Commit Graph

176 Commits

Author SHA1 Message Date
Nikita Vedeneev
dbcfd7739f Make torch.lu differentiable for wide/tall inputs + jit (#61564)
Summary:
As per title.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61564

Reviewed By: astaff

Differential Revision: D30338136

Pulled By: mruberry

fbshipit-source-id: f01436fc90980544cdfa270feee16bb3dda21b93
2021-08-16 11:40:57 -07:00
Alexander Soare
219ba6575b add autowrap_functions kwarg to fx.Tracer (#62106)
Summary:
Implements feature request https://github.com/pytorch/pytorch/issues/62021

Test it out with

```python
from torch import fx
from torch import nn

def fx_int(x):
    return int(x)

class MyModule(nn.Module):
    def forward(self, x):
        return fx_int(x.shape[0] / 2)

tracer = fx.Tracer(autowrap_functions=(fx_int,))  # or remove kwarg to demonstrate symbolic trace error
tracer.trace(MyModule())
```

First time contributor, so please advise if I could have done anything to make lives easier for next time.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62106

Reviewed By: SplitInfinity, driazati

Differential Revision: D30080834

Pulled By: jamesr66a

fbshipit-source-id: 68fadf8c881ea7930e7afd62b642874010fe4903
2021-08-12 17:38:25 -07:00
Shen Li
1022443168 Revert D30279364: [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: revert-hammer

Differential Revision:
D30279364 (b004307252)

Original commit changeset: c1ed77dfe43a

fbshipit-source-id: eab50857675c51e0088391af06ec0ecb14e2347e
2021-08-12 11:45:01 -07:00
Zsolt Dollenstein
b004307252 [codemod][lint][fbcode/c*] Enable BLACK by default
Test Plan: manual inspection & sandcastle

Reviewed By: zertosh

Differential Revision: D30279364

fbshipit-source-id: c1ed77dfe43a3bde358f92737cd5535ae5d13c9a
2021-08-12 10:58:35 -07:00
Bradley Davis
093495d3f0 [fx] prevent implicit submodule inlining when submodule is a GraphModule (#62436)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62436

## Problem

Given two modules and a tracer that indiscriminately marks all modules as a leaf:
```
class InnerModule(torch.nn.Module):

    def forward(self, t):
        return t + t

class MyModule(torch.nn.Module):
    def __init__(self, inner):
        super().__init__()
        self.inner = inner

    def forward(self, t):
        x = self.inner(t)
        y = self.inner(t)
        return x + y

class MyTracer(torch.fx.Tracer):
    def is_leaf_module(self, module, name):
        return True
```

One might generally expect the following behavior (note call_module nodes):
```
print(">> Outer GraphModule (with inner module as nn.Module):")
inner = InnerModule()
m = MyModule(inner)
gm = torch.fx.GraphModule(m, MyTracer().trace(m))
print(gm.graph.print_tabular())

>> Outer GraphModule (with inner module as nn.Module):
opcode         name     target                   args              kwargs
-------------  -------  -----------------------  ----------------  --------
placeholder    t        t                        ()                {}
call_module    inner    inner                    (t,)              {}
call_module    inner_1  inner                    (t,)              {}
call_function  add      <built-in function add>  (inner, inner_1)  {}
output         output   output                   (add,)            {}
None
```

However, when the inner module is first symbolically traced, the symbolic trace of the outer module ignores `is_leaf_node` entirely, and traces through the whole module (note call_function nodes).
```
print(">> Inner module as GraphModule:")
inner = InnerModule()
inner_gm = torch.fx.GraphModule(inner, MyTracer().trace(inner))
print(inner_gm.graph.print_tabular())

print(">> Outer GraphModule (with inner module as GraphModule):")
m = MyModule(inner_gm)
gm = torch.fx.GraphModule(m, MyTracer().trace(m))
print(gm.graph.print_tabular())

>> Inner module as GraphModule:
opcode         name    target                   args    kwargs
-------------  ------  -----------------------  ------  --------
placeholder    t       t                        ()      {}
call_function  add     <built-in function add>  (t, t)  {}
output         output  output                   (add,)  {}
None

>> Outer GraphModule (with inner module as GraphModule):
opcode         name    target                   args          kwargs
-------------  ------  -----------------------  ------------  --------
placeholder    t       t                        ()            {}
call_function  add     <built-in function add>  (t, t)        {}
call_function  add_1   <built-in function add>  (t, t)        {}
call_function  add_2   <built-in function add>  (add, add_1)  {}
output         output  output                   (add_2,)      {}
None
```

