Summary:
If source code is not available due to packaging (e.g. sources are compiled to .pyc), TorchScript produces very obscure error message. This tries to make it nicer and allow to customize message by overriding _utils_internal.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25415
Test Plan: Really hard to unittest properly. Did one off testing by compiling to .pyc and checking the message.
Differential Revision: D17118238
Pulled By: dzhulgakov
fbshipit-source-id: 3cbfee0abddc8613000680548bfe0b8ed52a36b0
Summary:
Previously we weren't clearing the stack, so any failures that didn't
stop the program stayed around in the stack and would show up if
something else accessed the stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23458
Pulled By: driazati
Differential Revision: D16866719
fbshipit-source-id: 29739b11f79de91c6468129da1bdcbf3c53b42d9
Summary:
Previously these were left out which would lead to confusing messages,
now it looks something like:
```
torch.jit.frontend.UnsupportedNodeError: import statements aren't
supported
:
at ../test.py:13:9
def bad_fn(self):
import pdb
~~~~~~ <--- HERE
'__torch__.X' is being compiled since it was called from 'fn'
at ../test.py:16:12
def fn(x):
return X(10)
~~~~ <--- HERE
```
Fixes#23453
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23454
Pulled By: driazati
Differential Revision: D16567930
fbshipit-source-id: 251b6f91f37a2816e06bb4c803f9bc172fa1d91b
Summary:
Previously these were left out which would lead to confusing messages,
now it looks something like:
```
torch.jit.frontend.UnsupportedNodeError: import statements aren't
supported
:
at ../test.py:13:9
def bad_fn(self):
import pdb
~~~~~~ <--- HERE
'__torch__.X' is being compiled since it was called from 'fn'
at ../test.py:16:12
def fn(x):
return X(10)
~~~~ <--- HERE
```
Fixes#23453
](https://our.intern.facebook.com/intern/diff/16526027/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23454
Pulled By: driazati
Differential Revision: D16526027
fbshipit-source-id: 109f2968430dbf51ee91b1b3409badfd557d19a4
Summary:
Add support for breaks and continues in the jit. We do with a Graph transform pre-SSA.
A graph of the form
```
def test():
while i < 5:
if i == 3:
break
i += 1
print(i)
```
has the body of the loop transformed to
```
if i == 3:
did_break = True
else:
did_break = False
if did_break:
loop_exit = True
else:
i += 1
print(i)
loop_exit = i < 5
```
I am going to add more tests but I think it is ready for review now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21692
Differential Revision: D16215807
Pulled By: eellison
fbshipit-source-id: 365102f42de4861d9323caaeb39a96de7619a667
Summary:
The error for `test_error_stack_module`:
```
Traceback (most recent call last):
File "../test.py", line 35, in <module>
scripted = torch.jit.script(M())
File "/home/davidriazati/other/pytorch/torch/jit/__init__.py", line 1119, in script
return _convert_to_script_module(obj)
File "/home/davidriazati/other/pytorch/torch/jit/__init__.py", line 1825, in _convert_to_script_module
raise e
RuntimeError:
d(int x) -> int:
Expected a value of type 'int' for argument 'x' but instead found type 'str'.
:
at ../test.py:11:12
def c(x):
return d("hello") + d(x)
~ <--- HERE
'c' is being compiled since it was called from 'b'
at ../test.py:14:12
def b(x):
return c(x)
~~~ <--- HERE
'b' is being compiled since it was called from 'forward'
at ../test.py:22:16
def forward(self, x):
return b(x)
~~~ <--- HERE
'forward' is being compiled since it was called from 'forward'
at ../test.py:31:20
def forward(self, x):
return x + self.submodule(x)
~~~~~~~~~~~~~~~~ <--- HERE
```
This also unifies our error reporting in the front end with `ErrorReport`
TODO
* Include module names in message, #22207 should make this easy
](https://our.intern.facebook.com/intern/diff/16060781/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22280
Pulled By: driazati
Differential Revision: D16060781
fbshipit-source-id: c42968b53aaddb774ac69d5abbf7e60c23df8eed
Summary:
We can't really test these until we get Python 3.8 in the CI, but these all work locally and won't be invoked at all for Python 3.7 and lower so this should be pretty safe.
Fixes#21710
](https://our.intern.facebook.com/intern/diff/15914735/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22007
Pulled By: driazati
Differential Revision: D15914735
fbshipit-source-id: 83833cebe7e38b162719a4f53cbe52c3fc638edd
Summary:
This PR adds support for `in` checks like `key in my_dict`
For now it leaves lists as a follow up due to the changes around `IValue` lists and it needing an `IValue` equality op.
