Commit Graph

100 Commits

Author SHA1 Message Date
Edward Yang
dd64e738c5 Expunge TensorId from all DispatchKey names. (#36240)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36240

It's annoying, historical, and unnecessary (enum class is already
namespaced).  I did this codemod with:

```
git grep -l 'CPUTensorId' | xargs sed -i 's/CPUTensorId/CPU/g'
git grep -l 'CUDATensorId' | xargs sed -i 's/CUDATensorId/CUDA/g'
git grep -l 'VariableTensorId' | xargs sed -i 's/VariableTensorId/Autograd/g'
git grep -l 'HIPTensorId' | xargs sed -i 's/HIPTensorId/HIP/g'
git grep -l 'MSNPUTensorId' | xargs sed -i 's/MSNPUTensorId/MSNPU/g'
git grep -l 'XLATensorId' | xargs sed -i 's/XLATensorId/XLA/g'
git grep -l 'PrivateUse1_TensorId' | xargs sed -i 's/PrivateUse1_TensorId/PrivateUse1/g'
git grep -l 'PrivateUse2_TensorId' | xargs sed -i 's/PrivateUse2_TensorId/PrivateUse2/g'
git grep -l 'PrivateUse3_TensorId' | xargs sed -i 's/PrivateUse3_TensorId/PrivateUse3/g'
git grep -l 'AutocastTensorId' | xargs sed -i 's/AutocastTensorId/Autocast/g'
git grep -l '_PreAutogradTensorId' | xargs sed -i 's/_PreAutogradTensorId/_PreAutograd/g'
git grep -l 'TESTING_ONLY_GenericWrapperTensorId' | xargs sed -i 's/TESTING_ONLY_GenericWrapperTensorId/TESTING_ONLY_GenericWrapper/g'
git grep -l 'TESTING_ONLY_GenericModeTensorId' | xargs sed -i 's/TESTING_ONLY_GenericModeTensorId/TESTING_ONLY_GenericMode/g'
```

Then I did a git grep for remaining TensorId occurrences, and manually
killed those (mostly in codegen, and some docs that needed updating).

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20929255

Pulled By: ezyang

fbshipit-source-id: dc371b6aa6e6ea7c0a5660137c14debde806a09d
2020-04-13 23:33:44 -07:00
Pavel Belevich
c9a1fc2b31 replace Generator arguments with c10::optional<Generator> (#36232)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36232

The purpose of this PR is to replace `at::Generator generator = nullptr` with `c10::optional<at::Generator> = c10::nullopt` all over the code

* #36230 Replace std::shared_ptr with c10::intrusive_ptr in at::Generator

Test Plan: Imported from OSS

Differential Revision: D20943603

Pulled By: pbelevich

fbshipit-source-id: 65d335990f01fcc706867d5344e73793fad68ae6
2020-04-13 16:26:57 -07:00
Edward Yang
2de3e491a8 [RELAND] Add temporary impl_UNBOXED syntax sugar for unboxed-only defs. (#36223)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36223

Previously #35714

There are a lot of unboxed only defs.  We're committed to removing
them at the end of the half but as I am about to do a lot of porting
to the new API, let's get them into a form where they're easy to
remove.  This is a new overload impl_UNBOXED that will pass
the function pointer straight to CppFunction::makeUnboxedOnly

I don't attempt to make the _UNBOXED API complete; in particular,
catchall declarations don't get this sugar (as there are very few
of them).

To get some coverage of _UNBOXED API for code analysis, I switched
one of our unboxed tests to be an impl rather than a def.  This
shouldn't materially affect coverage.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20929259

Pulled By: ezyang

fbshipit-source-id: 72d2061b6c8a6afbcd392b47f53ade18de2f9184
2020-04-09 14:58:33 -07:00
Edward Yang
ef07bb65e9 [RELAND] Add DispatchKey impl overload; remove use of torch::dispatch (#36222)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36222

Reland of #35706, with fixes to code analyzer.

It is extremely common to define implementations of operators at a
specific dispatch key, so we add an overload to impl specifically for
this case.  I then delete most uses of torch::dispatch

dispatch_autograd call sites can't make use of this overload.  So
instead the new preferred way to specify something as autograd is to
pass kAutograd as the dispatch key (short form, analogous to kCPU/kCUDA
which we support today).

I flip flopped about whether or not kAutograd should have the type
DispatchKey or some other type (to help better encapsulate the
DispatchKey enum); this is more direct and I can't think of any
BC problems from this usage.

Some other reorganization I did:
- I renamed all of the worker functions in op_registration to have
  a leading underscore and made them private, just to make it more
  clear what the public versus private API were (the private API
  shouldn't be used by users because it doesn't come with && overloads)
  Note that this means I needed to adjust the regex in the
  code analyzer, because
- In a few places where I was touching lines already, I replaced
  full DispatchKey typed out enums with shorter kFoo names, similar
  to kAutograd but I didn't publish these globally.
- Code analyzer now prints a unified diff, and in the other order
  (because I tend to think of the diff as reporting how the /new/ result
  is different)

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20929256

Pulled By: ezyang

fbshipit-source-id: c69b803d2b3a1a8aff70e14da33d3adec5239f13
2020-04-09 14:56:55 -07:00
Feng Tian
762270c51f add c10d dynamic loading mechanism and unit test (#28068)
Summary:
The original behavior of pytorch c10d only supports built-in c10d backends, such as
nccl/gloo/mpi. This patch is used to extend the c10d capability to support dynamically
loading 3rd party communication libraries which are derived from ProcessGroup base class.

related RFC is in: https://github.com/pytorch/pytorch/issues/27955

Through this way, user just need specify a 3rd party c10d backend name when invoking
torch.distributed.init_process_group(). The proposed logic will try to load corresponding
c10d backend cpp extension automatically. as for how to develop a new 3rd party c10d backend
through cpp extension, pls refer to test/cpp_extensions/cpp_c10d_extension.cpp
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28068

Differential Revision: D19174838

Pulled By: agolynski

fbshipit-source-id: 3409a504a43ce7260e6f9d1207c00e87471fac62
2020-04-02 15:46:51 -07:00
Karl Ostmo
0f99b28431 Revert D20775783: Add DispatchKey impl overload; remove use of torch::dispatch
Test Plan: revert-hammer

