Based on discussion here: https://github.com/pytorch/pytorch/pull/138731
Introducing ability for subclass implement type convertion to expected_type.
```
def __coerce_same_metadata_as_tangent__(
self, expected_metadata: Any, expected_type: Optional[Type] = None
):
```
Here if `expected_type=None` means `SubclassClass` is expected.
E.g. for `DTensor` we may find tangent `AsyncCollectiveTensor` where we expected `Tensor` - in this case
`expected_type=Tensor` will be called during runtime
Adding implementation to AsyncCollectiveTensor, that just triggers `wait()`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139095
Approved by: https://github.com/bdhirsh
@frost-intel discovered that some Inductor auto-tuning UTs for CPU are currently broken on machines supporting AMX ISA. That's because in #136688, I had reverted a change in the AMX GEMM micro-kernel that was introduced in #131887, but it looks like some other implementations introduced after the aforementioned change rely upon it, so it should not have been reverted.
Added a fix.
Ideally, a CI machine that supports AMX should cover these UTs (test/inductor/test_cpu_select_algorithm.py). We do have at least one CI machines that support AMX.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139906
Approved by: https://github.com/leslie-fang-intel, https://github.com/jgong5
There are 4 parts (they are hard to further break into smaller ones cause they're highly coupled) in this PR:
1. **Whenever we call create_graph_input, we try to bind the symbols in the graph input.**
We've enforced the invariant that all create_graph_inputs calls must provide an example value, we could intercept at the create_graph_input calls (This PR only handles free symbols in tensors).
2. **We cache the bound_symbols** to avoid lift the same symbol repeated.
3. For lifted symbols, we re-used **lifted_freevars** i.e. the mapping between symbol proxy in parent graph to the lifted phs in current subgraph, which we handle lifted tensors. In this way, all hops that supports lifted tensors should be able to handle lifted_symints automatically (at least in dynamo part).
4. For **unbacked symbols** created during tracing, we need to also bound these symbols to its proxy. This is to support the tests cases where we want to lift unbacked symbols as input. We need the proxy of the unbacked symbol in parent graph in order to properly create the args to the hop.
5. We change all the tests after free symbols are lifted in subgraphs. And also supports the lifted symbols in existing higher order ops.
**The interaction of nested tracers:**
The previous design for lifting tensor closures is that: suppose we're in nested tracers, whenever we see a new proxy that's not created by create tracer, we recursively look for the proxy in parent tracer until we find the tracer that creates this proxy (either a placeholder or some intermediate results). More detail is in Note [Nested SubgraphTracer and free_variable handling].
Given the above design, the plan for lifting the free symbols is: whenever we lift a free tensor to be the inputs of current subgraph, we'll look at the symbols in it and bind the symbols at the same time.
For example, suppose we have the following function:
```python
def f(x: [s1, s2]):
def true_f():
def true_f_inner():
return x.sin()
```
what will happen in time order:
1. we create a subtracer 1 and start to speculate the outer cond's true_f
2. we create a another subtracer 2 and start to speculate the inner cond's true_f_inner.
3. dynamo realize the tensor input x by calling wrap_tensor in top-level to create graph input x (tracer 0), we bind the symbol s1, s2 after ph for x is created. So the graph now looks like:
```python
def gm(s1, s2, x):
```
4. when seeing TensorVariable.call_method of x, tracer2 wants to create a call_function(sin, proxy_of_x), but it finds that proxy_of_x is not created by current tracer. So it recursively look up its parent tracer1 and find parent tracer1 also doesn't track this proxy_of_x then it finds the root tracer0, who is the creator of it and tracks it as a ph. Then tracer 1 create_graph_input to lift the closure to its input ph1 and add (proxy_of_x: ph1) k-v in **lifted_freevars** of tracer 1.
