Thiago Crepaldi
4307ccde99 Move ONNX's TorchModelType to pytorch_test_common to fix circ. dep. (#115353)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115353
Approved by: https://github.com/BowenBao
2023-12-11 22:23:03 +00:00
PyTorch MergeBot
2ee240d14a Revert "Move ONNX's TorchModelType to pytorch_test_common to fix circ. dep. (#115353)"
This reverts commit 960ad9d94e.

Reverted https://github.com/pytorch/pytorch/pull/115353 on behalf of https://github.com/huydhn due to Sorry for reverting your change but ONNX test is failing from the commit below in the stack 13d2e3eba7 ([comment](https://github.com/pytorch/pytorch/pull/115353#issuecomment-1848830883))
2023-12-10 01:53:50 +00:00
Thiago Crepaldi
960ad9d94e Move ONNX's TorchModelType to pytorch_test_common to fix circ. dep. (#115353)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115353
Approved by: https://github.com/BowenBao
ghstack dependencies: #114407, #115281, #114762
2023-12-09 07:47:03 +00:00
Thiago Crepaldi
7e941a932b Store user model to simplify ONNXProgram.{adapt_torch_*,__call__} APIs (#115281)
Currently (after https://github.com/pytorch/pytorch/pull/114407), the user has must pass the original user ``model`` to APIs such as ``ONNXProgram.__call__``, ``ONNXProgram.adapt_torch_inputs_to_onnx`` and ``ONNXProgram.adapt_torch_outputs_to_onnx`` APIs.

This was needed because when the model is fakefied, a version of the non-fakefied model is needed so that the Initializers, buffers and constants can be extracted from a real model (and used as input to the ONNX model).
That approach brings an unnecessary usability burden to the user when the model is not fakefied, because the model that was already passed to ``torch.onnx.dynamo_export`` could be used to extract ``state_dict``.

This PR adds ``ONNXProgram._model_torch`` attribute to store the user model and demote ``model`` argument of the aforementioned APIs to optional, only (as opposed to required).

As a result, for the fakefied model scenario, the user still need to pass the required model, but for non fakefied models, the persisted model is implicitly used to extract the model state_dict, making it easier to use.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/115281
Approved by: https://github.com/BowenBao
ghstack dependencies: #114407
2023-12-09 07:46:12 +00:00
Thiago Crepaldi
3c54ff6bcd Update ONNX's IO Adapter to support FakeTensor with ExportedProgram (#114407)
Currently, the ONNX exporter using torch.nn.Module as input can support
FakeTensor because the ONNX model stores all initializers

When using torch.export.ExportedProgram as input, the initializers are
lifted as inputs. In order to execute the ONNX model, we need to pass a
reference to the non-fake model to the
ONNXProgram.adapt_torch_inputs_to_onnx API, so that initializers can be
fetched from the model and fed to the ONNX model as input

ps: https://github.com/pytorch/pytorch/issues/115461 will track the API revision for the cases where additional `model_with_state_dict` are required to produce complete ONNX files exported with fake support. This is also tracked by the umbrella fake tensor issue https://github.com/pytorch/pytorch/issues/105464 FYI @BowenBao
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114407
Approved by: https://github.com/BowenBao
2023-12-09 01:48:27 +00:00
titaiwangms
ae5365819d [ONNX] Extend test_fx_op_consistency.py to cover ExportedProgram model type (#114886)
This PR covers `ExportedProgram` to `test_fx_op_consistency.py`, which helps us identify the necessary but missing io_steps.
Next, we should refactor the tests to actually cover all ops supported by registry.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114886
Approved by: https://github.com/thiagocrepaldi
2023-12-07 00:03:23 +00:00
titaiwangms
e83c05c833 [ONNX] Add ONNX ExportedProgram tests (#114633)
Fix #114166
Fix #113705

This PR references tests from `test_export.py` to make sure the exported program from PyTorch can all be successfully exported into ONNX model.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114633
Approved by: https://github.com/thiagocrepaldi
2023-11-28 19:03:13 +00:00
Thiago Crepaldi
a76bb5d84d Add support for models with mutated buffer on torch.onnx.dynamo_export (#112272)
This PR adds a unit test that leverages `torch.export.ExportedProgram` models that mutates registered buffers. Although the exporter already works out of the box in such scenario, the GraphModule and the exported ONNX model have extra outputs containing the mutated buffers. On future runs of the ONNX model, the mutated buffers are used as input to the model.

The aforementioned extra inputs and outputs are by design and the `ONNXProgram.model_signature` can be used to fetch detailed input/output schema for the exported model.

However, when we want to compare pytorch output to ONNX's, there is a mismatch between the schema because pytorch output does not include the mutated buffers present on the ONNX output.

This PR extends `onnx_program.adapt_torch_outputs_to_onnx(torch_outputs)` so that the mutated buffers are prepended to the Pytorch output, matching the ONNX schema.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112272
Approved by: https://github.com/titaiwangms, https://github.com/BowenBao
2023-11-23 09:59:02 +00:00
PyTorch MergeBot
a43edd836c Revert "Add support for models with mutated buffer on torch.onnx.dynamo_export (#112272)"
This reverts commit c4a22d6918.