This is surprising behavior and at first glance violates the tracer's intent. As I understand it, `torch.fx.symbolic_trace.Tracer.trace` intends to patch `torch.nn.Module.__call__` with a `module_call_wrapper()` that records a `call_module` node if the module is a leaf, else executes `torch.fx._symbbolic_trace._orig_module_call = torch.nn.Module.__call__`, which is set a module loading time.

**Every submodule should be a leaf, but no `call_module` nodes are created when that submodule is a `GraphModule`. Why?**

Upon further inspection, I found:

- The constructor for GraphModule includes a path to `GraphModule.recompile()` via the setter for a `fx.Graph`:
```
inner_gm = torch.fx.GraphModule(inner, MyTracer().trace(inner))

File "/torch/fx/graph_module.py", line 252, in __init__
self.graph = graph

File "/torch/nn/modules/module.py", line 1183, in __setattr__
object.__setattr__(self, name, value)

File "/torch/fx/graph_module.py", line 277, in graph
self.recompile()
```
- `recompile()` wraps the `__call__` method by holding a reference to the `__call__` method at the time of recompilation:
```
cls = type(self)
cls_call = cls.__call__
...
def wrapped_call(self, *args, **kwargs):
    try:
        return cls_call(self, *args, **kwargs)
    except Exception as e:
        ...
cls.__call__ = wrapped_call
```
- Recompilation of the inner GraphModule happens on initialization, before creation or tracing of the outer module. Adding some old-fashioned print debug statements gives:
```
Inner Module:
_orig_module_call: <function Module._call_impl at 0x7faaebfee8b0>
recompile: cls.__call__ now wraps _orig_module_call, <function Module._call_impl at 0x7faaebfee8b0>

Outer Module:
_orig_module_call: <function Module._call_impl at 0x7faaebfee8b0>
tracing: patching method <class 'torch.nn.modules.module.Module'>.__call__ <function Module._call_impl at 0x7faaebfee8b0> with <function Module._call_impl at 0x7fa9d42bce50>

outer module MRO before tracing:
(0) <class '__main__.MyModule'>: <function Module._call_impl at 0x7faaebfee8b0>
(1) <class 'torch.nn.modules.module.Module'>: <function Module._call_impl at 0x7faaebfee8b0>
(2) <class 'object'>: <method-wrapper '__call__' of type object at 0x7fac3cd15f00>

outer module MRO during tracing:
(0) <class '__main__.MyModule'>: <function Module._call_impl at 0x7fa9d42bce50>
(1) <class 'torch.nn.modules.module.Module'>: <function Module._call_impl at 0x7fa9d42bce50>
(2) <class 'object'>: <method-wrapper '__call__' of type object at 0x7fac3cd15f00>

inner module MRO before tracing:
(0) <class 'torch.fx.graph_module.GraphModule.__new__.<locals>.GraphModuleImpl'>: <function x.y.z.wrapped_call at 0x7fa9d42a8670>
(1) <class 'torch.fx.graph_module.GraphModule'>: <function Module._call_impl at 0x7faaebfee8b0>
(2) <class 'torch.nn.modules.module.Module'>: <function Module._call_impl at 0x7faaebfee8b0>
(3) <class 'object'>: <method-wrapper '__call__' of type object at 0x7fac3cd15f00>

inner module MRO during tracing:
(0) <class 'torch.fx.graph_module.GraphModule.__new__.<locals>.GraphModuleImpl'>: <function x.y.z.wrapped_call at 0x7fa9d42a8670>
(1) <class 'torch.fx.graph_module.GraphModule'>: <function Module._call_impl at 0x7fa9d42bce50>
(2) <class 'torch.nn.modules.module.Module'>: <function Module._call_impl at 0x7fa9d42bce50>
(3) <class 'object'>: <method-wrapper '__call__' of type object at 0x7fac3cd15f00>
```

- The outer module is patched correctly, but the inner module's first element in its MRO is the `wrapped_call` from `recompile` that still invokes `<function Module._call_impl at 0x7faaebfee8b0>` directly. Therefore, no call_module nodes are created.