Now the graph looks like:
```python
def gm(s1, s2, x):
def true_gm(x):
```
5. Since there are free symbols inside this new tensor input, tracer 1 also binds the symbols (maybe_bind_symbol), which calls create_graph_input for s1 and s2. Now the graph looks like
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
```
6. then it goes back to tracer 2, and call create_graph_input for x and get ph2, tracer 2's **lifted_freevars** records (ph1, ph2). and tracer 2 also binds the symbols in this new tensor input. Now the graph looks like:
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
def true_gm_inner(s1, s2, x):
```
7. Finally the sin call_function node is created by tracer 2.
**This PR also handles the following cases:**
- What if we lift two tensors share the same symbol? e.g. x1 [s1, s2], x2 [s2, s3]? Each subtracer maintains bound_symbols as a cache that maps a symbol.expr to its proxy in current tracer. So when we see x1, we'll track s1 and s2 as inputs and bound s1 to ph1, s2 to ph2. So when we try to bind symbols of x2, s2 will already be tracked so no graph input is created.
- what if a subgraph close over a symint? e.g.
```python
def f(x):
def true_f():
c = x.size(0)
def true_fn_inner():
return c
```
When we speculate true_fn_inner, we find proxy_of_c is not tracked by tracer 2, so it recursively looks up its parent. At this point, x and its symbols have been lifted as input of true_f (as a result of lifting x during tracing true_f in tracer 1. Specifically the graph looks like:
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
def true_gm_inner():
```
So tracer 2 is able to find that s1 have been tracked as ph in tracer 1 so it returns back to gm and call create_graph_input on s1. The graph now looks like:
```python
def gm(s1, s2, x):
def true_gm(s1, s2, x):
def true_gm_inner(s1):
return s1
```
- What if subgraph close over an unbacked symint? e.g.
```python
def f(x):
def true_f():
c = x.item()
def true_f_inner():
return c
```
When x.item() is called, proxy_of_c and its symnode variable is created for tracer 1, and we also call track_unbacked_symbols to record this relationship. So when tracer 2 finds proxy_of_c is not created by current tracer, it recursivelly looks up its parent tracer and finds that that expression u0 has been tracked as a result of track_unbacked_symbol in tracer 1. So it will stop the recursion and create_graph_input u0 in tracer 2. Graph looks like:
```python
def f(x):
def true_f(s1, s2, x):
c = x.item()
def true_gm_inner(u0):
return u0
cond(pred, true_gm_inner, false_gm_inner, (c,))
```
- what if subgraph close over a tensor with unbacked symint shape?
```python
def f(x):
def true_f():
c = x.item()
r = torch.randn((c,))
def true_f_inner():
return r + 1
```
This is the same as the case of closing over tensors with backed shapes. where we first lift r, then bind u0 in it, which recursively bind_symint of u0 in its parent and found u0 is tracked in parent tracer as a result of .item() call.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138363
Approved by: https://github.com/zou3519
This PR introduces the following:
### torch.ops.symm_mem._async_input_mm
`_async_input_mm(Tensor a, Tensor b, Tensor a_chunk_signals, int a_chunk_pivot) -> Tensor`
An mm impl that supports consuming asynchronous input. It guarantees the following rasterization order, and that the corresponding signal arrives before an input chunk is consumed.
```
num_chunks = a_chunks_signals.numel()
for chunk_idx in range(a_chunk_pivot, num_chunks + a_chunk_pivot):
chunk_idx = chunk_idx % num_chunks
wait_signal(a_chunk_signals, chunk_idx)
# Compute output tiles that consumes the input chunk
```
### PersistentAsyncInputScheduler
This is a forked version of PersistentScheduler that supports consuming asynchronous input. This tile scheduler introduces the following arguments:
- `tiles_per_chunk_m` – Specifies the size of an M chunk. Chunks are the granularity at which the asynchronous input becomes ready. It must be an interger multiple of the size of an M tile.
- `chunk_signals` – `chunk_signals[i] == 1` indicates that chunk i is ready. Before returning a work tile, get_current_work() waits for the signal to ensure that the corresponding chunk is ready.
- `tile_idx_pivot_m` – After applying swizzling, apply `pivot(m) => (m + tile_idx_pivot_m) % tiles_m` to `m`. In a distributed setting, this allows different ranks to process different m indices at the same time, thus avoiding communication hotspots.