Reverted https://github.com/pytorch/pytorch/pull/112272 on behalf of https://github.com/huydhn due to Sorry for reverting you change but it is failing dynamo test in trunk c4a22d6918 ([comment](https://github.com/pytorch/pytorch/pull/112272#issuecomment-1823897964))
2023-11-23 07:07:56 +00:00
Thiago Crepaldi
c4a22d6918 Add support for models with mutated buffer on torch.onnx.dynamo_export (#112272)
This PR adds a unit test that leverages `torch.export.ExportedProgram` models that mutates registered buffers. Although the exporter already works out of the box in such scenario, the GraphModule and the exported ONNX model have extra outputs containing the mutated buffers. On future runs of the ONNX model, the mutated buffers are used as input to the model.

The aforementioned extra inputs and outputs are by design and the `ONNXProgram.model_signature` can be used to fetch detailed input/output schema for the exported model.

However, when we want to compare pytorch output to ONNX's, there is a mismatch between the schema because pytorch output does not include the mutated buffers present on the ONNX output.

This PR extends `onnx_program.adapt_torch_outputs_to_onnx(torch_outputs)` so that the mutated buffers are prepended to the Pytorch output, matching the ONNX schema.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112272
Approved by: https://github.com/titaiwangms, https://github.com/BowenBao
2023-11-23 03:39:18 +00:00
BowenBao
bd44bdb675 [ONNX][dynamo_export] Turn off opmath for type promotion (#113780)
Although opmath is the right thing to do to retain on-par precision, it inserts
upcasts everywhere in the graph. This is particularly hard for backend to optimize
since there is no way to differentiate between inserted upcasts and model code
casts. Hence we consolidate the input dtype to the result dtype to avoid this.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113780
Approved by: https://github.com/titaiwangms, https://github.com/justinchuby
2023-11-22 05:39:00 +00:00
Thiago Crepaldi
3f736c2d77 Add ONNXProgram.__call__ API to run model with ONNX Runtime (#113495)
Currently the user can use torch.onnx.dynamo_export to export the model.
to ONNX.

```python
import torch

class Model(torch.nn.Module):
    def forward(self, x):
        return x + 1.0

onnx_program = torch.onnx.dynamo_export(
    Model(),
    torch.randn(1, 1, 2, dtype=torch.float),
)
```

The next step would be instantiating a ONNX runtime to execute it.

```python
import onnxruntime  # type: ignore[import]

onnx_input = self.adapt_torch_inputs_to_onnx(*args, **kwargs)
options = options or {}
providers = options.get("providers", onnxruntime.get_available_providers())
onnx_model = self.model_proto.SerializeToString()
ort_session = onnxruntime.InferenceSession(onnx_model, providers=providers)

def to_numpy(tensor):
    return (
        tensor.detach().cpu().numpy()
        if tensor.requires_grad
        else tensor.cpu().numpy()
    )

onnxruntime_input = {
    k.name: to_numpy(v) for k, v in zip(ort_session.get_inputs(), onnx_input)
}

return ort_session.run(None, onnxruntime_input)
```

This PR provides the `ONNXProgram.__call__` method as facilitator to use ONNX Runtime under the hood, similar to how `torch.export.ExportedProgram.__call__` which allows the underlying `torch.fx.GraphModule` to be executed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113495
Approved by: https://github.com/titaiwangms
2023-11-22 01:48:45 +00:00
Thiago Crepaldi
d4189d8007 Extend _TestONNXRuntime to reuses all tests for new model format (#112289)
`_TestONNXRuntime` has infra to test models which are either Callable or a `torch.nn.Module`.

After #111497, we want to re-run all those tests for model of type `torch.export.ExportedProgram`.

This PR adds to `self.run_test_with_fx_to_onnx_exporter_and_onnx_runtime` the capability of detect the model type to be tested and export the incoming `torch.nn.Module` model to `torch.export.ExportedProgram` before running ONNX export tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112289
Approved by: https://github.com/titaiwangms
2023-11-18 00:27:56 +00:00
Thiago Crepaldi
eefe327b11 Rename torch.onnx.ExportOutput* to ONNXProgram* (#112263)
Since PyTorch 2.1, torch.export API was introduced and the term "export"
got overloaded due to the already existing torch.onnx.export API.

The torch.onnx.dynamo_export API was introduced on pyTorch 2.0 and it
exposed a torch.onnx.ExportOutput which now can be confused with
torch.export.export output

To prevent such ambiguity and standardize names around the new
torch.export.ExportedProgram, this PR renames torch.onnx.ExportOutput to
torch.onnx.ONNXProgram

Pull Request resolved: https://github.com/pytorch/pytorch/pull/112263
Approved by: https://github.com/BowenBao
ghstack dependencies: #112444
2023-11-06 22:27:15 +00:00
Thiago Crepaldi
9d4dbebc34 Add support to ExportedProgram as input to torch.onnx.dynamo_export (#111497)
Fixes #109889

This PR adds `torch.export.export` as another `FXGraphExtractor` implementation. `torch.onnx.dynamo_export` automatically uses this new FX tracer when a `torch.export.ExportedProgram` is specified as `model`

Implementation is back compatible, thus non `ExportedProgram` models are handled the exact same way as before
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111497
Approved by: https://github.com/BowenBao
2023-10-25 18:11:19 +00:00