Differential Revision:
D20775783

Original commit changeset: e45b289e5d1f

fbshipit-source-id: 08551428fa886e93cfda14eb51a0f920c335df34
2020-04-02 10:51:50 -07:00
Karl Ostmo
e67951af63 Revert D20775782: Add temporary impl_UNBOXED syntax sugar for unboxed-only defs.
Test Plan: revert-hammer

Differential Revision:
D20775782

Original commit changeset: c5e804c69f59

fbshipit-source-id: 2198e715eb3a24d198a949a44ec192bec523ffb4
2020-04-02 10:48:51 -07:00
Edward Yang
8e951c5793 Add temporary impl_UNBOXED syntax sugar for unboxed-only defs. (#35714)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35714

There are a lot of unboxed only defs.  We're committed to removing
them at the end of the half but as I am about to do a lot of porting
to the new API, let's get them into a form where they're easy to
remove.  This is a new overload impl_UNBOXED that will pass
the function pointer straight to CppFunction::makeUnboxedOnly

I don't attempt to make the _UNBOXED API complete; in particular,
catchall declarations don't get this sugar (as there are very few
of them).

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20775782

Pulled By: ezyang

fbshipit-source-id: c5e804c69f5961c9d4862f6c5dbbe4c524cc32cc
2020-04-02 08:52:54 -07:00
Edward Yang
2db61193bb Add DispatchKey impl overload; remove use of torch::dispatch (#35706)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35706

It is extremely common to define implementations of operators at a
specific dispatch key, so we add an overload to impl specifically for
this case.  I then delete most uses of torch::dispatch

dispatch_autograd call sites can't make use of this overload.  So
instead the new preferred way to specify something as autograd is to
pass kAutograd as the dispatch key (short form, analogous to kCPU/kCUDA
which we support today).

I flip flopped about whether or not kAutograd should have the type
DispatchKey or some other type (to help better encapsulate the
DispatchKey enum); this is more direct and I can't think of any
BC problems from this usage.

Some other reorganization I did:
- I renamed all of the worker functions in op_registration to have
  a leading underscore and made them private, just to make it more
  clear what the public versus private API were (the private API
  shouldn't be used by users because it doesn't come with && overloads)
- In a few places where I was touching lines already, I replaced
  full DispatchKey typed out enums with shorter kFoo names, similar
  to kAutograd but I didn't publish these globally.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20775783

Pulled By: ezyang

fbshipit-source-id: e45b289e5d1f86c180b24cf14c63cf4459ab5337
2020-04-02 08:51:22 -07:00
Edward Yang
4f4ed5c108 Disable c10::import(ns) (#35398)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35398

This disables namespaced c10::import which is broken with custom
mobile op builds.  This is to help prevent people from accidentally
breaking the custom mobile build in a mysterious way; if they use
the longform version it will work.  Fixing the analyzer is tracked
in https://github.com/pytorch/pytorch/issues/35397

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20680519

Pulled By: ezyang

fbshipit-source-id: a18ac8df7e72bf399807870beedb828131273e48
2020-03-30 21:12:49 -07:00
Edward Yang
9e3605de98 [RELAND] New operator registration API (#35061) (#35629)
Summary:
Reland of https://github.com/pytorch/pytorch/pull/35061 ; removed
the get qualified type name magic from debug strings to work around
MSVC 2017 bug.

Main points of the new API:

- You can register implementations (impl) without having to specify a schema.
- Registrations are commutative, so no matter what order your static
  initializers run, you end up with the same end result.

op_registration_test.cpp contains a reasonably comprehensive accounting
for the available API surface

How does this implementation proceed?  The basic concept is to relax the
internal invariants of Dispatcher data structures to allow the
possibility that a FunctionSchema is not specified in an Operator.

- DispatchKeyExtractor has an uninitialized state where it doesn't look
  for dispatch keys in any arguments of the stack.  It can have a
  schema (de)registered to itself post facto with
  registerSchema/unregisterSchema.
- DispatchTable has a new constructor taking only an OperatorName for
  the uninitialized state.  It can have a schema (de)registered to itself
  post facto with registerSchema/unregisterSchema
- OperatorDef maintains counts of both defs and well as defs_and_impls.
  defs_and_impls keeps track of the outstanding impl registrations; you
  may have impl registrations but no defs.  If there are no defs (no
  schema), the operator is not returned by findSchema.  A new
  findOperatorByName fucntion unconditionally returns the OperatorHandle
  even if there's no schema.  OperatorHandle::hasSchema can be used
  to check if the operator has schema.
- Replaced 'registerKernel' with 'registerImpl', which is the new
  interface for directly registering kernels without implementations.
- Because 'registerImpl' no longer requires an OperatorHandle, change
  'registerDef' to only return a RegistrationHandleRAII.  This is marginally
  less efficient (since we're doing two hash table lookups on a registration
  now), but this won't matter in the long term, and probably doesn't
  matter now either.
- Rename registerBackendFallbackKernel to registerFallback (this exposed
  a bunch of places where we're improperly directly interfacing with Dispatcher;
  we need to add this capability to the true public API)
- All code generated internal registrations are switched to use the new
  API.  This includes VariableType registrations (which previously
  weren't converted) and the mobile autograd stuff
- Switch the new-style def()/impl() APIs to interact directly with Dispatcher,
  rather than indirecting through the old API
- We deleted alias analysis kind merging entirely.  As a nod to BC, it's
  possible to define a full schema with alias analysis kind, and then
  later do another full schema def with missing alias analysis kind, but
  the opposite direction is not allowed.  We can remove this entirely
  following the plan at https://github.com/pytorch/pytorch/issues/35040
- Schema matching is moved inside the dispatcher, because we might not
  be able to immediately schema match at the point of an impl() (because
  we don't have the schema yet).  To do this, we store the inferred
  function schema inside a KernelEntry, so we can check it when we get
  the real schema.
- Registered kernel functions now store a debug string which
  can be used to more easily identify them.  Tests use this to
  distinguish between multiple distinct registrations; regular
  invocations get only very basic information.

Because we need our static initializers to work no matter what order
they're run, the testing strategy on this PR is quite involved.