Note that this scheduler currently only supports the `KernelTmaWarpSpecializedCooperative` kernel schedule. This is enforced via the template argument `KernelSchedule`.
Usage:
```
using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>,
CollectiveMainloop,
CollectiveEpilogue,
cutlass::gemm::PersistentAsyncInputScheduler<KernelSchedule>>;
```
### _fused_all_gather_matmul_native
An ag-mm impl that combines `torch.ops.symm_mem._async_input_mm` and progress-aware all-gather. This is not yet enabled via the async-tp passes. We will use it as a backend to optimize the current decomposition-based async-tp impl.
## Benchmarks
### 4096x3584x8192
- cublas + nccl: 539us
- decomp-based async-tp w/o cuda graph: 694us
- decomp-based async-tp w/ cuda graph: 478us
- new cutlass kernel: 408us
<img width="478" alt="image" src="https://github.com/user-attachments/assets/39f316ab-36c5-4b41-af77-07854a385dfc">
### 2048x3584x8192
- cublas + nccl: 301us
- decomp-based async-tp w/o cuda graph: 687us
- decomp-based async-tp w/ cuda graph: 356us
- new cutlass kernel: 276us
<img width="441" alt="image" src="https://github.com/user-attachments/assets/9e23ce21-863b-43dd-a562-fb05d3a5a144">
## Next Steps
- Add tuning logic
- Use `_fused_all_gather_matmul_native` as a backend for the decomp-based async-tp impl
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139227
Approved by: https://github.com/weifengpy, https://github.com/Chillee
This patch
1. Adds documentation to `PyCodegen.__call__`, `PyCodegen.tempvars` and
the `allow_cache` flag.
2. Merges a few existing code paths in `PyCodegen.__call__`.
3. removes the `elif var in cg.tempvars` code path in
`codegen_save_tempvars`, because it's no longer needed after #113725,
as we have up-to-date `VariableTracker.source` now.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139670
Approved by: https://github.com/jansel
ghstack dependencies: #139538
This effectively undoes #115095, which is not longer be needed after #113725.
Why did we need #115095? I went back in history and found that [this line](https://github.com/pytorch/pytorch/pull/113725/files#diff-0bb1756725c4426408938314b0c9d3988ae5bf49994892d7038ad7746e209e9fR86)
actually fixed what #115095 fixed. Specifically, without the
`allow_cache` check for the "dup_top" optimization, we could incorrectly
codegen based on source, despite `codegen_update_mutated` requested to
codegen from value, for updates to pre-existing lists, etc. Since #113725 added
the `allow_cache` check, we no longer need the `mutable_side_effects_from_source`
code path from #115095.
However, #115442 introduced a `value_from_source` flag which didn't
account for the `mutable_side_effects_from_source` branch. So this patch
adds an extra check to keep existing behavior for export, and leaves a
TODO for investigating what exactly export wants from codegen, when it
comes to side effects and sources.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139538
Approved by: https://github.com/jansel
Fixes#138550.
### Description
In the fusion of two nodes, one node with less variables (`node_to_recomp`) would make its variable ranges aligned with the other node (`ref_node`). In detail, `node_to_recomp` would change its variable ranges to the original ranges of `ref_node`. However, if both of the nodes have changed its ranges, i.e., the simplified variable ranges are different from its original ones, the issue comes up.
### Solution
For the case where the `ref_node` also changes its variable ranges, we recompute the size and body for it, to ensure the nodes are simplified to the same size.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138568
Approved by: https://github.com/jgong5, https://github.com/leslie-fang-intel, https://github.com/jansel
Summary:
This diff reverts D65290089
This change is introducing more logging than I realized and could present problems for tlparsen
Test Plan: NA
Reviewed By: jamesjwu
Differential Revision: D65541060
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139893
Approved by: https://github.com/jamesjwu
This allows Configs to handle setting their defaults (or overriding
themselves) via environment variables.
