Current temporary directory path is hard code. Fixed by get temporary directory path by API.
Reproduce UTs:
```cmd
python test/dynamo/test_dynamic_shapes.py -v -k test_torch_package_working_with_trace_dynamic_shapes
```
Error message:
```cmd
________________________________________________________________________________________________ DynamicShapesMiscTests.test_torch_package_working_with_trace_dynamic_shapes ________________________________________________________________________________________________
Traceback (most recent call last):
File "D:\xu_git\dnnl_cb\pytorch\test\dynamo\test_misc.py", line 7199, in test_torch_package_working_with_trace
with package.PackageExporter(path) as exp:
File "C:\Users\Xuhan\.conda\envs\win_mkl_static\lib\site-packages\torch\package\package_exporter.py", line 237, in __init__
self.zip_file = torch._C.PyTorchFileWriter(f)
RuntimeError: Parent directory /tmp does not exist.
To execute this test, run the following from the base repo dir:
python test\dynamo\test_dynamic_shapes.py DynamicShapesMiscTests.test_torch_package_working_with_trace_dynamic_shapes
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
========================================================================================================================== short test summary info ==========================================================================================================================
FAILED [0.0080s] test/dynamo/test_dynamic_shapes.py::DynamicShapesMiscTests::test_torch_package_working_with_trace_dynamic_shapes - RuntimeError: Parent directory /tmp does not exist.
==================================================================================================================== 1 failed, 1665 deselected in 4.00s =====================================================================================================================
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134397
Approved by: https://github.com/ezyang
We promise the user that these custom ops (and their kernels) are black
boxes w.r.t. torch.compile. Unfortunately Dynamo can turn itself back
on in the implementation of the custom operator, so we force it off by
disabling Dynamo
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133125
Approved by: https://github.com/ezyang
Fixes#132290
This PR attempts a more invasive / complete solution than the one from #132338, which removes immediate tensor fields from the `tensor_dict` copy stored in node meta. The approach taken here is to store only those fields of the `tensor_dict` which are absolutely utilized somewhere else.
So far, this appears to be limited to:
* `_dynamo_static_input_type`
* `tag` (at least in the tests). Discussion at #94080 appears to indicate this is depended on for export
(CI may point out more)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132805
Approved by: https://github.com/mlazos
This breaks the inference we made that if you cat an N-D tensor with a 1-D tensor of size (u0,), the u0 must be zero, but no one really wanted that anyway...
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132060
Approved by: https://github.com/Skylion007
This breaks the inference we made that if you cat an N-D tensor with a 1-D tensor of size (u0,), the u0 must be zero, but no one really wanted that anyway...
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132060
Approved by: https://github.com/Skylion007
ghstack dependencies: #131649, #132407
Fixes#130087
This patch tries to provide a built-in id function implementation for TensorVariable when the id function is called on tensors like module parameters. The id function call on intermediate tensors is not supported.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130100
Approved by: https://github.com/anijain2305
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new Buffer class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the register_buffer method has not been changed. The persistent parameter in the Buffer type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new Buffer type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the Buffer type can be used as a drop in replacement for register_buffer as it just leads to register_buffer being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.
Fixes#35735
Co-authored-by: Mikayla Gawarecki <mikaylagawarecki@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125971
Approved by: https://github.com/albanD, https://github.com/anijain2305, https://github.com/mlazos
Fixes https://github.com/pytorch/pytorch/issues/103602.
This PR implements the idea of "if someone creates a string and then ends up not using it, we would prefer to NOT have specialized." mentioned in above issue. Specifically, we create a lazy variable tracker instead of ConstantVariable when we're in FORMAT_VALUE, and when the lazy variable tracker is realized (i.e. it's going to be used), we create a ConstantVariable and the specialization/guarding happens at the time of realization.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131529
Approved by: https://github.com/ezyang
Adds support for SymInts in the FakeTensor cache.
A couple notes:
1. When a SymInt is present in the input key for a FakeTensor operation we cache on the ShapeEnv instead of using the FakeTensorMode cache. This is necessary so we don't have to remember and check the guards. It reduces the cache hits but there's diminishing return on how much work we can do before the cache becomes more of a burden than a gain.
2. We need to be careful that when we cache an output SymInt that is a direct copy from the input that when we have a cache-hit we copy the SymNode from the input to the output. This is important because the fx-graph building code actually uses SymNode ids in the process of building the graph so constructing a same-content-but-different-id SymNode will fail.
3. In the cache key we store SymInts as a _PySymInputStub. These represent SymInt (and friends) but support `__hash__` and `__eq__` (which SymInt do not).