The general concept:
- Bind a (very gimped) version of the dispatcher API from Python,
  so that we can easily write a more complex testing harness
  using expect tests.
- For series of registrations we want to test, exhaustively
  test every possible permutation of registrations (and
  deregistrations), and show that the intermediate states
  agree no matter what path is taken.
- Intermediate states are rendered using a new dumpState()
  debugging method that prints the internal state of the
  dispatcher.  This method may be generally useful for people
  who want to see what's in the dispatcher.
- Simultaneously, add a new invariant testing function which
  checks that the internal invariants of the dispatcher are
  upheld (so we don't have to print internal implementation
  details of the dispatcher)

The testing framework found a few bugs in development.  For example,
here is a case where we registered schema too early, before checking
if it was valid:

```
Traceback (most recent call last):
  File "test/test_dispatch.py", line 164, in test_def_impl_schema_mismatch
    ], raises=True)
  File "test/test_dispatch.py", line 135, in commute
    results=results, raises=raises)
  File "test/test_dispatch.py", line 83, in run_permutation
    .format(ctor_order[:i], op_ix))
  File "test/test_dispatch.py", line 59, in check_invariants
    .format(expected_provenance, actual_provenance)
AssertionError: 'name[16 chars]ema: (none)\ncatchall: boxed unboxed :: (Tenso[18 chars]0)\n' != 'name[16 chars]ema: test::foo(Tensor x, Tensor y) -> (Tensor)[53 chars]0)\n'
  name: test::foo
- schema: (none)
+ schema: test::foo(Tensor x, Tensor y) -> (Tensor)
  catchall: boxed unboxed :: (Tensor _0) -> (Tensor _0)
 : expected from running ctors (1,); actual from running ctors (1,) and then failing to run ctor 0 (did this failure leave the dispatcher in a wedged state? it shouldn't!)
```

There are also C++ smoketests for the API.  These tests comprehensively
cover the C++ API surface of the new operator registration API, but
don't check very hard if the API does the right thing (that's what
test_dispatch.py is for)

Some miscellaneous changes which could have been split into other
PRs, but I was too lazy to do so:

- Add torch::jit::parseName (mirroring parseSchema/parseSchemaOrName)
- Add cloneWithName functionality to FunctionSchema
- Unconditionally generate schema registration, even when type_method_dispatch
  is a dict.  The one exception is for manual registrations....
- Add fallback, CppFunction::makeFallthrough and
  CppFunction::makeFromBoxedFunction to public API of op_registration, so we can
  stop calling internal registerImpl directly
- Add new syntax sugar dispatch_autograd for registering autograd kernels
- Minor OperatorName cleanup, storing OperatorName in DispatchTable
  and defining operator<< on OperatorName
- Refactored the op registration API to take FunctionSchema directly.
  We now do namespacing by post facto fixing up the OperatorName
  embedded in FunctionSchema.  This also means that you can
  now do torch::import("ns1").def("ns2::blah") and have the ns2
  override ns1 (although maybe this is not the correct behavior.)
- New torch::schema public API, for attaching alias analysis kind
  annotation kinds.  This meant we had to template up some function
  signatures which previously took const char*.  There's now a nice
  comment explaining this strategy.
- torch::import now takes std::string which means we can use
  the namespacing from Python

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35629

Differential Revision: D20724551

Pulled By: ezyang

fbshipit-source-id: befa46a1affb4ec4ae1fb39e3564a63695a6ca41
2020-03-29 19:48:29 -07:00
Edward Yang
227beb9095 Revert D20680520: New operator registration API
Test Plan: revert-hammer

Differential Revision:
D20680520

Original commit changeset: 5d39a28e4ec7

fbshipit-source-id: 5b2497ffc24db9a05b01d526f161bc0164f9f707
2020-03-28 14:49:56 -07:00
Edward Yang
28ab8c6ff8 New operator registration API (#35061)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35061

Main points of the new API:

- You can register implementations (impl) without having to specify a schema.
- Registrations are commutative, so no matter what order your static
  initializers run, you end up with the same end result.

op_registration_test.cpp contains a reasonably comprehensive accounting
for the available API surface

How does this implementation proceed?  The basic concept is to relax the
internal invariants of Dispatcher data structures to allow the
possibility that a FunctionSchema is not specified in an Operator.

- DispatchKeyExtractor has an uninitialized state where it doesn't look
  for dispatch keys in any arguments of the stack.  It can have a
  schema (de)registered to itself post facto with
  registerSchema/unregisterSchema.
- DispatchTable has a new constructor taking only an OperatorName for
  the uninitialized state.  It can have a schema (de)registered to itself
  post facto with registerSchema/unregisterSchema
- OperatorDef maintains counts of both defs and well as defs_and_impls.
  defs_and_impls keeps track of the outstanding impl registrations; you
  may have impl registrations but no defs.  If there are no defs (no
  schema), the operator is not returned by findSchema.  A new
  findOperatorByName fucntion unconditionally returns the OperatorHandle
  even if there's no schema.  OperatorHandle::hasSchema can be used
  to check if the operator has schema.
- Replaced 'registerKernel' with 'registerImpl', which is the new
  interface for directly registering kernels without implementations.
- Because 'registerImpl' no longer requires an OperatorHandle, change
  'registerDef' to only return a RegistrationHandleRAII.  This is marginally
  less efficient (since we're doing two hash table lookups on a registration
  now), but this won't matter in the long term, and probably doesn't
  matter now either.
- Rename registerBackendFallbackKernel to registerFallback (this exposed
  a bunch of places where we're improperly directly interfacing with Dispatcher;
  we need to add this capability to the true public API)
- All code generated internal registrations are switched to use the new
  API.  This includes VariableType registrations (which previously
  weren't converted) and the mobile autograd stuff
- Switch the new-style def()/impl() APIs to interact directly with Dispatcher,
  rather than indirecting through the old API
- We deleted alias analysis kind merging entirely.  As a nod to BC, it's
  possible to define a full schema with alias analysis kind, and then
  later do another full schema def with missing alias analysis kind, but
  the opposite direction is not allowed.  We can remove this entirely
  following the plan at https://github.com/pytorch/pytorch/issues/35040
- Schema matching is moved inside the dispatcher, because we might not
  be able to immediately schema match at the point of an impl() (because
  we don't have the schema yet).  To do this, we store the inferred
  function schema inside a KernelEntry, so we can check it when we get
  the real schema.
- Registered kernel functions now store a debug string which
  can be used to more easily identify them.  There's some best
  effort stuff based on __FUNCSIG__ but this is only really
  capable of reporting types and not function symbols.  Tests
  use this to distinguish between multiple distinct registrations.