The environment variables are resolved at install time (which is usually
import time). This is done 1) to avoid any race conditions between
threads etc..., but 2) to help encourage people to just go modify the
configs directly, vs overriding environment variables to change
pytorch behaviour.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138956
Approved by: https://github.com/ezyang
ghstack dependencies: #138766
Fixes#137512
Relaxes the restriction that the ragged dim is immediately next to the batch dim e.g. `(B, *, D_0, ..., D_N)`. This allows for constructing NJTs of shape e.g. `(B, D, j0)` directly. It's possible before this PR to get an NJT of e.g. shape `(B, D, j0)` by constructing an NJT of shape `(B, j0, D)` and transposing it. This PR allows a user to go straight there without the transpose. The standard `torch.nested.nested_tensor(list)` constructor has been updated to support this.
At the very least, this is useful for testing on transposed NJTs. I'm willing to make this functionality private if needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137125
Approved by: https://github.com/cpuhrsch, https://github.com/soulitzer
Summary: When we use aoti_compile_and_package to package the AOTI compiled artifacts, cubin files will be included, and at the deploy time, we should setup the cubin file directory to the right path that contains unziped cubin files.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139848
Approved by: https://github.com/aakhundov
As MacOS-15 or newer supports those out of the box. This significantly reduces memory requirements and improves performance for some stable diffision networks.
Test plan: Run
```python
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
import torch
import time
vae = AutoencoderKL.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
subfolder='vae',
torch_dtype=torch.bfloat16,
force_upcast=False).to('mps')
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae,
torch_dtype=torch.bfloat16, variant="fp16").to('mps')
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
start_time = time.time()
start_mps_mem = torch.mps.driver_allocated_memory()
image = pipe(prompt="Spherical cow in vacuum",
num_inference_steps=10,
guidance_scale=8,
generator=torch.Generator("mps").manual_seed(42),
).images[0]
end_mps_mem = torch.mps.driver_allocated_memory()
run_time = time.time() - start_time
print(f"run time in {run_time:.2f} sec, end_mps_mem {end_mps_mem/1024.0**2:.2f} Mb mem increase {(end_mps_mem-start_time)/1024.0**2:.2f} Mb")
image.save(f'bfloat16.png')
```
Before the change total memory use were 16Gb and needed 65 sec to complete, after it drops down to 14Gb and takes 50 sec to finish on M2Pro, though generated image remains the same:

Fixes https://github.com/pytorch/pytorch/issues/139389
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139791
Approved by: https://github.com/drisspg, https://github.com/Skylion007
ghstack dependencies: #139788, #139784, #139763
fsspec transactions do not support concurrency and assumes that there is at most 1 running transaction per filesystem. This is *not* true in our usage, where because of multi-threading we usually have multiple concurrent transactions running at once.
Previously, this would just (unsafely) pass but lead to hard-to-debug race conditions (since the commit of one transaction will blow away the state of the other transaction). In fsspec 2024.3.0, trying to commit concurrent transactions will actually crash (see the code at 76ca4a6888/fsspec/transaction.py (L39) -- because each filesystem can have a single transaction, this tear-down logic will error).
Instead, let's manually handle committing / discarding changes to the file.
I don't have a minimal test-case, but in Meta this solves a broken test on `fsspec >= 2024.3.0`:
Before: https://www.internalfb.com/intern/testinfra/testrun/7318349626774607
After: https://www.internalfb.com/intern/testinfra/testrun/2251800062722633
Pull Request resolved: https://github.com/pytorch/pytorch/pull/135541
Approved by: https://github.com/Skylion007
**About the PR**
In the implementation of SmoothQuant in Torchao, quantized linear is computed by `_int_mm(a, b)` + `mul(b_scale)` + `mul(a_scale)` (+ optional `add` for bias) with `reshape` and `convert_dtype` in between.
This PR adds a pass to fuse the corresponding patterns:
- (no bias) `reshape -> _int_mm -> convert_element_type -> (expand -> mul) -> mul -> reshape`
- (with bias) `pattern_no_bias -> add -> reshape -> reshape`
The patterns are replaced by `onednn.qlinear_pointwise` and `onednn.qlinear_prepack`, the latter of which is evaluated and frozen during the freezing process of Inductor. The final graph contains `onednn.qlinear_pointwise` only with packed weight constants.