## In Practice

In practice, this behavior affects the ability of `torch.package` to package `GraphModules` whose submodules are `GraphModules`. In our case, the `GraphModule` submodules are not passed through a constructor, but created separately and installed on the root `GraphModule` via `setattr`. This means that prior to packaging, there appear to be no issues with the module, since the root's graph was created before any call_module targets were replaced with `GraphModules`.

When unpackaging such a model with `torch.package`, `torch.fx.graph_module._deserialize_graph_module` uses an inline `KeepModules` tracer that sets all submodules to leaves; the unpackaged module is implicitly and surprisingly inlined in the process.

## Potential Solution

This behavior was previously not understood by us, and so the current workaround is a gnarly process of wrapping all submodules with a `nn.Module` with a manually installed forward method.

Changing `wrapped_call` to return `return super(type(self), self).__call__(*args, **kwargs)` whenever `__call__` is inherited at least appears to solve the issue. Does this seem like an acceptable approach?

## Other Thoughts
- Repeated calls to `recompile` create nested `wrapped_calls`, all for the purpose of error handling. This seems probably unnecessary ¯\\_(ツ)\_/¯
- If a root module with a overriden `__call__` method is symbolically traced, it is ignored

Test Plan:
```
buck test:
    ✓ ListingSuccess: caffe2/test:fx - main (12.570)
    ✓ Pass: caffe2/test:fx - test_tracing_graphmodules_as_leaf_submodules (test_fx.TestFX) (11.982)
```

Reviewed By: ansley

Differential Revision: D29997935

fbshipit-source-id: 1988fbb025b14188da26a3e73e94fb789c3c1f74
2021-08-02 13:37:08 -07:00
Jerry Cai
1b147a52f5 Allow FX tracer to trace control flow (if/while) statements when parameter shapes are in the conditionals (#61820)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/61733

Allow FX tracer to trace control flow (if/while) statements when parameter shapes are in the condition.
If the user specifies the new "param_shapes_constant" option when constructing a tracer,  the model's parameter shape attribute will be evaluated and the resulting constant will be emitted into the IR during tracing.
Also added a new test

`
python test/fx/test_fx_param_shape_control_flow.py
`
The test also performs a somewhat whitebox style testing to check the generated Python code from the IR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61820

Reviewed By: bdhirsh

Differential Revision: D29969299

Pulled By: jerryzhenleicai

fbshipit-source-id: 99aae824bdfec880be69258de7ead5c8cd59eddc
2021-07-28 23:48:44 -07:00
Richard Zou
52d1ffb789 Teach pytrees about namedtuple (#62292)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62292

This PR adds pytree support for namedtuples. The challenge about namedtuple
is that each namedtuple class is actually different. This PR does the
following:
- it adds a namedtuple flatten/unflatten. The flatten function returns
a context that is the actual type of the namedtuple subclass. The
unflatten function uses that type to reconstruct the namedtuple
- Special cases all pytree logic to consider all namedtuples the same.
This is done by creating a `_get_node_type(pytree)` helper function that
returns `namedtuple` if `pytree` is any namedtuple subclass. The effect
of this is that all namedtuple subclasses will go through the namedtuple
flatten/unflatten functions
- Adds a `_namedtuple_flatten_spec` function for FX pytrees. This function
flattens the namedtuple based on the spec and is equivalent to the
`_tuple_flatten_spec`.

Test Plan
- new tests in test/test_pytree.py and test/test_fx.py

Test Plan: Imported from OSS

Reviewed By: albanD

Differential Revision: D29947302

Pulled By: zou3519

fbshipit-source-id: 19c00665b13546642c315df0f243ad99b8e7ff7c
2021-07-28 06:27:44 -07:00
tktrungna
8152433de2 [1/n] Update testing lib*.so path (#61960)
Summary:
### Issue

Build PyTorch wheel packages during build stage for pull requests and install during test stage.