Because we need our static initializers to work no matter what order
they're run, the testing strategy on this PR is quite involved.

The general concept:
- Bind a (very gimped) version of the dispatcher API from Python,
  so that we can easily write a more complex testing harness
  using expect tests.
- For series of registrations we want to test, exhaustively
  test every possible permutation of registrations (and
  deregistrations), and show that the intermediate states
  agree no matter what path is taken.
- Intermediate states are rendered using a new dumpState()
  debugging method that prints the internal state of the
  dispatcher.  This method may be generally useful for people
  who want to see what's in the dispatcher.
- Simultaneously, add a new invariant testing function which
  checks that the internal invariants of the dispatcher are
  upheld (so we don't have to print internal implementation
  details of the dispatcher)

The testing framework found a few bugs in development.  For example,
here is a case where we registered schema too early, before checking
if it was valid:

```
Traceback (most recent call last):
  File "test/test_dispatch.py", line 164, in test_def_impl_schema_mismatch
    ], raises=True)
  File "test/test_dispatch.py", line 135, in commute
    results=results, raises=raises)
  File "test/test_dispatch.py", line 83, in run_permutation
    .format(ctor_order[:i], op_ix))
  File "test/test_dispatch.py", line 59, in check_invariants
    .format(expected_provenance, actual_provenance)
AssertionError: 'name[16 chars]ema: (none)\ncatchall: boxed unboxed :: (Tenso[18 chars]0)\n' != 'name[16 chars]ema: test::foo(Tensor x, Tensor y) -> (Tensor)[53 chars]0)\n'
  name: test::foo
- schema: (none)
+ schema: test::foo(Tensor x, Tensor y) -> (Tensor)
  catchall: boxed unboxed :: (Tensor _0) -> (Tensor _0)
 : expected from running ctors (1,); actual from running ctors (1,) and then failing to run ctor 0 (did this failure leave the dispatcher in a wedged state? it shouldn't!)
```

There are also C++ smoketests for the API.  These tests comprehensively
cover the C++ API surface of the new operator registration API, but
don't check very hard if the API does the right thing (that's what
test_dispatch.py is for)

Some miscellaneous changes which could have been split into other
PRs, but I was too lazy to do so:

- Add torch::jit::parseName (mirroring parseSchema/parseSchemaOrName)
- Add cloneWithName functionality to FunctionSchema
- Unconditionally generate schema registration, even when type_method_dispatch
  is a dict.  The one exception is for manual registrations....
- Add fallback, CppFunction::makeFallthrough and
  CppFunction::makeFromBoxedFunction to public API of op_registration, so we can
  stop calling internal registerImpl directly
- Add new syntax sugar dispatch_autograd for registering autograd kernels
- Minor OperatorName cleanup, storing OperatorName in DispatchTable
  and defining operator<< on OperatorName
- Refactored the op registration API to take FunctionSchema directly.
  We now do namespacing by post facto fixing up the OperatorName
  embedded in FunctionSchema.  This also means that you can
  now do torch::import("ns1").def("ns2::blah") and have the ns2
  override ns1 (although maybe this is not the correct behavior.)
- New torch::schema public API, for attaching alias analysis kind
  annotation kinds.  This meant we had to template up some function
  signatures which previously took const char*.  There's now a nice
  comment explaining this strategy.
- torch::import now takes std::string which means we can use
  the namespacing from Python

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D20680520

Pulled By: ezyang

fbshipit-source-id: 5d39a28e4ec7c73fe4b1fb2222e865ab65e188f5
2020-03-28 10:52:49 -07:00
Pavel Belevich
11a40410e7 pybind11 type_caster for at::Generator and custom RNG python test (#34774)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34774

This PR provides pybind11's `type_caster<at::Generator>` that allows mapping `at::Generator` instance returned from user-defined method to python `torch::Generator`, defined as `THPGenerator ` c++ class.

This allows 1) defining custom RNG in c++ extension 2) using custom RNG in python code.

`TestRNGExtension.test_rng` shows how to use custom RNG defined in `rng_extension.cpp`

Test Plan: Imported from OSS

Differential Revision: D20549451

Pulled By: pbelevich

fbshipit-source-id: 312a6deccf8228f7f60695bbf95834620d52f5eb
2020-03-22 10:57:35 -07:00
Edward Yang
22963f42ec Delete unnecessary aliasAnalysis specification from operator registrations. (#33093)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33093

In #30187 the aliasAnalysis field on operator registration was updated
so that alias analysis could be specified in only some registration call
sites, rather than requiring it be consistently specified in all call
sites.  With this change, we can eliminate the requirement that all
registrations specify aliasAnalysis; as long as we know *one* site
specifies the correct aliasAnalysis, we don't have to specify it
any of the other sites.

In this patch, the "one site" is TypeDefault.cpp (previously we only
generated these stub declarations for manually registered functions,
but now we generate the stubs for everything).  Then I delete aliasAnalysis
anywhere we register an op for an existing function (which is a lot
of places).

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D19837897

Pulled By: ezyang

fbshipit-source-id: 26a7fbc809ec1553da89ea5c0361f3e81526d4c2
2020-02-21 14:24:44 -08:00
ashish
616beb1412 [ROCm] Added support for pytorch extensions to use HIP (#32669)
Summary:
This pull request has changes for:
1. Enabling a torch module with HIP code to be compiled by cpp_extensions.py
2. Fixes for hipify module to be able to be used by a torch extension

cc: ezyang iotamudelta jeffdaily
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32669

Differential Revision: D20033893

Pulled By: zou3519

fbshipit-source-id: fd6ddc8cdcd3930f41008636bb2bc9dd26cdb008
2020-02-21 12:10:02 -08:00
Edward Yang
9c8b67b179 Revert D19905015: Revert D19858239: [pytorch][PR] Refactor and add VS 14.16 and 2019 CI for Windows
Test Plan: revert-hammer

Differential Revision:
D19905015

Original commit changeset: b117e44d5552

fbshipit-source-id: a10c78aed953434f69f466bdd36f914334ba82f3
2020-02-14 13:42:29 -08:00
George Guanheng Zhang
ff5f38f53b Revert D19858239: [pytorch][PR] Refactor and add VS 14.16 and 2019 CI for Windows
Test Plan: revert-hammer

Differential Revision:
D19858239

Original commit changeset: f068d8505886

fbshipit-source-id: b117e44d5552e157747920d8098ce3b86a29c6bf
2020-02-14 07:35:08 -08:00
peter
946f3a9ed7 Refactor and add VS 14.16 and 2019 CI for Windows (#33117)
Summary:
Changes according to https://github.com/pytorch/pytorch/issues/18319.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33117

Differential Revision: D19858239

Pulled By: ezyang

fbshipit-source-id: f068d8505886b92c9388c9c636eab5bd20377ceb
2020-02-13 11:45:41 -08:00
Richard Zou
6209412647 Add option to use ninja to compile ahead-of-time cpp_extensions (#32495)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32495

Background
------------------------------
Previously, ninja was used to compile+link inline cpp_extensions and
ahead-of-time cpp_extensions were compiled with distutils. This PR adds
the ability to compile (but not link) ahead-of-time cpp_extensions with ninja.