Note that `onednn.qlinear_pointwise` does not support per-channel quantization of activation, which is a limitation of oneDNN library, so in that case we set activation scale to 1 and bias to none and apply scales and add bias after `onednn.qlinear_pointwise`.
**Validation results**
Accuracy/perplexity is not changed with or without this fusion pass.
Latency is improved by >10% with the fusion pass.
Test method:
- Model: EleutherAI/gpt-j-6b
- Hardware: Intel(R) Xeon(R) Platinum 8490H, running on 1 socket, 60 cores
- Using Intel OMP and Tcmalloc
- Running [the example script of SmoothQuant in Torchao](https://github.com/pytorch/ao/blob/main/torchao/prototype/smoothquant/example.py) with `TORCHINDUCTOR_FREEZING=1 numactl -N1 python example.py -m EleutherAI/gpt-j-6b --device=cpu --quant-mode=dynamic --compile`
**Test plan**
```
python test/inductor/test_mkldnn_pattern_matcher.py -k test_smooth_quant_with_int_mm
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139595
Approved by: https://github.com/leslie-fang-intel, https://github.com/jgong5, https://github.com/jerryzh168
Summary:
save around 8% on the torchrec model.
In most case the new implications are not optimizaiton anyway in some case though they are,
but optimizing them is useless.
ex:
```
generating implications for Eq(Mod(s0, 3), 0)
adding Eq(Mod(s0, 3), 0)
adding Eq(0, Mod(s0, 3))
adding Ne(Mod(s0, 3), 0)
adding Ne(0, Mod(s0, 3))
adding Mod(s0, 3) <= 0
adding 0 < Mod(s0, 3)
adding True
adding False
```
VS
```
generating implications for Eq(Mod(s0, 3), 0)
adding Eq(Mod(s0, 3), 0)
adding Eq(0, Mod(s0, 3))
adding Ne(Mod(s0, 3), 0)
adding Ne(0, Mod(s0, 3))
adding Mod(s0, 3) <= 0
adding 0 < Mod(s0, 3)
adding 0 <= Mod(s0, 3)
adding Mod(s0, 3) < 0
```
the main difference is that 0 <= Mod(s0, 3) can be simplified to True and Mod(s0, 3) < 0 to False but with this change
this wont happen. but True:True and False: False are useless anyway lol. so its ok i think
```
buck2 run fbcode//mode/opt fbcode//torchrec/distributed/tests:pt2_compile_benchmark -- --num-features=1000
```
<img width="1082" alt="Screenshot 2024-11-04 at 9 25 51 PM" src="https://github.com/user-attachments/assets/a26e291b-9280-4b55-9275-f3201a36ac51">
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139738
Approved by: https://github.com/ezyang
ghstack dependencies: #139703
Assuming the forward pass user code looks like:
```
for _ in range(2):
x = layer(x)
```
and we have `fully_shard(layer)`, then:
- the forward pass will be like: "unshard layer -> call layer 1st time -> reshard layer -> unshard layer -> call layer 2nd time-> reshard layer" (currently same for both eager and compile)
- the backward pass will be like: "unshard layer -> call layer 1st time -> reshard layer -> unshard layer -> call layer 2nd time-> reshard layer" in eager, but currently it's "unshard layer -> call layer 1st time -> call layer 2nd time -> reshard layer" in compile
The behavior in the backward pass is different between eager and compile, which is not ideal.
I am currently trying to look for a way to fix this non-ideal behavior of compile - tried a few things:
1. Tracing the RegisterPostBackwardFunction custom autograd function - this stills seems to be a no-go, due to HOP not supporting side-effects.
2. Instead of custom autograd function, do a "multi-grad hook" to wait for all gradients to be ready before triggering post_backward. However, this approach seems to have bad interaction with register_hook of pre_backward, in the sense that it's unclear which of them will be triggered first in practice.
