Simplifies and optimizes dict construction using the `fromkeys` classmethod ctor. This also makes it really obvious when all the keys will have the same static value, which could be a bug if unintentional. It is also significantly faster than using a dict comprehension. The rule is in preview, but I am adding a forward fix for when it becomes stable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118637
Approved by: https://github.com/albanD
This pr expose torch._higher_order_ops.cond as torch.cond.
1. Need to add #noqa: F811 to the _check calls in torch/__init__.py to address some confusing linter error "Redefinition of unused 'cond'" but only one cond is imported and for these lines that have this error, they don't define the cond but just use it as an argument.
2. Also add cond to the list that allows it to be traced through so as dynamo could trigger the CondHigherOrder logic instead of creating a TorchVariable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110293
Approved by: https://github.com/zou3519
This pr expose torch._higher_order_ops.cond as torch.cond.
1. Need to add #noqa: F811 to the _check calls in torch/__init__.py to address some confusing linter error "Redefinition of unused 'cond'" but only one cond is imported and for these lines that have this error, they don't define the cond but just use it as an argument.
2. Also add cond to the list that allows it to be traced through so as dynamo could trigger the CondHigherOrder logic instead of creating a TorchVariable.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110293
Approved by: https://github.com/zou3519
The first reland broke internal (failing diff: D49617462).
The major error looks like it's because there's an internal-only higher order op that needs a new functionalization rule. I'm going to land an internal diff for that and confirm tests pass before relanding this PR.
Also confirmed that the issue from https://github.com/pytorch/pytorch/issues/110121 is fixed, and added a test.
This reverts commit 1b90f07f5a.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110079
Approved by: https://github.com/ezyang
I'm pretty sure this is fixed but I'll run inductor and trunk CI. The failing test in trunk previously was that the selective activation checkpointing code that landed recently assumes that it can detect whether or not AOTAutograd is running by seeing if the inputs to SAC are C++ `FunctionalTensorWrapper`s
previous land broke some inductor trunk tests
This reverts commit 629a628cc8.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109906
Approved by: https://github.com/ezyang
Now that FunctionalTensor and `FunctionalTensorMode` are lower down in this stack, the changes in this PR are more mechanical: Everywhere in AOTAutograd that I used to use the C++ functionalization API, I now use the python functionalization API.
Note that this doesn't actually cause functionalization to run underneath torch_dispatch. I'm saving that re-ordering for later in the stack.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106406
Approved by: https://github.com/ezyang
ghstack dependencies: #108654, #109662, #109632, #109023
We now have two types of functionalization, C++ Functionalization (through the `Functionalize` dispatch key), and python functionalization (through the `FunctionalTensorMode` torch_dispatch mode).
This means that all higher order ops need custom functionalization rules for the python variant too. I added them here, as well as a helper function `dispatch_functionalize()` - equivalent to `torch.func.functionalize()`, except that it uses `FunctionalTensorMode`.
In theory we could have secretly switched `torch.func.functionalize` to use `FunctionalTensorMode`. This would be BC-breaking, though, since `FunctionalTensorMode` isn't composable with the other functorch transforms (the functorch layer-mode stack doesn't know how to re-order torch_dispatch modes arbitrarily).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108656
Approved by: https://github.com/zou3519
ghstack dependencies: #109024, #109248
The output of softmax was overwritten by the output of fc2 in the following line. So, the output of the softmax is never utilized. Now, the final output of the model includes softmax.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107988
Approved by: https://github.com/zou3519
torch.empty_strided is able to create a new tensor based on the meta data. For boolean tensor, we call a clone directly, however, we'll get a functional tensor if input is a functional tensor and that functional tensor won't be tracked by tracer's tensor_tracker after dispatching so it become a tensor\_constant in the graph if create_arg. So we manually unwrap the functional tensor before calling clone.
Test Plan:
See added test.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108289
Approved by: https://github.com/angelayi
1. Move cond to torch/_higher_order_ops
2. Fix a bug in map, which didn't respect tensor dtype when creating a new one from them. We cannot directly use empty_strided because boolean tensor created by empty_strided is not properly intialized so it causes error "load of value 190, which is not a valid value for type 'bool'" on clang asan environment on CI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108025
Approved by: https://github.com/zou3519
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.
The istream header is ~1000 lines so the difference is non-trivial.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106914
Approved by: https://github.com/lezcano
In almost all cases this is only included for writing the output formatter, which
only uses `std::ostream` so including `<ostream>` is sufficient.
The istream header is ~1000 lines so the difference is non-trivial.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106914
Approved by: https://github.com/lezcano
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at 08bd685</samp>
Added a utility function `autograd_not_implemented_check` to `torch._higher_order_ops.utils` and used it in `out_dtype_autograd` to simplify and standardize the error handling for higher order operators that do not support autograd.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106078
Approved by: https://github.com/zou3519
Remove _deprecated_global_ns from cond following #104105.
We change the module attribute of HigherOrderOperator instances in the constructor from torch.ops to torch.ops.higher_order when self.namespace is "higher_order". For subclasses (e.g. customized higher order operator), we leave their \_\_module\_\_ unchanged.
Will import this PR to fix internal tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104380
Approved by: https://github.com/zhxchen17, https://github.com/zou3519