This PR introduces **-Wmissing-prototypes** of clang-tidy to prevent further coding errors such as the one fixed by PR #96714.
<!--
copilot:summary
-->
### <samp>🤖 Generated by Copilot at fd2cf2a</samp>
This pull request makes several internal functions static to improve performance and avoid name clashes. It also fixes some typos, formatting, and missing includes in various files. It adds a new .clang-tidy check to warn about missing prototypes for non-static functions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96805
Approved by: https://github.com/malfet, https://github.com/albanD
Fixes #ISSUE_NUMBER
1、torch.jit.load for custom device
```
# custom device named `foo`
ts_model = torch.jit.script(mode.to(device="foo"))
ts_model.save("./ts.pt") # it is a script model on device `foo`
# and then we want to load it and run it
torch.jit.load("./ts.pt")
```
2、 add some extra key for custom device with `privateuse1`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99535
Approved by: https://github.com/albanD
This PR introduces CustomOp, a wrapper around a dispatcher operator that allows
users to define custom operators. It adds the skeleton for CustomOp and
some very simple behavior: as of this PR:
- one can create a CustomOp for an operator that does not have inplace or aliasing
- give it CPU/CUDA and Meta implementations
- and trace it into a graph via make_fx.
The design follows
https://docs.google.com/document/d/19Uc5OUCA187q9BZggJb70RT2ZoSTDoG5QQkJkZwd25M/edit
Concretely, we implement the following things mentioned in the doc in this PR:
- Entrypoint 1 (CustomOp.define, creating a new custom operator)
- impl (to define device-specific code) and impl_meta (to define meta
formulas)
The goal for the short term is to get the code to a state where it can be trialed
by the export folks. On top of this PR, the blockers are:
- adding Entrypoint 3 (CustomOp.from_existing)
- adding a way to do data-dependent shape formulas
These will come in future PRs since this one is getting long.
Things that will come in the longer-near-term (before 2.1):
- adding the other entrypoints mentioned in the doc (2 & 3)
- more safety checks and better error messages
- support for views and mutation
- support for defining autograd formulas
- support for functionalization
- making this API public (it's private right now).
Test Plan:
- added a new test case, TestCustomOp. It mostly tests a bunch of error
cases.
- added OpInfos for custom operators and hooked these up to
test_proxy_tensor to test that they work with make_fx. These custom
operators were based off of the ones in the autograd_function_db.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98440
Approved by: https://github.com/ezyang
Not only is this change usually shorter and more readable, it also can yield better performance. size() is not always a constant time operation (such as on LinkedLists), but empty() always is.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93236
Approved by: https://github.com/malfet
Summary:
This is useful for debugging what autocast is doing when
it's running on top of torchdynamo, without this the Python dispatch
key for autocast prints as `???`.
Test Plan:
```
import torch
dir(torch._C.DispatchKey)
// the autocast keys show up now
```
Reviewers:
Subscribers:
Tasks:
Tags:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90821
Approved by: https://github.com/ezyang
The idea is to add a custom handler to Functionalize key in Python
dispatcher that runs the functionalized version along side a non
functionalized version, and checks that their outputs agree in the
end. (Technically, for metadata mutation we should also check the
inputs, but for now we're relying on those functions returning self.)
I turned this on for test_functionalize.py (new TestCrossRefFunctionalize)
and found a bunch of failures that look legit.
This probably doesn't interact that nicely if you're also tracing at
the same time, probably need more special logic for that (directly,
just disabling tracing for when we create the nested fake tensor mode,
but IDK if there's a more principled way to organize this.)
There are some misc fixups which I can split if people really want.
- xfail_inherited_tests moved to test common_utils
- Bindings for _dispatch_tls_set_dispatch_key_included,
_dispatch_tls_is_dispatch_key_included and _functionalization_reapply_views_tls
- Type stubs for _enable_functionalization, _disable_functionalization
- all_known_overloads utility to let you iterate over all OpOverloads
in all namespaces. Iterator support on all torch._ops objects to let
you iterate over their members.