The main motivation for this is to speed up cpp_extension builds: distutils
does not make use of parallelism. With this PR, using the new option, on my machine,
- torchvision compilation goes from 3m43s to 49s
- nestedtensor compilation goes from 2m0s to 28s.

User-facing changes
------------------------------

I added a `use_ninja` flag to BuildExtension. This defaults to
`True`. When `use_ninja` is True:
- it will attempt to use ninja.
- If we cannot use ninja, then this throws a warning and falls back to
distutils.
- Situations we cannot use ninja: Windows (NYI, I'll open a new issue
for this), if ninja cannot be found on the system.

Implementation Details
------------------------------

This PR makes this change in two steps. Please me know if it would be
easier to review this if I split this up into a stacked diff.
Those changes are:
1) refactor _write_ninja_file to separate the policy (what compiler flags
to pass) from the mechanism (how to write the ninja file and do compilation).
2) call _write_ninja_file and _run_ninja_build while building
ahead-of-time cpp_extensions. These are only used to compile objects;
distutils still handles the linking.

Change 1: refactor _write_ninja_file to seperate policy from mechanism
- I split _write_ninja_file into: _write_ninja_file and
_write_ninja_file_to_build_library
- I renamed _build_extension_module to _run_ninja_build

Change 2: Call _write_ninja_file while building ahead-of-time
cpp_extensions
- _write_ninja_file_and_compile_objects calls _write_ninja_file to only
build object files.
- We monkey-patch distutils.CCompiler.compile to call
_write_ninja_files_and_compile_objects
- distutils still handles the linking step. The linking step is not a
bottleneck so it was not a concern.
- This change only works on unix-based systems. Our code for windows
goes down a different codepath and I did not want to mess with that.
- If a system does not support ninja, we raise a warning and fall back
to the original compilation path.

Test Plan
------------------------------

Adhoc testing
- I built torchvision using pytorch master and printed out the build
commands. Next, I used this branch to build torchvision and looked at
the ninja file. I compared the ninja file with the build commands and
asserted that they were functionally the same.
- I repeated the above for pytorch/nestedtensor.

PyTorch test suite
- I split `test_cpp_extensions` into `test_cpp_extensions_aot` and
`test_cpp_extensions_jit`. The AOT (ahead-of-time) version tests
ahead-of-time and the JIT version tests just-in-time (not to be confused
with TorchScript)
- `test_cpp_extensions_aot` gets run TWICE by run_test.py, once with
a module that was built with ninja, and once with a module that was
built without ninja.
- run_test.py asserts that when we are building with use_ninja=True,
ninja is actually available on the system.

Test Plan: Imported from OSS

Differential Revision: D19730432

Pulled By: zou3519

fbshipit-source-id: 819590d01cf65e8da5a1e8019b8b3084792fee90
2020-02-05 18:49:29 -08:00
Pavel Belevich
9357b91180 Remove -Werror from test/cpp_extensions/setup.py (#32704)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32704

-Werror is too aggressive check for test cpp extensions because it fails even on deprecation warnings which is are included from core codebase.

Fixes #32136

Test Plan: Imported from OSS

Differential Revision: D19620190

Pulled By: pbelevich

fbshipit-source-id: 0e91566eb5de853559bb59e68a02b0bb15e7341b
2020-01-29 14:12:32 -08:00
Pavel Belevich
62b06b9fae Rename TensorTypeId to DispatchKey (#32154)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32154

TensorTypeId -> DispatchKey
	c10/core/TensorTypeId.h -> c10/core/DispatchKey.h
	c10/core/TensorTypeId.cpp -> c10/core/DispatchKey.cpp
	TensorTypeId::* -> DispatchKey::*
	TensorTypeId type_id -> DispatchKey dispatch_key
		type_id -> dispatch_key
	TensorTypeId::NumTensorIds -> DispatchKey::NumDispatchKeys
	RealTensorTypeId -> RealDispatchKey
TensorTypeSet -> DispatchKeySet
	TensorTypeIds -> DispatchKeys
	c10/core/TensorTypeSet.h -> c10/core/DispatchKeySet.h
	c10/core/TensorTypeSet.cpp -> c10/core/DispatchKeySet.cpp
	type_set() -> key_set()
	type_set_ -> key_set_
	typeSet -> keySet
ExcludeTensorTypeIdGuard -> ExcludeDispatchKeyGuard
IncludeTensorTypeIdGuard -> IncludeDispatchKeyGuard
LocalTensorTypeSet -> LocalDispatchKeySet
	c10/core/impl/LocalTensorTypeSet.h -> c10/core/impl/LocalDispatchKeySet.h
	c10/core/impl/LocalTensorTypeSet.cpp -> c10/core/impl/LocalDispatchKeySet.cpp
	tls_local_tensor_type_set -> tls_local_dispatch_key_set
	tls_is_tensor_type_id_excluded -> tls_is_dispatch_key_excluded
	tls_set_tensor_type_id_excluded -> tls_set_dispatch_key_excluded
	tls_is_tensor_type_id_included -> tls_is_dispatch_key_included
	tls_set_tensor_type_id_included -> tls_set_dispatch_key_included
MultiDispatchTensorTypeSet -> MultiDispatchKeySet
	multi_dispatch_tensor_type_set -> multi_dispatch_key_set
tensorTypeIdToBackend -> dispatchKeyToBackend
backendToTensorTypeId -> backendToDispatchKey
initForTensorTypeSet -> initForDispatchKeySet
inferred_type_set -> inferred_key_set
computeTensorTypeId -> computeDispatchKey
PODLocalTensorTypeSet raw_local_tensor_type_set -> PODLocalDispatchKeySet raw_local_dispatch_key_set
get_default_tensor_type_id -> get_default_dispatch_key
inferred_type_id -> inferred_dispatch_key
actual_type_id -> actual_dispatch_key
typeSetToDispatchKey_ -> dispatchKeySetToDispatchKey_
get_type_id() -> get_dispatch_key()
legacyExtractTypeId -> legacyExtractDispatchKey
extractTypeId -> extractDispatchKey

Test Plan: Imported from OSS

Differential Revision: D19398900

Pulled By: pbelevich

fbshipit-source-id: 234ad19f93d33e00201b61e153b740a339035776
2020-01-15 11:16:08 -08:00
Nathan Goldbaum
f531815526 Deprecate tensor.type() (#30281)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/29161.