### Fix
Update all tests which call lib*.so (under `./build folder`), change to call lib*.so in `{ent}/pytorch/lib/python3.8/site-packages/torch`

### Diff
This diff starts to update test_fx, test_backend and test_torchbind first to check if current ci pass

Pull Request resolved: https://github.com/pytorch/pytorch/pull/61960

Test Plan: check of all ci workflows pass

Reviewed By: malfet, saketh-are

Differential Revision: D29823235

Pulled By: tktrungna

fbshipit-source-id: e7f652def698e303d4843fbaedf4859f5eca2fd9
2021-07-24 05:16:35 -07:00
Bradley Davis
8880f3d450 [fx] introduce __fx_create_arg__ dunder method for controlling custom classes are handled as node args (#61780)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61780

These changes would allow objects to control how they are handled when they are an argument to a torch.fx call_module node from within their source. Previously, we have been using a custom Tracer with an overridden create_arg() method and branching based on class name to handle args that are unusual (data classes, etc).

Reviewed By: suo, houseroad

Differential Revision: D27976120

fbshipit-source-id: 0c5249c5f8398368ca0fbec0ad8a07ccf99b7da4
2021-07-21 11:27:09 -07:00
Kushashwa Ravi Shrimali
7e1f01d4c0 Alias for polygamma (#59691)
Summary:
See https://github.com/pytorch/pytorch/issues/50345

cc: mruberry kshitij12345

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59691

Reviewed By: gchanan

Differential Revision: D29707514

Pulled By: mruberry

fbshipit-source-id: 40c15e1fda3d9f7013977b0f36a77b228dda6aa5
2021-07-16 00:06:27 -07:00
Bradley Davis
1f4bba77b6 [fx] fix subgraph API call_module warning about no owning module (#61463)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61463

seems like a small oversight(?), current test fails when warnings are recorded. discovered this when calling `graph.call_module(existing_call_module_node.target)` and it raised a warning

Test Plan: `buck test //caffe2/test:fx`

Reviewed By: ansley

Differential Revision: D29637799

fbshipit-source-id: 2305629863230235f76a926fe2e4de480cbf853c
2021-07-09 15:25:44 -07:00
Akifumi Imanishi
4d9fd8958b Support __rand__, __ror__ and __rxor__ (#59240)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/58120.

This PR implements `torch.Tensor.{__rand__/__ror__/__rxor__}` for the compatibility with NumPy’s interface.
(cc: mruberry, rgommers, emcastillo, kmaehashi)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59240

Reviewed By: ngimel

Differential Revision: D29482304

Pulled By: mruberry

fbshipit-source-id: 13789202c1d8dddf8658a45381aeedcc31e2f603
2021-07-07 13:34:14 -07:00
Zeina Migeed
6f1455440b task 3: typecheck (#60805)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/60805

Test Plan: Imported from OSS

Reviewed By: jamesr66a, VitalyFedyunin

Differential Revision: D29522885

Pulled By: migeed-z

fbshipit-source-id: 559a8a495a16e517af77fd5a0785a82e1ebb3bd7
2021-07-06 23:51:49 -07:00
James Reed
7a4ffbd1da [FX] s/IS_SANDCASTLE/IS_FBCODE/ in tests (#61304)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61304

Previously tests were unrunnable on devserver. This fixes that
ghstack-source-id: 133051811

Test Plan: waitforsadcastle

Reviewed By: Chillee

Differential Revision: D29561806

fbshipit-source-id: 6020e5b4ba72d6de1ea2563e70fdb0e604bee1a5
2021-07-06 17:20:53 -07:00
Zeina Migeed
9f3167ebdf task 1: annotate (#60621)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/60621

Test Plan: Imported from OSS

Reviewed By: jamesr66a

Differential Revision: D29493619

Pulled By: migeed-z

fbshipit-source-id: 1bd3fb02c90ae5b394869a474b2e6b06af0d4791
2021-07-06 16:48:11 -07:00
kshitij12345
dfd2edc025 [special] add zeta (#59623)
Summary:
Reference https://github.com/pytorch/pytorch/issues/50345

`zeta` was already present in the codebase to support computation of `polygamma`.

However, `zeta` only had `double(double, double)` signature **for CPU** before the PR (which meant that computation `polygamma` were always upcasted to `double` for zeta part).

With this PR, float computations will take place in float and double in double.