- suspend_functionalization lets you temporarily disable functionalization mode
in a context
- check_metadata_matches for easily comparing outputs of functions and see
if they match (TODO: there are a few copies of this logic, consolidate!)
- _fmt for easily printing the metadata of a tensor without its data
- _uncache_dispatch for removing a particular dispatch key from the cache,
so that we force it to regenerate
- check_significant_strides new kwarg only_cuda to let you also do stride
test even when inputs are not CUDA
- Functionalize in torch._C.DispatchKey
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89498
Approved by: https://github.com/malfet
Summary:
We want to introduce an experimental control flow op: map() to export some models as FX graphs correctly.
Some calrification on basic requirements we have in mind:
1. This op can nest cond() and other control flow primitives internally.
2. We don't necessarily need loop carried dependencies for the models we've seen.
3. This map() op can handle dynamically shaped tensor as input and return dynamically shaped output based on input shapes.
4. We should be able to pass through additional arguments to the loop body as extra arguments.
In this diff we introduce a new control flow op `map()` which has the following semantics:
```
def map(f: Callable, xs: Tensor, *args):
# one possible implementation:
return torch.stack([f(x, *args) for x in xs])
```
Test Plan:
pytest functorch/test_control_flow.py
CI
Differential Revision: D41165796
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88767
Approved by: https://github.com/zou3519
This PR teaches PyDispatcher and PyOperator about functorch transforms.
It is important that PyDispatcher/PyOperator dispatch with functorch
transforms, because this is our plan for higher-order operators
(operators that accept functions as arguments). Examples of these
include:
- functorch transforms over the existing cond operator (control flow)
- autograd.Function support for functorch (which I am working towards),
- AOTDispatcher (should be a higher order operator)
Concretely, the problem with teaching PyDispatcher/PyOperator about
functorch is that the stack-based dispatching logic (DynamicLayerStack)
is hidden inside the fallbacks for two dispatch keys
(DynamicLayer{Front, Back}). PyDispatcher doesn't know about C++ boxed
fallbacks, our plan on record for that is that we need to reimplement
all of them in Python (but can call helper functions in C++ to make our
lives easier).
Instead of exposing all of what DynamicLayer{Front, Back} do to python,
this PR takes the approach of re-implementing part of the stack-based
dispatching in Python. The motivation is that this is more sane and
follows what the "ideal" implementation of functorch would have been:
- each transform should be a "mode"
- there should be no TLS dispatch key set hackery. functorch needs to do
this hackery today to re-use VariableType implementations.
This PR:
- exposes the DynamicLayerStack to Python
- The DynamicLayerStack is a stack of Interpreters.
These get exposed to Python as well.
- Interpreters can run operations (Interpreter.process) or lower them to
the next interpreter in the stack (Interpreter.lower)
- To use a PyOperator with functorch transforms, a developer needs to
register a rule for each transform (vmap, grad, jvp, ...).
- The PyOperator API is NOT user-facing. Things like autograd.Function
support for functorch will end up going through the autograd.Function
API.
Question for reviewers:
- Does this design make sense?
- I'm trying to split up the "functorch support for autograd.Function"
work into logical pieces. Would it be better if I didn't? (the full
thing is a bit long - 1000-2000 LOC).
Test Plan:
- new tests that construct PyOperator and compose them with functorch
transforms
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88785
Approved by: https://github.com/samdow, https://github.com/soulitzer
See strategy at PythonOpRegistrationTrampoline.cpp for the
big picture.
Along the way, I made OperatorHandle support == and hashing,
and slightly changed the low level python_dispatch impl API
to disallow empty strings for dispatch key, which had the knock
on effect of requiring us to explicitly make sure we pass in
CompositeImplicitAutograd if we would have passed in "" (I didn't apply
this to the rest of the file because I'm lazy.)