I looked a bit at the code changes related to this and think I have all of the use cases of `DeprecatedTypeProperties` covered in the message, but suggestions from someone with more context on this would be very much appreciated :)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30281

Differential Revision: D18830818

Pulled By: ezyang

fbshipit-source-id: 1a7fcee15354ae09e6644577e7fa33bd26acfe20
2019-12-05 10:55:34 -08:00
peter
e870a9a870 More checks on MSVC (#29709)
Summary:
The flags `/sdl` and `/permissive-` are switched on automatically when using the VS GUI. Adding those checks will ensure that those annoying errors won't appear when users use the VS GUI to build their project.

More info:
https://docs.microsoft.com/en-us/cpp/build/reference/sdl-enable-additional-security-checks?view=vs-2017
https://docs.microsoft.com/en-us/cpp/build/reference/permissive-standards-conformance?view=vs-2017
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29709

Differential Revision: D18473888

Pulled By: bddppq

fbshipit-source-id: 21156b0232a5dc3b566d14491d00bacb11493254
2019-11-13 00:15:40 -08:00
Sebastian Messmer
01aea1f268 Delete ATenDispatch (#28468)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28468

We don't need this anymore.
ghstack-source-id: 92595388

Test Plan: unit tests

Differential Revision: D18073339

fbshipit-source-id: d0ef1332c83e47117fe0a5eadc8faedb259cfba0
2019-10-24 22:15:00 -07:00
Sebastian Messmer
ee920b92c4 Move complex extension test to c10 (#28208)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/28208

Backend extensions should call torch::RegisterOperators, not globalATenDispatch().
If the op is still on globalATenDispatch, then torch::RegisterOperators will do the right thing and forward it to globalATenDispatch.
ghstack-source-id: 92436988

Test Plan: waitforsandcastle

Differential Revision: D17975369

fbshipit-source-id: 0d4bd5e4e5b86e6dcfba527a7d11c25508896ac1
2019-10-23 01:33:47 -07:00
Edward Yang
b56ad744a2 Delete backwards compatibility Backend overload for registerOp (#25914)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25914

Signed-off-by: Edward Z. Yang <ezyang@fb.com>

Test Plan: Imported from OSS

Differential Revision: D17284083

Pulled By: ezyang

fbshipit-source-id: 430ac7ea2bd042b1f4bb874e53679d0fde326dec
2019-09-25 07:21:44 -07:00
Sebastian Messmer
8321f2592e Register ATen ops with c10 (#26131)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26131

Changes in this PR:
- For each operator with use_c10_dispatcher: True, additionally generate a c10 registration line in TypeDefault.cpp, CPUType.cpp, and other backend files.
- This doesn't change globalATenDispatch yet, the c10 registration is purely additional and the operator calling path doesn't change. A diff further up the stack will change these things.
- Enable the use_c10_dispatcher: True flag for about ~70% of operators
- This also changes the c10->jit operator export because ATen ops are already exported to JIT directly and we don't want to export the registered c10 ops because they would clash
- For this, we need a way to recognize if a certain operator is already moved from ATen to c10, this is done by generating a OpsAlreadyMovedToC10.cpp file with the list. A diff further up in the stack will also need this file to make sure we don't break the backend extension API for these ops.

Reasons for some ops to be excluded (i.e. not have the `use_c10_dispatcher` flag set to true):
- `Tensor?(a!)` (i.e. optional tensor with annotations) not supported in c++ function schema parser yet
- `-> void` in native_functions.yaml vs `-> ()` expected by function schema parser
- out functions have different argument order in C++ as in the jit schema
- `Tensor?` (i.e. optional tensor) doesn't work nicely with undefined tensor sometimes being undefined tensor and sometimes being None.
- fixed-size arrays like `int[3]` not supported in c10 yet

These will be fixed in separate diffs and then the exclusion tag will be removed.
ghstack-source-id: 90060748

Test Plan: a diff stacked on top uses these registrations to call these ops from ATen

Differential Revision: D16603131

fbshipit-source-id: 315eb83d0b567eb0cd49973060b44ee1d6d64bfb
2019-09-13 13:52:40 -07:00
Mike Ruberry
a024e1e091 Creates Torch-friendly Event class and adds Stream tracking to autograd (#25130)
Summary:
Resubmission of https://github.com/pytorch/pytorch/issues/23424 because previous PR was borked.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25130

Test Plan: Two tests were added to cuda_stream_test for this functionality.

Differential Revision: D17145538

Pulled By: mruberry

fbshipit-source-id: 2546c5907c038412e03aa0d3328a972b0164c455
2019-09-01 12:37:52 -07:00
Edward Yang
58a0dee749 Replace open registration TensorTypeId with closed enum. (#25252)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25252

Our model going forward for extensions will be that you will have to
get an allocation of an ID in our system.  This is how things work
in practice today; we're just simplifying our underlying registration
since there is no need to have distributed registration.