3. Force execute any pending post_backward before unshard in pre_backward hook, and rely on compiler to move the reshard to the right place to optimize peak memory. -> This PR
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139671
Approved by: https://github.com/awgu
- Remove "mypy: allow-untyped-defs" and mark functions individually with "no-untyped-def"
- Mark some trivial functions with the proper return types (`None` and `torch.dtype`)
- Fixed a type bug in the signature of supported_dtype_of_cpp_wrapper()
- `ruff check torch/_inductor/ir.py --select ANN --fix --unsafe-fixes` and then fixed up things that looked incorrectly applied.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139238
Approved by: https://github.com/Skylion007, https://github.com/ezyang
**Summary**
In the case of LLaMA2, for a linear operation with an activation size of `(4, 1, 4096)` and a stride of `(4096, 128, 1)` which has been decomposed into `matmul`. And the decomposition of `matmul` results in `bmm` due to a strict continuity check. We can align the continuity check with ATen by skip dim of size 1 to enable decomposition into `mm` instead.
**Test Plan**
```
python -u -m pytest -s -v test/inductor/test_mkldnn_pattern_matcher.py -k test_linear_input_non_contiguous_3D_wo_bias
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139172
Approved by: https://github.com/jgong5, https://github.com/ezyang
This is a bug on the main exposed by https://github.com/pytorch/pytorch/issues/139476
We have dict tag optimization where if the dict tag does not change, we
skip guards on all the items of the dict that are "immutable". We
considered tensors as immutable in such scenarios. This is critical for
guard eval performance, because generally users dont change their
parameters.
If I try to remove this optimization, we see slowdowns, e.g, 3.03x to
2.95x on conv_mixer TIMM benchamrk.
So, I am adding a flag which keeps the current state but allows the
users to remove this optimization. Not ideal, but given how serious guard eval perf has to be,
we are in the gray are of unsoundness vs performance tradeoff.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139560
Approved by: https://github.com/jansel
This PR adds some instructions for how to add a TARGETS file to run the
fx_graph_runnable script. I'm planning to add some followups that will
add additional imports for custom ops and use autodeps to get the
dependencies, but I figure this PR is an easy first step.
Test Plan:
- pytest test/dynamo/test_structured_trace.py
- Does anyone have suggestions for how to test this?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139481
Approved by: https://github.com/eellison
This patch adds 2 simple methods `VariableTracker.is_mutable()` and
`VariableTracker.is_immutable()`, which helps clarify intention. For
instance, rather than writing
```python
if var.mutation_type:
...
```
After this patch one can write
```python
if var.is_mutable():
...
```
This patch also simplifies `mutation_type` propagation in some
`ListVariable` methods.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139341
Approved by: https://github.com/mlazos, https://github.com/anijain2305
ghstack dependencies: #139339, #139340
This patch addresses the renaming part of #133027, specifically, it
renames the following and adds documentation for relevant classes.
1. `VariableTracker.mutable_local` to `mutation_type`
2. `MatableLocal `to `ValueMutationNew`
3. `MutableSideEffects `to `ValueMutationExisting`
4. `MutableLocalSource` to `SourceType`
5. `MutableLocalSource.Local` to `New`
Note that (2), (3) and (5) are mainly to bring consistency between them
and `AttributeMutationNew`, `AttributeMutationExisting`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139339
Approved by: https://github.com/jansel, https://github.com/mlazos, https://github.com/anijain2305
### Motivation
Today, watchdog only reports that it found a collective timeout:
```
[rank1]:[E1104 14:02:18.767594328 ProcessGroupNCCL.cpp:688] [Rank 1] Watchdog caught collective operation timeout: WorkNCCL(SeqNum=1, OpType=ALLREDUCE, NumelIn=200, NumelOut=200, Timeout(ms)=5000) ran for 5096 milliseconds before timing out.
```
While this is nice, it is hard to associate the error with user's program or library stack.
### This PR
This PR gives watchdog the ability to report the call-time stack of the collective, so that it would be easier to track the error back to the program's behavior.
The call-time stack was recorded by Flight Recorder with minimal overhead (for details, please read this [doc](https://dev-discuss.pytorch.org/t/fast-combined-c-python-torchscript-inductor-tracebacks/1158) written by @zdevito ). In `ProcessGroupNCCL`, we are only tracking / reporting the python part so that it fits most PyTorch users.