Test strategy is we delete the logic for preventing Python op
registrations in torch from being skipped in a torchdeploy context
and show CI still works.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87162
Approved by: https://github.com/anjali411, https://github.com/bdhirsh
Monkeypatching is bad, we should never be doing it. This PR removes
functorch's monkeypatching on Tensor.backward() by adding it directly to
the implementation of Tensor.backward().
As an alternative, we could have done an `import functorch` and used
`functorch._C.are_transforms_active` directly in
`torch/autograd/__init__.py`. The problem with that is that it runs into a
bunch of circular imports.
NB: https://github.com/pytorch/pytorch/issues/72179 is still on my mind.
I didn't choose to do it right now because:
- This PR doesn't make the situation worse than it already is (no
monkeypatching is better than having the monkeypatch)
- We don't have a design for #72179 yet.
Test Plan:
- tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/85152
Approved by: https://github.com/soulitzer
Signed-off-by: Edward Z. Yang <ezyangfb.com>
From @ezyang's original PR:
There are a number of situations where we have non-backend kernels (e.g., CompositeImplicitAutograd, batching rules) which we would like to port to Python, but we have no way to integrate these ports with the overall system while using preexisting C++ registrations otherwise. This PR changes that by introducing a Python dispatcher (which can have its own kernels directly in Python), which can be interpose over ordinary C++ dispatch. The ingredients:
We introduce a new PythonDispatcher dispatch key, that has the same tenor as FuncTorchDynamicLayerFrontMode: it works by getting triggered before every other dispatch key in the dispatch key, and shunting to a Python implementation
The Python dispatcher is a per-interpreter global object that is enabled/disabled via the guard EnablePythonDispatcher/DisablePythonDispatcher. We don't make it compositional as I have no idea what a compositional version of this feature would look like. Because it is global, we don't need to memory manage it and so I use a simpler SafePyHandle (newly added) to control access to this pointer from non-Python C++. Like __torch_dispatch__, we use PyInterpreter to get to the Python interpreter to handle the dispatch.
I need to reimplement dispatch table computation logic in Python. To do this, I expose a lot more helper functions for doing computations on alias dispatch keys and similar. I also improve the pybind11 handling for DispatchKey so that you can either accept the pybind11 bound enum or a string; this simplifies our binding code. See https://github.com/pybind/pybind11/issues/483#issuecomment-1237418106 for how this works; the technique is generally useful.
I need to be able to call backend fallbacks. I do this by permitting you to call at a dispatch key which doesn't have a kernel for the operator; if the kernel doesn't exist, we check the backend fallback table instead.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84826
Approved by: https://github.com/ezyang
Fixes https://github.com/pytorch/pytorch/issues/82331
Expose a `torch._C._dispatch_has_computed_kernel_for_dispatch_key` to check if an operator has a kernel registered to the given dispatch key in the **computed table**.
Use it in the prim registration logic, making it more accurate and robust (so that it e.g. picks up `CompositeExplicitAutograd` kernels.
It looks like before this change we'd register 134 prim ops to the meta key, and after we only register 62. So that's 72 ops that now use an existing C++ decomp to get meta working, instead of going directly through the prim decomp.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82358
Approved by: https://github.com/ezyang
We define specializations for pybind11 defined templates
(in particular, PYBIND11_DECLARE_HOLDER_TYPE) and consequently
it is important that these specializations *always* be #include'd
when making use of pybind11 templates whose behavior depends on
these specializations, otherwise we can cause an ODR violation.
The easiest way to ensure that all the specializations are always
loaded is to designate a header (in this case, torch/csrc/util/pybind.h)
that ensures the specializations are defined, and then add a lint
to ensure this header is included whenever pybind11 headers are
included.
The existing grep linter didn't have enough knobs to do this
conveniently, so I added some features. I'm open to suggestions
for how to structure the features better. The main changes:
- Added an --allowlist-pattern flag, which turns off the grep lint
if some other line exists. This is used to stop the grep
lint from complaining about pybind11 includes if the util
include already exists.
- Added --match-first-only flag, which lets grep only match against
the first matching line. This is because, even if there are multiple
includes that are problematic, I only need to fix one of them.