Have also refactored the code and moved the duplicate code from `Math.cuh` to `Math.h`

**Note**: For scipy, q is optional, and if it is `None`, it defaults `1` which corresponds to Reimann-Zeta. However, for `torch.specia.zeta`, I made it mandatory cause for me it feels odd without `q` this is Reimann-Zeta and with `q` it is the general Hurwitz Zeta. I think sticking to just general made more sense as passing `1` for q sounds trivial.

Verify:
* [x] Docs https://14234587-65600975-gh.circle-artifacts.com/0/docs/special.html#torch.special.zeta

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59623

Reviewed By: ngimel

Differential Revision: D29348269

Pulled By: mruberry

fbshipit-source-id: a3f9ebe1f7724dbe66de2b391afb9da1cfc3e4bb
2021-06-24 00:00:12 -07:00
Jordan Fix
f65793507d [fx][Transformer] Add override for call_function (#60057)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60057

This ensures that if a function was `wrap`'d before symbolic tracing + being passed into the transformer then it will still be wrapped.

Test Plan: Added test to `test_fx.py`

Reviewed By: jamesr66a

Differential Revision: D29151191

fbshipit-source-id: 93560be59505bdcfe8d4f013e21d4719788afd59
2021-06-16 17:25:55 -07:00
kshitij12345
da972afdcd OpInfo: to_sparse (#59445)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/54261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59445

Reviewed By: ngimel

Differential Revision: D28920866

Pulled By: mruberry

fbshipit-source-id: ba8d3071d9937096288b69511000eeb007f53434
2021-06-05 19:13:58 -07:00
Akifumi Imanishi
0a5bfa9919 Support __rmod__ (#58476)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/58035.

This PR implements `torch.Tensor.__rmod__` and `torch.remainder(scalar, tensor)` for the compatibility with NumPy’s interface.
(cc: mruberry, rgommers, emcastillo, kmaehashi)

TODO:
  - [x] Update `tensor_binary_op` in test/test_binary_ufuncs.py after https://github.com/pytorch/pytorch/issues/58216 is merged.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58476

Reviewed By: ngimel

Differential Revision: D28776810

Pulled By: mruberry

fbshipit-source-id: 74f8aea80f439ef2cc370333524e39971eeb7bf4
2021-06-05 16:19:24 -07:00
kshitij12345
6620d7d688 OpInfo: norm (#59259)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/54261

EDIT:
~~Test takes whooping 4 mins to run 😓~~ (Filtered tests also included linalg norm)