### Demo
[stack_demo.py](https://gist.github.com/kwen2501/6758e18d305d67fc6f3f926217825c09).
```
TORCH_NCCL_TRACE_BUFFER_SIZE=100 torchrun --nproc-per-node 2 stack_demo.py
```
`TORCH_NCCL_TRACE_BUFFER_SIZE` is for turning on the Flight Recorder.
Output:
```
[rank0]:[E1104 14:19:27.591610653 ProcessGroupNCCL.cpp:695] Stack trace of the timedout collective operation:
#0 all_reduce from /data/users/kw2501/pytorch/torch/distributed/distributed_c10d.py:2696
#1 wrapper from /data/users/kw2501/pytorch/torch/distributed/c10d_logger.py:83
#2 bar from /data/users/kw2501/sync_async/repro.py:15
#3 foo from /data/users/kw2501/sync_async/repro.py:24
#4 main from /data/users/kw2501/sync_async/repro.py:34
#5 <module> from /data/users/kw2501/sync_async/repro.py:40
[rank1]:[E1104 14:19:27.771430164 ProcessGroupNCCL.cpp:695] Stack trace of the timedout collective operation:
#0 all_gather_into_tensor from /data/users/kw2501/pytorch/torch/distributed/distributed_c10d.py:3630
#1 wrapper from /data/users/kw2501/pytorch/torch/distributed/c10d_logger.py:83
#2 baz from /data/users/kw2501/sync_async/repro.py:20
#3 foo from /data/users/kw2501/sync_async/repro.py:26
#4 main from /data/users/kw2501/sync_async/repro.py:34
#5 <module> from /data/users/kw2501/sync_async/repro.py:40
```
From the log above, we can tell that `bar()` and `baz()` are the places where the two ranks divert.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139659
Approved by: https://github.com/wconstab, https://github.com/fduwjj
## This Stack
This stack does the following things to support `xformers`-style, comm-aware Triton kernels:
- Exposes `signal_pad`s as tensors in Python
- Adds a binding for `cuMemsetAsync`
These in combination aims to provide users with more flexibility to express custom signaling/synchronization patterns.
## This PR
Make `cuMemset32Async` available via `_SymmetricMemory.memset32`. We chose `cuMemset32Async` over `cudaMemsetAsync` because it allows for `uint32_t`-wise memset. This provides users with better flexibility.
To enable this, we also added the following cuda driver APIs in `c10::cuda::DriverAPI`:
- `cuDevicePrimaryCtxRetain` - for obtaining the primary context of a device in the form of `CUcontext`.
- `cuCtxGetCurrent`/`cuCtxSetCurrent` - for setting and restoring the context for cuda driver APIs such as `cuMemset32Async`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138755
Approved by: https://github.com/weifengpy, https://github.com/eqy, https://github.com/lw
This PR enables donated buffer in OSS and handles two edge cases:
1. While donated buffer relies on storage to check alias, sparse tensor subclasses does not provide access to storage. So we skip sparse tensor subclasses for donated buffer.
2. Handles missing "val" from n.meta. This is observed from `inductor/test_fused_attention.py::SDPAPatternRewriterCpuTests::test_sdpa_rewriter_11_cpu`,
`functorch/test_aotdispatch.py::TestAOTAutograd::test_input_mutation_simple_with_none_and_nontensor`, and
`inductor/test_compiled_autograd.py::TestCompiledAutograd::test_trace_run_with_rng_state`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139669
Approved by: https://github.com/bdhirsh
We don't need to do a loop over all the args, kwargs in the
AdInplaceOrView key; we just need to bump the version on the args,
kwargs that are mutable.
On the benchmark mentioned in
https://github.com/pytorch/pytorch/issues/139494
this made the time go from
```
mutate2 = 61.72943878173828
no_mutate2 = 36.89440155029297
mutate = 236.3092498779297
no_mutate = 59.31964874267578
```
to
```
mutate2 = 47.976478576660156
no_mutate2 = 38.37468719482422
mutate = 71.21315002441406
no_mutate = 59.7432975769043
```
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139513
Approved by: https://github.com/bdhirsh
ghstack dependencies: #139509
Summary:
Dedup the data-dependent errors based on the stacktrace it points to. Right now we just display every propagate-real-tensor log that shows up, but we actually can dedup them if they are due to the same piece of code (ex. there could multiple calls to a piece of code that does some data dependent computation).