For objects it uses the magic method `__contains__(self, key)`
](https://our.intern.facebook.com/intern/diff/15811203/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21527
Pulled By: driazati
Differential Revision: D15811203
fbshipit-source-id: 95745060394f8a9450efaaf8ab09d9af83bea01e
Summary:
This adds support for PEP 526 style annotations on assignments in place of
`torch.jit.annotate()`, so
```python
a = torch.jit.annotate(List[int], [])
```
turns into
```python
a : List[int] = []
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21390
Differential Revision: D15790937
Pulled By: driazati
fbshipit-source-id: 0cc204f7209a79839d330663cc6ba8320d3a4120
Summary:
This adds support for PEP 526 style annotations on assignments in place of
`torch.jit.annotate()`, so
```python
a = torch.jit.annotate(List[int], [])
```
turns into
```python
a : List[int] = []
```
](https://our.intern.facebook.com/intern/diff/15706021/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21390
Pulled By: driazati
Differential Revision: D15706021
fbshipit-source-id: 8bf1459f229d5fd0e16e59953b9656e85a2207fb
Summary:
Resolves https://github.com/pytorch/lockdown/issues/51
This adds support for converting simple f-string literals to calls to `string.format()`. It does not support conversion specifiers or format strings.
This also does not support the string parser frontend, since that implementation would be more involved and likely would require modifying our TorchScript AST
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21037
Reviewed By: zdevito
Differential Revision: D15541183
Pulled By: jamesr66a
fbshipit-source-id: ae9df85e73f646d7219c1349f5b7683becbcef20
Summary:
Resolves https://github.com/pytorch/lockdown/issues/29
Examples:
```
import torch
torch.jit.script
def foobar(x):
return torch.blargh(xyz)
==
RuntimeError:
object has no attribute blargh:
at compile.py:5:12
torch.jit.script
def foo(x):
return torch.blargh(x)
~~~~~~~~~~~~ <--- HERE
```
It also gets the correct column number in the case where the original source file has common leading whitespace in front of the callable:
```
import torch
with torch.no_grad():
torch.jit.script
def foo(x):
return torch.blargh(x)
==
RuntimeError:
object has no attribute blargh:
at compile_leading.py:6:24
torch.jit.script
def foo(x):
return torch.blargh(x)
~~~~~~~~~~~~ <--- HERE
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20898
Differential Revision: D15552424
Pulled By: jamesr66a
fbshipit-source-id: 78d0f0de03f7ccbf3e7ea193a1b4eced57ea5d69
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18598
ghimport-source-id: c74597e5e7437e94a43c163cee0639b20d0d0c6a
Stack from [ghstack](https://github.com/ezyang/ghstack):
* **#18598 Turn on F401: Unused import warning.**
This was requested by someone at Facebook; this lint is turned
on for Facebook by default. "Sure, why not."
I had to noqa a number of imports in __init__. Hypothetically
we're supposed to use __all__ in this case, but I was too lazy
to fix it. Left for future work.
Be careful! flake8-2 and flake8-3 behave differently with
respect to import resolution for # type: comments. flake8-3 will
report an import unused; flake8-2 will not. For now, I just
noqa'd all these sites.
All the changes were done by hand.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: D14687478
fbshipit-source-id: 30d532381e914091aadfa0d2a5a89404819663e3
Summary:
First pass at user defined types. The following is contained in this PR:
- `UserType` type, which contains a reference to a module with all methods for the type, and a separate namespace for data attributes (map of name -> TypePtr).
- `UserTypeRegistry`, similar to the operator registry
- `UserObject` which is the runtime representation of the user type (just a map of names -> IValues)
- `UserTypeValue` SugaredValue, to manage getattr and setattr while generating IR, plus compiler.cpp changes to make that work.
- Frontend changes to get `torch.jit.script` to work as a class decorator
- `ClassDef` node in our AST.
- primitive ops for object creation, setattr, and getattr, plus alias analysis changes to make mutation safe.
Things that definitely need to get done:
- Import/export, python_print support
- String frontend doesn't understand class definitions yet
- Python interop (using a user-defined type outside TorchScript) is completely broken
- Static methods (without `self`) don't work
Things that are nice but not essential:
- Method definition shouldn't matter (right now you can only reference a method that's already been defined)
- Class definitions can only contain defs, no other expressions are supported.
Things I definitely won't do initially:
- Polymorphism/inheritance
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17314
Differential Revision: D14194065
Pulled By: suo
fbshipit-source-id: c5434afdb9b39f84b7c85a9fdc2891f8250b5025
Summary:
This provides the minimum necessary to allow derivative formulas for things that have a kwarg only specifier in their schema. Support for non-parser frontend default arguments for kwargs is not completed.
Fixes#16921
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17339
Differential Revision: D14160923
Pulled By: zdevito
fbshipit-source-id: 822e964c5a3fe2806509cf24d9f51c6dc01711c3
Summary:
This PR adds basic support (creation and indexing) for immutable dictionaries in Script. This includes Python/string frontend support and a `IValue::GenericDict` type backed by a `std::unordered_map`. Only `str`, `int`, and `float` are supported as keys, any type can be a value. Structure is pretty similar to list.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16208
Differential Revision: D13881686
Pulled By: driazati
fbshipit-source-id: 29ce9835b953c3456f57bcc2bbdf7fe0cbf941c0
Summary:
This PR changes Method (just Method not all graphs) to always have a single
return argument.
This is part 1 in a set of changes that will enable us to have better handling if early return statements.