Newly added tests take around 2 mins.
```
==================================================== 193 passed, 224 skipped, 27224 deselected, 5 warnings in 138.87s (0:02:18) ====================================================
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59259

Reviewed By: jbschlosser

Differential Revision: D28833962

Pulled By: mruberry

fbshipit-source-id: 40b24d6a8cb8b7d231b2f6b34b87cee4f136c5f9
2021-06-03 08:25:58 -07:00
krshrimali
ef40757de3 OpInfo: zero_ (#58731)
Summary:
See https://github.com/pytorch/pytorch/issues/54261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58731

Reviewed By: ngimel

Differential Revision: D28784083

Pulled By: mruberry

fbshipit-source-id: f06de8045afd3728b1fedc014c091d8fd1955a9f
2021-05-30 21:49:29 -07:00
kshitij12345
445e838210 OpInfo: resize_, resize_as_ (#59176)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/54261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59176

Reviewed By: ngimel

Differential Revision: D28780083

Pulled By: mruberry

fbshipit-source-id: 472584e8faa4cb1031908df097849d2d4167fdf5
2021-05-30 18:53:17 -07:00
kshitij12345
d68df54269 OpInfo: fill_ (#59138)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/54261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59138

Reviewed By: ngimel

Differential Revision: D28776451

Pulled By: mruberry

fbshipit-source-id: 2e8e9f1805ec7d900223ea749a4a0b86a1bedb54
2021-05-29 00:35:02 -07:00
kshitij12345
c9af4c2636 OpInfo: where (#58349)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/54261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58349

Reviewed By: mrshenli

Differential Revision: D28744220

Pulled By: mruberry

fbshipit-source-id: 893a2fb88a48a60df75c7d6e2f58a42ca949daa7
2021-05-28 18:22:03 -07:00
Ansley Ussery
5268b5a29a Add parsing logic for Tuple[()] annotation (#58340)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/58340

Test Plan: Imported from OSS

Reviewed By: jamesr66a

Differential Revision: D28459502

Pulled By: ansley

fbshipit-source-id: 4bb188448d66269b42b068858b895debac86e9ee
2021-05-25 12:12:43 -07:00
Adnios
09a8f22bf9 Add mish activation function (#58648)
Summary:
See issus: https://github.com/pytorch/pytorch/issues/58375

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58648

Reviewed By: gchanan

Differential Revision: D28625390

Pulled By: jbschlosser

fbshipit-source-id: 23ea2eb7d5b3dc89c6809ff6581b90ee742149f4
2021-05-25 10:36:21 -07:00
kshitij12345
f9e8dc005a OpInfo: clone, contiguous (#58390)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/54261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58390

Reviewed By: soulitzer

Differential Revision: D28567821

Pulled By: mruberry

fbshipit-source-id: bcf42cb4a9a57d8a15a76819b8a9e2df97cf00be
2021-05-22 18:25:31 -07:00
James Reed
36adc3f04d [FX] Add APIs to mutate specific args/kwargs (#58571)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/58571

Test Plan: Imported from OSS

Reviewed By: jansel

Differential Revision: D28543359

Pulled By: jamesr66a

fbshipit-source-id: 44812d04886e653b5439c880dd831ecbc893fe23
2021-05-19 14:54:16 -07:00
Akifumi Imanishi
3113a1de4a Fix some tensor operators to return NotImplemented for invalid inputs (#58216)
Summary:
Same as https://github.com/pytorch/pytorch/issues/57934. (cc/ albanD)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/58216

Reviewed By: ailzhang

Differential Revision: D28494886

Pulled By: albanD

fbshipit-source-id: 380205867ee1cde90e1c6fcfe2a31749e1243530
2021-05-19 13:09:57 -07:00