4. In the cache entry we store SymInts as a _SymIntOutputStub.
Perf example:
```
python benchmarks/dynamo/timm_models.py --ci --accuracy --timing
--explain --inductor --dynamic-shapes --dynamic-batch-only --device cuda
--training --amp --total-partitions 2 --partition-id 0 --output
/tmp/training_timm_models.csv --filter crossvit_9_240
```
fake tensor cache before:
```
INFO: FakeTensor cache stats:
INFO: cache_hits: 68137
INFO: cache_misses: 837
INFO: cache_bypasses:
INFO: symbolic shape: 48224
INFO: CompositeImplicitAutograd: 917
INFO: non-fake tensor: 70
INFO: non-FakeTensor output: 62
INFO: non-builtin: 8
INFO: dynamic output shape: 1
```
and after:
```
INFO: FakeTensor cache stats:
INFO: cache_hits: 88187
INFO: cache_misses: 14233
INFO: cache_bypasses:
INFO: CompositeImplicitAutograd: 1037
INFO: non-FakeTensor output: 602
INFO: non-fake tensor: 70
INFO: unsafe view: 36
INFO: non-builtin: 8
INFO: dynamic output shape: 1
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/127596
Approved by: https://github.com/eellison
ghstack dependencies: #131014, #129780
original PR: https://github.com/pytorch/pytorch/pull/128599 (re-created after revert + poisoned diff train)
Summary:
This PR adds deduplication and CSE for runtime asserts. Existing size computation in the graph is CSE'd along with added runtime asserts, and redundant asserts are removed. Shape calls on intermediate tensors are also turned into compute on input sizes if possible, allowing intermediate tensors to be freed earlier. For example:
```
z = torch.cat([x, x], dim=0) # 2*s0
w = z.repeat(y.shape[0]) # 2*s0*s1
_w = w.shape[0]
s0 = x.shape[0]
s1 = y.shape[0]
_w0 = 2 * s0
_w = _w0 * s1
```
Additionally, constrain_range calls are deduplicated. Single-symbol bound checks for unbacked symbols (e.g. u0 >= 0, u0 <= 5) and sym_constrain_range.default calls are also removed, since they accumulate range info in the ShapeEnv, and are replaced with two _assert_scalar.default calls that check the min/max bounds. For example:
```
torch.sym_constrain_range_for_size(n, min=2, max=16)
torch.sym_constrain_range(n, min=4, max=20)
torch._check(n >= 0)
torch._check(n >= 3)
torch._check(n <= 14)
torch.sym_constrain_range_for_size(n)
torch._check(n >= 4)
torch._check(n <= 14)
```
Test Plan:
contbuild & OSS CI, see 940e4477ab
Original Phabricator Test Plan:
Imported from GitHub, without a `Test Plan:` line.
Differential Revision: D59543603
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130380
Approved by: https://github.com/izaitsevfb
This PR adds deduplication and CSE for runtime asserts. Existing size computation in the graph is CSE'd along with added runtime asserts, and redundant asserts are removed. Shape calls on intermediate tensors are also turned into compute on input sizes if possible, allowing intermediate tensors to be freed earlier. For example:
```
z = torch.cat([x, x], dim=0) # 2*s0
w = z.repeat(y.shape[0]) # 2*s0*s1
_w = w.shape[0]
# something with _w ...
# turns into ->
s0 = x.shape[0]
s1 = y.shape[0]
_w0 = 2 * s0
_w = _w0 * s1
```
Additionally, constrain_range calls are deduplicated. Single-symbol bound checks for unbacked symbols (e.g. u0 >= 0, u0 <= 5) and sym_constrain_range.default calls are also removed, since they accumulate range info in the ShapeEnv, and are replaced with two _assert_scalar.default calls that check the min/max bounds. For example:
```
torch.sym_constrain_range_for_size(n, min=2, max=16)
torch.sym_constrain_range(n, min=4, max=20)
torch._check(n >= 0)
torch._check(n >= 3)
torch._check(n <= 14)
# turns into
torch.sym_constrain_range_for_size(n)
torch._check(n >= 4)
torch._check(n <= 14)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128599
Approved by: https://github.com/ezyang
This PR adds deduplication and CSE for runtime asserts. Existing size computation in the graph is CSE'd along with added runtime asserts, and redundant asserts are removed. Shape calls on intermediate tensors are also turned into compute on input sizes if possible, allowing intermediate tensors to be freed earlier. For example:
```
z = torch.cat([x, x], dim=0) # 2*s0
w = z.repeat(y.shape[0]) # 2*s0*s1
_w = w.shape[0]
# something with _w ...
# turns into ->
s0 = x.shape[0]
s1 = y.shape[0]
_w0 = 2 * s0
_w = _w0 * s1
```
Additionally, constrain_range calls are deduplicated. Single-symbol bound checks for unbacked symbols (e.g. u0 >= 0, u0 <= 5) and sym_constrain_range.default calls are also removed, since they accumulate range info in the ShapeEnv, and are replaced with two _assert_scalar.default calls that check the min/max bounds. For example:
```
torch.sym_constrain_range_for_size(n, min=2, max=16)
torch.sym_constrain_range(n, min=4, max=20)
torch._check(n >= 0)
torch._check(n >= 3)
torch._check(n <= 14)
# turns into
torch.sym_constrain_range_for_size(n)
torch._check(n >= 4)
torch._check(n <= 14)
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128599
Approved by: https://github.com/ezyang