The simplification that this change provides greatly reduces the work for the next step.
This change makes it so that Method and Python handle multiple returns in the same way:
* 0 - None
* 1 - <single value>
* many - Tuple[...]
The result is that a lot of special-case handling in compiler.cpp and its
bindings can be removed. It also fixes several bugs in return handling,
including one where return values were not always checked against their
attributed values.
Notes:
* inferTypeFrom is renamed to be more accurate and discourage use.
* This has uncovered some bugs in other components, which are noted in
the diff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/15289
Differential Revision: D13481649
Pulled By: zdevito
fbshipit-source-id: 0e2242a40bb28cca2d0e8be48bede96195e4858c
Summary:
Previously, we did not distinguish between `a = b` (simple assignment),
and `a, = b` (tuple destructuring of a singleton tuple).
The second case would fail in the string frontend, and would not unpack
in the python frontend. This patch fixes both issues and also cleans up
the error reporting for unexpected expressions on the LHS.
Will likely conflict with #13486
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13656
Differential Revision: D12964566
Pulled By: zdevito
fbshipit-source-id: 992b19e5068aef59a78cd23cb0e59a9eeb7755d1
Summary:
This PR changes the compiler to correctly emit in-place operators for augmented assignments (`+=` and friends).
- To better match the Python AST structure, add an `AugAssign` tree view and make `Assign` apply only to `=` assignments.
- Emit those `AugAssign` exprs in the compiler, dispatching to in-place aten ops for tensors and lowering to simple assignments for scalar types.
- In order to preserve (suspect) ONNX export semantics, add a pass to lower the in-place operators to out-of-place operators.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13364
Differential Revision: D12899734
Pulled By: suo
fbshipit-source-id: bec83be0062cb0235eb129aed78d6110a9e2c146
Summary:
As titled, this PR is a part of tasks to unblock exporting the standard library.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13336
Differential Revision: D12888912
Pulled By: wanchaol
fbshipit-source-id: 6213a17a75a593ae45999994fd9562f29b7d42df
Summary:
Adding assert statements to unblock standard library.
The same limitations that apply to the existing implementation of Exceptions apply to this as well
(No control-flow logic, & we ignore the specific Exception thrown).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13408
Reviewed By: driazati
Differential Revision: D12876451
Pulled By: eellison
fbshipit-source-id: 767ba5a50ba7c5dd6a857ed4845ac076a81cf305
Summary:
This is a first step towards adding exceptions. We need minimal support in order to begin converting the torch library to weak script mode (which is the main goal here).
Some limitations (that are documented in the tests & compiler):
1. Cannot assign exceptions to variables
2. Any name after raise is being treated as a valid Exception
3. No control flow analysis yet. Below a will be undefined:
if True:
a = 1
else:
raise Exception("Hi")
return a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12789
Differential Revision: D12848936
Pulled By: eellison
fbshipit-source-id: 1f60ceef2381040486123ec797e97d65b074862d
Summary:
- In Python 2, use of `/` (regardless of int/float/Tensor) causes a compiler error if
`from __future__ import division` is not imported in the file.
- The / operator is universally set to do "true" division for integers
- Added a `prim::FloorDiv` operator because it is used in loop unrolling.
The error if users use '/' in python 2 without importing from __future__
occurs when building the JIT AST.
cc apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11016
Differential Revision: D9613527
Pulled By: zou3519
fbshipit-source-id: 0cebf44d5b8c92e203167733692ad33c4ec9dac6
Summary:
Part of #10774.
This PR does the following:
- Support ast.ExtSlice in the frontend. This is done by returning a
list of ast.Index and ast.Slice.
- Support multidimensional indexing with ints and slices
The general approach is to desugar multidimensional indexing into
at::slice, at::select operations. This is exactly how normal pytorch
does indexing (by desugaring it into at::slice, at::select, and other ops).
I used [this code](https://github.com/pytorch/pytorch/blob/master/torch/csrc/autograd/python_variable_indexing.cpp) as reference.
We should be able to copy the rest of this to implement the missing
indexing features in script (indexing with ellipses, tensors, sequences, etc).
After I'm done implementing the missing indexing features in future prs, I can try to
templatize python_variable_indexing.cpp so that it can work with both JIT
script and normal pytorch indexing, but right now I'm not sure if that's
a good idea or not.
cc zdevito jamesr66a apaszke wanchaol
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10787
Differential Revision: D9481402
Pulled By: zou3519
fbshipit-source-id: 78c9fa42771a037d157879e23e20b87401cf1837
Summary:
After this, all combinations of {String frontend, Python AST Frontend}{Python 3-style type annotations, MyPy-style type comments}{Script method, Script function} should properly accept type annotations.
Possible TODOs:
- Clean up the functions marked HACK
- Clean up the Subscript tree-view to better match the Python AST versions
- Can we use this for Python functions? That's the only place annotations.get_signature() is still needed
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10279
Differential Revision: D9319726
Pulled By: jamesr66a
fbshipit-source-id: b13f7d4f066b0283d4fc1421a1abb9305c3b28fa