James Reed
7b73fdf597 [FX] Fix retracing wrapped functions (#58061)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/58061

Test Plan: Imported from OSS

Reviewed By: yuhc

Differential Revision: D28358801

Pulled By: jamesr66a

fbshipit-source-id: c7c9a8a80e5bfe1eb1f6d2cf858ac7e57153a860
2021-05-17 19:50:16 -07:00
James Reed
00156d4845 [FX][WIP] Proxyable classes (#56737)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56737

Test Plan: Imported from OSS

Reviewed By: Chillee

Differential Revision: D27953073

Pulled By: jamesr66a

fbshipit-source-id: fafc681af7bd5200a9ead2fd0720940913885575
2021-05-14 14:07:04 -07:00
Nick Korovaiko
c524448dd1 init hardshrink (#57749)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57749

add to a fx test

Test Plan: Imported from OSS

Reviewed By: huiguoo

Differential Revision: D28425974

fbshipit-source-id: 195c7a1944decb7a2a99c2831cab38485f32be17
2021-05-13 19:38:05 -07:00
Alban Desmaison
5e83c62a9e Revert D28351931: [pytorch][PR] Fix some tensor operators to return NotImplemented for invalid inputs
Test Plan: revert-hammer

Differential Revision:
D28351931 (35521a2629)

Original commit changeset: 985457a44dba

fbshipit-source-id: 10724c219e53648f10a70719e25bcf774c6c7852
2021-05-12 13:58:03 -07:00
Akifumi Imanishi
35521a2629 Fix some tensor operators to return NotImplemented for invalid inputs (#57934)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/57719.

This PR fixes `torch.Tensor{__rsub__, __rdiv__, __rtruediv__, __pow__, __rmatmul__}` to return `NotImplemented` instead of raising a `TypeError`.

cc/ mruberry: The first commit of this PR is the same as 1d209db1cc excepts the commit message.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57934

Reviewed By: mruberry

Differential Revision: D28351931

Pulled By: albanD

fbshipit-source-id: 985457a44dba24d2496794dfb8c1661cbcd4ff8f
2021-05-12 11:03:23 -07:00
kshitij12345
ff982ef73d OpInfo: reshape, reshape_as and minor clean-up (#57460)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/54261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57460

Reviewed By: nairbv

Differential Revision: D28151675

Pulled By: anjali411

fbshipit-source-id: 2b3bcadab3ff5d1761b2922b63afd70a354e785c
2021-05-12 06:05:21 -07:00
Ansley Ussery
0d4dc6cb39 Let submodules be collected as args/kwargs (#57840)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/57840

Test Plan: Imported from OSS

Reviewed By: jamesr66a

Differential Revision: D28294984

Pulled By: ansley

fbshipit-source-id: d64fe109a349516da69d2d17f58e42f98af564fd
2021-05-11 18:17:11 -07:00
James Reed
a13718b69f [FX] Make stack trace testing less strict (#58088)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/58088

Test Plan: Imported from OSS

Reviewed By: ansley

Differential Revision: D28365398

Pulled By: jamesr66a

fbshipit-source-id: 4d5d173721b4a917893a6f1202e3980aa6e85fcc
2021-05-11 15:34:06 -07:00
Nikita Shulga
b587354e4c Add Python-3.9 CI testing (#50992)
Summary:
Skip number of tests adjust typing handling

Pull Request resolved: https://github.com/pytorch/pytorch/pull/50992

Reviewed By: walterddr

Differential Revision: D26170388

Pulled By: malfet

fbshipit-source-id: 47852512aa3d5c25faf6687bcd0b1cbb332b0b20
2021-05-10 10:51:39 -07:00
Horace He
8d363d37da [FX] Adds PyTree support to FX through concrete_args (#55888)
Summary:
```
class Foo(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, y, x):
        for k in x:
            for v in x[k]:
                v += y
        return x