There are some codemods in this diff:

```
codemod --extensions cpp,h,cc,cuh,py,in --exclude-paths=c10/core/TensorTypeId.h '([A-Za-z]+?)TensorId\(\)' 'TensorTypeId::\1TensorId'
codemod --extensions cpp,h,cc,cuh,py,in 'TensorTypeIds::undefined\(\)' 'TensorTypeId::UndefinedTensorId'
codemod --extensions cpp 'TensorType1\(\)' 'TensorTypeId::CPUTensorId'
codemod --extensions cpp 'TensorType2\(\)' 'TensorTypeId::CUDATensorId'
codemod --extensions cpp 'TensorType3\(\)' 'TensorTypeId::XLATensorId'
codemod --extensions cpp 'TensorType1' 'CPUTensorId'
codemod --extensions cpp 'TensorType2' 'CUDATensorId'
codemod --extensions cpp 'TensorType3' 'XLATensorId'
```

The main hand-written changes are in c10/core/TensorTypeId.h

Other manual fixes:

- aten/src/ATen/core/op_registration/op_registration.cpp - stop using
  std::string operator+
- aten/src/ATen/function_wrapper.py - handle a hardcoded TypeId() that
  wasn't caught by codemod
- torch/csrc/tensor/python_tensor.h - fix now incorrect forward declaration
  of TensorTypeId
- aten/src/ATen/core/op_registration/ - remove out-of-line registration

Differential Revision: D17072001

Test Plan: ossci and sandcastle

Pulled By: ezyang

fbshipit-source-id: c641515fd0604c045c54fbb1d6b1b950f45e89d1
2019-08-29 08:55:58 -07:00
Edward Yang
529bb859b2 Revert D17052534: [pytorch][PR] Creates Torch-friendly Event class and adds Stream tracking to autograd
Test Plan: revert-hammer

Differential Revision:
D17052534

Original commit changeset: d91b308ad0f7

fbshipit-source-id: dacc7e70a835a8fa6ae71246999b4eff3383f3f3
2019-08-28 08:24:43 -07:00
Ailing Zhang
858493d168 generic overrideable convolution for backends (#23562)
Summary:
One possible solution based on our discussion yesterday: ezyang gchanan zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/23562

Differential Revision: D16998161

Pulled By: ailzhang

fbshipit-source-id: 07fe3a335f43b4205a421b3521aeb5fa4dc80279
2019-08-27 18:33:21 -07:00
Mike Ruberry
433fe47d95 Creates Torch-friendly Event class and adds Stream tracking to autograd (#25130)
Summary:
Resubmission of https://github.com/pytorch/pytorch/issues/23424 because previous PR was borked.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25130

Differential Revision: D17052534

Pulled By: mruberry

fbshipit-source-id: d91b308ad0f730646bb7b3492a601cd9b05c72d8
2019-08-26 15:19:06 -07:00
Will Feng
420b37f3c6 Deprecate tensor.data<T>(), and codemod tensor.data<T>() to tensor.data_ptr<T>() (#24886)
Summary:
This PR adds deprecation message for `tensor.data<T>()` (91d94e7d41), and changes all call sites of `tensor.data<T>()` to `tensor.data_ptr<T>()`  in PyTorch core.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/24886

Differential Revision: D16924576

Pulled By: yf225

fbshipit-source-id: 0943d6be73245c7c549c78597b74c3b07fa24440
2019-08-21 20:11:24 -07:00
Sebastian Messmer
02f794b102 Add overload names to native_functions.yaml (#23532)
Summary:
We need this to be able to register them with the c10 dispatcher.

The overload names are based on one-letter-per-argument-type.

Script used to change native_functions.yaml and derivatives.yaml: P75630718

Pull Request resolved: https://github.com/pytorch/pytorch/pull/23532
ghstack-source-id: 87539687

Differential Revision: D16553437

fbshipit-source-id: a1d0f10c42d284eba07e2a40641f71baa4f82ecf
2019-08-01 02:08:37 -07:00
Roy Li
0a04513367 Remove old Type based backend extensions (#22009)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22009
ghimport-source-id: e481b64707434a1abdc382fd80bd70f165540711

Test Plan: Imported from OSS

Differential Revision: D15914755

Pulled By: li-roy

fbshipit-source-id: 9230b8b234f71a5d865bf6bca93347c68c349ff7
2019-07-30 14:07:46 -07:00
Brian Vaughan
97a604ef57 Rereapply optional ScalarType interface changes that were reverted in D16079809 (#22456)
Summary:
re-apply changes reverted in:
https://github.com/pytorch/pytorch/pull/22412

Also change log_softmax to take positional arguments. Long-term we do want the kwarg-only interface, but seems to currently be incompatible with jit serialization.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22456

Differential Revision: D16097159

Pulled By: nairbv

fbshipit-source-id: 8cb73e9ca18fc66b35b873cf4a574b167a578b3d
2019-07-03 20:03:25 -07:00
Wanchao Liang
dff2c07183 Manual revert of D16012838
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/22412

Reviewed By: nairbv, houseroad

Differential Revision: D16079809

fbshipit-source-id: ee0d805ff7a2bc5f98bcc65f90b8199751c840f6
2019-07-01 19:58:21 -07:00
Roy Li
2a698682e4 Remove Type dispatch (#21964)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21964
ghimport-source-id: fdfb555ac4efbf31ae7d2c700a5aa44ad0cc4d7f

Test Plan: Imported from OSS

Differential Revision: D15897424

Pulled By: li-roy

fbshipit-source-id: 3cd6744254e34d70e6875ffde749b5cf959b663c
2019-06-30 04:11:35 -07:00
Roy Li
6c454ff14c Stop using Type in Python bindings (#21963)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21963
ghimport-source-id: 4d9d66ba2c8587503d892b67f535cc2a62e2d19e

Test Plan: Imported from OSS

Differential Revision: D15897423

Pulled By: li-roy

fbshipit-source-id: 2dd55ceb80971df7c86545b7bfff733387f13572
2019-06-30 04:11:32 -07:00
Brian Vaughan
7707dee761 Re apply optional ScalarType changes (#22237)
Summary:
This is (mostly) the re-application of:
https://github.com/pytorch/pytorch/pull/21088

which was reverted due to an issue conflicting with changes in:
https://github.com/pytorch/pytorch/pull/22104
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22237

Differential Revision: D16012838

Pulled By: nairbv

fbshipit-source-id: 35f4a73c97ab68b4e2648aca96b2176f07b5a883
2019-06-26 13:36:25 -07:00
Vitaly Fedyunin
516c7e4456 Adding memory_format to empty and empty_like operators (#20558)
Summary:
Original RFC https://github.com/pytorch/pytorch/issues/19092

To ensure that we are not introducing BC breaking change, empty_like returns contiguous tensor by default.