We don't /really/ need this, but when I was running lintrunner -a
to fixup the preexisting codebase it was annoying without this,
as the lintrunner overall driver fails if there are multiple edits
on the same file.
I excluded any files that didn't otherwise have a dependency on
torch/ATen, this was mostly caffe2 and the valgrind wrapper compat
bindings.
Note the grep replacement is kind of crappy, but clang-tidy lint
cleaned it up in most cases.
See also https://github.com/pybind/pybind11/issues/4099
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82552
Approved by: https://github.com/albanD
We don't have any coverage for meta tensor correctness for backwards
because torch function mode can only allow us to interpose on
Python torch API calls, but backwards invocations happen from C++.
To make this possible, I add torch_dispatch_meta test which runs the
tests with __torch_dispatch__
While doing this, I needed to generate fresh expected failure / skip
lists for the new test suite, and I discovered that my original
scaffolding for this purpose was woefully insufficient. So I rewrote
how the test framework worked, and at the same time rewrote the
__torch_function__ code to also use the new logic. Here's whats
new:
- Expected failure / skip is now done on a per function call basis,
rather than the entire test. This means that separate OpInfo
samples for a function don't affect each other.
- There are now only two lists: expect failure list (where the test
consistently fails on all runs) and skip list (where the test
sometimes passes and fails.
- We explicitly notate the dtype that failed. I considered detecting
when something failed on all dtypes, but this was complicated and
listing everything out seemed to be nice and simple. To keep the
dtypes short, I introduce a shorthand notation for dtypes.
- Conversion to meta tensors is factored into its own class
MetaConverter
- To regenerate the expected failure / skip lists, just run with
PYTORCH_COLLECT_EXPECT and filter on a specific test type
(test_meta or test_dispatch_meta) for whichever you want to update.
Other misc fixes:
- Fix max_pool1d to work with BFloat16 in all circumstances, by making
it dispatch and then fixing a minor compile error (constexpr doesn't
work with BFloat16)
- Add resolve_name for turning random torch API functions into string
names
- Add push classmethod to the Mode classes, so that you can more easily
push a mode onto the mode stack
- Add some more skips for missing LAPACK
- Added an API to let you query if there's already a registration for
a function, added a test to check that we register_meta for all
decompositions (except detach, that decomp is wrong lol), and then
update all the necessary sites to make the test pass.
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77477
Approved by: https://github.com/zou3519
Summary:
This change causes Messenger Dekstop to crash on M1 devices when the user enables background during the call. The change apparently causes the compiler to emit AVX instructions that are not supported by Rosetta.
This is a surgical backout that only backs out the changes in C++ side,
and not Python bindings which I believe are not shipped with Workplace Chat.
Test Plan:
Run the application and make sure that it doesn't crash when the background is enabled
https://pxl.cl/23VSH
Reviewed By: ezyang
Differential Revision: D36358832
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77414
Approved by: https://github.com/bigfootjon
This makes prims look as if they were defined in native_functions.yaml
but they're still all written in Python. You now need to give a full
schema string for your prims. The returned prim object is now
torch.ops.prim overload (prims are not allowed to be overloaded,
so we return the overload, not the overload packet, for speed.)
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77117
Approved by: https://github.com/mruberry, https://github.com/albanD
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54470
```
git grep -l 'DefaultBackend' | xargs sed -i 's/DefaultBackend/CompositeExplicitAutograd/g'
```
Plus a quick fixup in native/README.md
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D27253240
Pulled By: ezyang
fbshipit-source-id: 964df951ea8b52fa72937f3cc66aeaf49a702e6f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54466
I had to very carefully audit all the use sites since there are a lot
of other uses of the string Math; I did most of the conversion by
grepping for all occurrences of Math and then doing a search
replace.
I also updated documentation for clarity.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D27253239
Pulled By: ezyang
fbshipit-source-id: afb485d07ff39575742a4f0e1e205179b60bc953