example_dict = {'x': {'a': [fx.HOLE], 'z': [fx.HOLE, fx.HOLE]}}
new_f = fx.symbolic_trace(Foo(), concrete_args=example_dict)
print(new_f.code)
new_f(torch.randn(5), {'x': {'a': [torch.randn(5)], 'z': [torch.randn(5), torch.randn(5)]}})

fx.symbolic_trace(new_f, concrete_args=example_dict)
```

prints out
```
def forward(self, y, x):
    y, tree_2, tree_3, tree_4 = pytree.tree_flatten([y, x])[0]
    add = tree_2 + y
    add_1 = tree_3 + y
    add_2 = tree_4 + y;  y = None
    return {'a': [tree_2], 'z': [tree_3, tree_4]}
```

Currently, I store `in_spec` as an extra attribute on `fx.Graph`, and then include it when we do the codegen. I'm not sure if this is the right approach - it introduces a divergence between what's in `fx.Graph` and what's in the python code.

Perhaps the best API is something explicit like `fx.Graph.flatten_args`, but that does make calling things a bit ... more verbose.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55888

Reviewed By: jamesr66a

Differential Revision: D27884694

Pulled By: Chillee

fbshipit-source-id: f9e8a70c63a8df63c9f9bd0a6459255daa5a8df8
2021-05-07 04:48:35 -07:00
kshitij12345
9e6b7e6e6e OpInfo: expand and expand_as (#57606)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/54261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57606

Reviewed By: albanD

Differential Revision: D28249191

Pulled By: mruberry

fbshipit-source-id: d985ab4e8a99b116c45953e621092929a9a8028e
2021-05-07 02:50:00 -07:00
Elias Ellison
7627dd568a hardswish reland (#57652)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/57652

Test Plan: Imported from OSS

Reviewed By: Krovatkin

Differential Revision: D28226724

Pulled By: eellison

fbshipit-source-id: 585a91ffab7a855b5600e79130a37be25ef9b354
2021-05-05 17:21:43 -07:00
Shen Li
887d0e5657 Revert D28197820: [JIT][NNC] add hardswish symbolic gradient and NNC lowering
Test Plan: revert-hammer

Differential Revision:
D28197820 (0142fd0b57)

Original commit changeset: 05305d85c5bb

fbshipit-source-id: 2e1d9699515982ba2a9be06e83a2ce043ec857ee
2021-05-05 07:53:30 -07:00
eellison
0142fd0b57 [JIT][NNC] add hardswish symbolic gradient and NNC lowering (#57383)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57383

Notes: I picked up an activation from https://github.com/pytorch/pytorch/issues/56969. You can look at the [activations.cpp](https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cpu/Activation.cpp#L429) file which has both forward and backward kernel code to help you write the NNC lowering and the symbolic gradient.

I added a test in test_jit_fuser_te for the fusion, and I added an OpInfo and asserted that we expect to see autodiffable nodes to test the symbolic gradient.

Test Plan: Imported from OSS

Reviewed By: mrshenli

Differential Revision: D28197820

Pulled By: eellison

fbshipit-source-id: 05305d85c5bb0847c8f911b95ba47b137dca7e90
2021-05-04 23:39:59 -07:00
kshitij12345
154eca0309 OpInfo: ravel, view, view_as (#56910)
Summary:
Reference: https://github.com/pytorch/pytorch/issues/54261

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56910

Reviewed By: ngimel

Differential Revision: D28141867

Pulled By: mruberry

fbshipit-source-id: bff49d40d7e3bb36bc83d1405bd77f5529eeffe9
2021-05-02 22:10:36 -07:00
Yukio Siraichi
ce4449918a Port reverse binary ops to OpInfo (#56471)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/54296
Tracking Issue https://github.com/pytorch/pytorch/issues/54261

**Summary:**
- `rsub` (aten function) was already ported
- Ported tests for its dunder version: `__rsub__`
- Ported tests for the other dunder functions: `__radd__`, `__rmul__`, `__rdiv__`, `__rpow__`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56471

Reviewed By: ngimel

Differential Revision: D28142843

Pulled By: mruberry

fbshipit-source-id: 3d1bd88a4f124774f48d33a7ca7bfc7f796360df
2021-05-02 16:01:12 -07:00
Heitor Schueroff
57e37080cd Added OpInfo for torch.einsum (#56276)
Summary:
Adds OpInfo testing for torch.einsum.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56276

Reviewed By: mruberry

Differential Revision: D27967095

Pulled By: heitorschueroff

fbshipit-source-id: 60524273d2ca885e7eeb932db3e7fd697ae5ca8e
2021-04-27 07:39:38 -07:00
albanD
10fd7d8be6 Add option to OpInfo to skip gradgrad check and empty cdist OpInfo (#56603)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/56603

Test Plan: Imported from OSS

Reviewed By: mruberry

Differential Revision: D27939204

Pulled By: albanD

fbshipit-source-id: c7c80551ef3c34c822832891a99104440893ea4c
2021-04-23 14:06:33 -07:00
Allen (Congcong) Chen
798dd4665d Add a new API replace_input_with to node.py (#55887)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/55887

Reviewed By: jfix71

Differential Revision: D27731389

fbshipit-source-id: 754654e64c4f3a584dfea06322d833bc11bcc3cc
2021-04-23 11:37:41 -07:00
Joel Schlosser
7d2a9f2dc9 Fix instance norm input size validation + test (#56659)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/45687

Fix changes the input size check for `InstanceNorm*d` to be more restrictive and correctly reject sizes with only a single spatial element, regardless of batch size, to avoid infinite variance.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56659

Reviewed By: pbelevich

Differential Revision: D27948060

Pulled By: jbschlosser

fbshipit-source-id: 21cfea391a609c0774568b89fd241efea72516bb
2021-04-23 10:53:39 -07:00
Suraj Subramanian
78022aa62c Add more model symbolic tracing tests from torchvision (#55744)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/55398

Generates tests that calls `symbolic_trace` on torchvision models and verifies the parity of outputs from eager model, `fx.GraphModule`, `jit.ScriptModule`.

Test errors: GoogleNet and Inception models throw a type mismatch when scripting the traced `fx.GraphModule`.
```
Return value was annotated as having type __torch__.torchvision.models.googlenet.GoogLeNetOutputs but is actually of type Tensor:
    dropout = self.dropout(flatten);  flatten = None
    fc = self.fc(dropout);  dropout = None
    return fc
    ~~~~~~~~~ <--- HERE
```

Relevant type-inconsistency 512ea299d4/torchvision/models/googlenet.py (L200)
```
torch.jit.unused
    def eager_outputs(self, x: Tensor, aux2: Tensor, aux1: Optional[Tensor]) -> GoogLeNetOutputs:
        if self.training and self.aux_logits:
            return _GoogLeNetOutputs(x, aux2, aux1)
        else:
            return x   # type: ignore[return-value]
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/55744

Reviewed By: albanD

Differential Revision: D27920595

Pulled By: suraj813

fbshipit-source-id: 01f6f2aef7badbde29b5162a7787b5af9398090d
2021-04-22 08:54:06 -07:00