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nCwh = torch.empty_like(nhwC)
new_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```

Now we need a way to preserve memory format in `empty_like`

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nhwC = torch.empty_like(nhwC, memory_format=torch.preserve_format)
new_nhwC.is_contiguous(memory_format=torch.channels_last) == True

like_nCwh = torch.empty_like(nCwh, memory_format=torch.preserve_format)
like_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```

Usage of `torch.preserve_format` allows us to avoid `if` constructs.

We can also generate different memory format outputs

```python
nCwh = torch.randn(N, C, H, W)
nhwC = nCwh.contiguous(memory_format=torch.channels_last)

new_nhwC = torch.empty_like(nCwh, memory_format=torch.channels_last)
new_nhwC.is_contiguous(memory_format=torch.channels_last) == True

new_nCwh = torch.empty_like(nhwC, memory_format=torch.contiguous_format)
new_nCwh.is_contiguous(memory_format=torch.channels_last) == False
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/20558

Differential Revision: D15502474

Pulled By: VitalyFedyunin

fbshipit-source-id: 2e120d57eefad6fb8e04b8322c79871392f64331
2019-06-26 11:48:27 -07:00
Michael Suo
e016a424ef Revert D15944971: [pytorch][PR] merge interfaces that have an optional scalartype parameter
Differential Revision:
D15944971

Original commit changeset: 53473c370813

fbshipit-source-id: a18158b448cb8993b12e1a3bf2c2a3e0d6df6b10
2019-06-24 09:41:33 -07:00
Brian Vaughan
142361a7e4 merge interfaces that have an optional scalartype parameter (#21088)
Summary:
This change is backwards incompatible in *C++ only* on mean(), sum(), and prod() interfaces that accepted either of:
```
Tensor sum(IntArrayRef dim, bool keepdim=false) const;
Tensor sum(IntArrayRef dim, ScalarType dtype) const;
```
but now to specify both the dim and dtype will require the keepdim parameter:
```
Tensor sum(IntArrayRef dim, bool keepdim=false, c10::optional<ScalarType> dtype=c10::nullopt) const;
```

[xla ci]
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21088

Reviewed By: ailzhang

Differential Revision: D15944971

Pulled By: nairbv

fbshipit-source-id: 53473c370813d9470b190aa82764d0aea767ed74
2019-06-24 07:17:58 -07:00
Roy Li
3d44cd6d19 Replace Type dispatch with ATenDispatch (#22008)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/22008
ghimport-source-id: b0a5cc3da283b195f88636e2a61939d2facd11d9

Test Plan: Imported from OSS

Differential Revision: D15914756

Pulled By: li-roy

fbshipit-source-id: 5bc300ec525a3ee9e6491dd4c55e78bbd977d691
2019-06-19 21:42:54 -07:00
Ailing Zhang
cba79f4872 Revert D15637222: [wip] Replace Type dispatch with ATenDispatch
Differential Revision:
D15637222

Original commit changeset: fcfaea0b5480

fbshipit-source-id: 9bca7ebb91d7a3609b86663089140d7c5a33f58d
2019-06-19 17:36:52 -07:00
Roy Li
24a6c32407 Replace Type dispatch with ATenDispatch (#21320)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/21320
ghimport-source-id: cc18f746a1c74df858cb0f6d8b7d4de4315683c7

Test Plan: Imported from OSS

Differential Revision: D15637222

Pulled By: li-roy

fbshipit-source-id: fcfaea0b5480ab966175341cce92e3aa0be7e3cb
2019-06-19 15:46:45 -07:00
Will Feng
8cde4c4d22 Remove Variable::Impl and DifferentiableViewImpl (#17072)
Summary:
As part of the Variable/Tensor merge work: https://github.com/pytorch/pytorch/issues/13638, we make the following changes in this PR:
1. Remove the `Variable::Impl` class and the `DifferentiableViewImpl` class
2. Change all `Variable.data()` call sites to either use `Variable` directly, or use `Variable.tensor_data()`
3. Remove `Variable.data()` API
3. Add `Variable.variable_data()` that matches `tensor.data` in Python API, which creates a new `Variable` that shares the same storage and tensor metadata with the original `Variable`, but with a completely new autograd history.

After this PR, Variable doesn't wrap a Tensor internally anymore, and both Variable and Tensor use the same TensorImpl class as its `impl_`. The only difference is that Variable always has AutogradMeta in its TensorImpl, but Tensor doesn't.

**Note that this PR is BC-breaking in the following use cases:**

**Use Case 1:**
Previously, `x.data = y` works even if `x` and `y` are of different TensorImpl type (e.g. `x` is a CPU dense tensor whose impl is of type TensorImpl, while `y` is a CPU sparse tensor whose impl is of type SparseTensorImpl). However, after this PR, `x.data = y` doesn't work anymore if `x` and `y` are of different TensorImpl type, because the underlying implementation `variable.set_data(tensor)` no longer works if `variable` and `tensor` have different TensorImpl type.

**Use Case 2:**
If a tensor `x`'s `grad` is sparse, accumulating dense gradients to `x` will change the tensor that `x.grad` is pointing to. This is better illustrated with the following example:
```python
params = torch.tensor([1.5, 1.5]).requires_grad_()
with torch.no_grad():
    # Change gradient to a sparse tensor
    params.grad = torch.sparse_coo_tensor(torch.tensor([[1, 1]]).long(), torch.tensor([1., 1.]))

grad_saved = params.grad
params.backward(torch.tensor([1.5, 1.5]))
assert id(grad_saved) == id(params.grad)  # This will fail after this PR
```
The assertion in the last line will fail after this PR, because adding dense gradients to sparse gradients will change the `params.grad` tensor reference.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17072

Differential Revision: D14075257

Pulled By: yf225

fbshipit-source-id: 0e681df641270dea586042dd26db59f2e76b5957
2019-05-23 21:09:04 -07:00
Edward Yang
73a97387c1 Replace AT_CHECK with TORCH_CHECK [shard 9/10]
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/20435

Reviewed By: jerryzh168

Differential Revision: D15318877

fbshipit-source-id: 4d83571187ea14a604fef83ac355d328b46d93e1
2019-05-15 08:05:59 -07:00
Roy Li
17e4cd0c0a Remove old complex Types (#19616)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/19616
ghimport-source-id: d8b3e15d84d3e6f810af3cb83d1413c5f048bcdc

Differential Revision: D15047741

Pulled By: li-roy

fbshipit-source-id: 572045f88f410d97f60c56298018bfee6268b375
2019-04-24 19:18:16 -07:00