Previously the decomposition would upcasts inputs to fp32. This led to a slowdown compared to eager which would run in fp16. We also tried keeping the bmm in fp16, and the upcasting for the epilogue but that led to worse numerics because the bmm in eager would do the epilogue all in fp32 without a downcast in the bmm accumulator.
Fix for https://github.com/pytorch/pytorch/issues/137897
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137904
Approved by: https://github.com/ngimel
Previously the decomposition would upcasts inputs to fp32. This led to a slowdown compared to eager which would run in fp16. We also tried keeping the bmm in fp16, and the upcasting for the epilogue but that led to worse numerics because the bmm in eager would do the epilogue all in fp32 without a downcast in the bmm accumulator.
Fix for https://github.com/pytorch/pytorch/issues/137897
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137904
Approved by: https://github.com/ngimel
Previously the decomposition would upcasts inputs to fp32. This led to a slowdown compared to eager which would run in fp16. We also tried keeping the bmm in fp16, and the upcasting for the epilogue but that led to worse numerics because the bmm in eager would do the epilogue all in fp32 without a downcast in the bmm accumulator.
Fix for https://github.com/pytorch/pytorch/issues/137897
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137904
Approved by: https://github.com/ngimel
Adds lowering for `aten.searchsorted`. This entails:
1. Adding support for multi-dimensional bucket tensors to `ops.bucketize`.
2. Adding support for striding to `ops.bucketize`.
3. Adding support for sorting tensors to `ops.bucketize`.
4. Adding a lowering for `aten.searchsorted.Tensor`.
5. Adding a basic decomposition for `aten.searchsorted.Scalar` that calls into the lowering for tensors.
6. Updating the meta-function for `aten.searchsorted` to properly check some of the sizing conditions.
Closes#135873
Differential Revision: [D63766514](https://our.internmc.facebook.com/intern/diff/D63766514)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135701
Approved by: https://github.com/amjames, https://github.com/eellison, https://github.com/davidberard98
Summary:
This diff will decompose torch.ops._quantized.wrapped_quantized_linear into torch.ops._quantized.wrapped_linear_prepack and torch.ops._quantized.wrapped_quantized_linear_prepacked for AOTI, and added the corresponding impl into shim
The way it works will be similar to what we did previously for fbgemm fp16 dynamic qlinear. We will do constant folding for packed weight during runtime (warm up) to achieve the speed up
Reviewed By: desertfire
Differential Revision: D61396144
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134368
Approved by: https://github.com/houseroad
Fixes#125745
Bug source: When addition requires broadcasting, adding complex numbers is not implemented correctly in `torch/_inductor/decomposition.py` because `x.view(x.real.dtype)` would multiply the last dimension by 2, and then broadcasting wouldn't work.
Fix: re-shape the complex tensors after view and before broadcasting.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129044
Approved by: https://github.com/zou3519, https://github.com/lezcano
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel
This PR adds the Cpp template infrastructure and the initial FP32 gemm template. See RFC https://github.com/pytorch/pytorch/issues/125683 for more background info.
1. Cpp template infrastructure
Similar template abstractions as the CUTLASS template, i.e., `CppTemplate`, `CppTemplateKernel`, `CppTemplateBuffer`. The MicroGemm micro-kernel abstraction that can be used by Cpp GEMM templates.
2. Initial FP32 gemm template
This involves a GEMM template implementation `CppPackedGemmTemplate` that supports GEMM with constant weight (`B`) requiring `N` to be a multiple of register blocking while allows the static or dynamic sizes for the `M` (batch dim) of `A`. The `B` matrix would be prepacked. This is a typical setting for inference workloads. The template handles the thread decomposition (via `thread_blocking`) and cache blocking (via `cache_blocking`). Then it invokes `CppMicroGemm` which handles register blocking, instruction selection, and other CPU architecture-specific optimizations. A `CppMicroGemmFP32Vec` micro-kernel implementation is provided for fp32 matmuls implemented with ATen vec abstraction.
3. Correctness and performance
The changes have been validated with fp32 inference on the three benchmark suites (torchbench, huggingface and timm_models) with both static shape and dynamic shapes. Since it is an initial implementation, we are still working on further performance improves with follow-up PRs including the optimizations in kernels as well as fusions. The perf gains are only observed from a selective number of models compared to the ATen kernels which are implemented with MKL. The perf gains are more obvious with dynamic shapes since MKL only supports packed gemm for static shapes. Below are details.
Static shapes
| Benchmark | torchbench | huggingface | timm_models |
|------------|-------------|--------------|--------------|
| Multi-threaded (baseline) | 1.47x | 1.36x | 1.91x |
| Multi-threaded (max-autotune) | 1.47x | 1.36x | 1.92x |
| Single-threaded (baseline) | 1.56x | 1.19x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.52x |
Key models being sped up:
drq: 1.14x
soft_act: 1.12
cait_m36_384: 1.18x
Dynamic shapes
| Benchmark | torchbench | huggingface | timm_models |
| --- | --- | --- | --- |
| Multi-threaded (baseline) | 1.43x | 1.28x | 1.85x |
| Multi-threaded (max-autotune) | 1.47x | 1.28x | 1.85x |
| Single-threaded (baseline) | 1.55x | 1.20x | 1.51x |
| Single-threaded (max-autotune) | 1.56x | 1.19x | 1.53x |
Key models being sped up:
BERT_pytorch: 1.22x
pyhpc_turbulent: 1.13x
soft_actor_critic: 1.77x
BlenderbotForCausalLM: 1.09x
cait_m36_384: 1.17x
Differential Revision: [D57585365](https://our.internmc.facebook.com/intern/diff/D57585365)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124021
Approved by: https://github.com/jansel