This occurred when trying out draft export on the PT2I model zoo. For a specific model, previously we would get ~3k data dependent errors, but after deduping based on the stacktrace we now only get 4 errors.
Test Plan: CI
Differential Revision: D65374254
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139540
Approved by: https://github.com/pianpwk, https://github.com/zou3519
Summary:
When we bypass cache write on inductor, we were also forgetting to reset the bundle, this moves resetting the bundle into post_compile step so it gets uniformly reset.
This diff also turns on the cache for internal so that we can do a code rollout.
Test Plan: updated tests
Differential Revision: D65457224
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139698
Approved by: https://github.com/ezyang
Summary: During dynamic rendezvous, we shouldn't use the address from the store but just use `self._this_node.addr` directly because sometimes, the store host is not the host of rank0. Passing wrong host will cause timeout error. This is a follow up fix to S463164, for internal tests, we disable the TCPStore sharing for now.
Test Plan: CI.
Differential Revision: D65453312
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139702
Approved by: https://github.com/XilunWu
Summary:
Currently, we incorrectly log process_group for DCP based events.
We rely on [c10d_logger.py](https://fburl.com/v4mdme9z) to fill in information about process_group (e.g. backend, nccl_version if available).
In [checkpoint/logger.py](https://fburl.com/yho9nqbu) we pass the `msg_dict` to c10d_logger which never contains the `process_group` param, so [c10d_logger](https://fburl.com/zlw2ukxp) logs information about the default process_group which is always `NCCL`.
Test Plan:
Before:
Always defaults to NCCL even though GLOO is passed by caller.
{F1950847585}
After:
GLOO backend shows up.
{F1950848375}
Differential Revision: D65255871
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139428
Approved by: https://github.com/teja-rao, https://github.com/mhorowitz
Summary:
I think we can inplace a buffer if all of the users of said buffer are "inconsequential", defined as having been removed, being completed, or being part of the ancestors set. In particular, this allows LayerNorm to inplace its input buffer.
Implements:
https://github.com/pytorch/pytorch/issues/132826
Test Plan:
New unit test of matmul followed by LayerNorm, make sure there's an inplaced buffer.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138383
Approved by: https://github.com/eellison
Summary:
I realized I wanted to check "are my cache entries/IO unreasonably large"
and there's no easy way to do it. This lets me do it.
Test Plan: servicelab
Differential Revision: D65390363
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139627
Approved by: https://github.com/c00w
Summary:
While testing exportability for PT2 Inference models, we found various cases of invalid op inputs during tracing, for example errors like: `a and b must have same reduction dim`, `expected scalar type Long but found Int`, etc. Looking more closely, these happened to due the same few meta kernels & eager kernels producing mismatched outputs upstream (e.g. different output tensor dtype, int output).
Adding checks to catch mismatched outputs in real tensor prop upstream, so errors are raised at the mismatched op, instead of the downstream ops taking them as inputs. Relies a lot on utils from [CrossRefFakeMode](929797dedb/torch/_subclasses/fake_utils.py (L78))
Follow ups: could add more checks, and maybe have a flag to only enable these for cases like draft mode, so perf doesn't suffer?
Test Plan: test_export, test_fake_tensor
Differential Revision: D64210055
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137747
Approved by: https://github.com/zou3519
# Why?
I want the following code to work.
minimal repro:
```
class M(torch.nn.Module):
def forward(self, dilate_flag):
return dilate_flag.item()
input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
model = M().cuda()
ep = torch.export.export(model, input1, strict=True)
path = torch._inductor.aot_compile(ep.module(), input1)
aot_model = torch._export.aot_load(path, device="cuda")
actual_output = aot_model(*input1)
```
error: AssertionError: Encountered an unsupported object of type <class 'torch.SymBool'> while writing the metadata for exported program
second error will be handled by https://github.com/pytorch/pytorch/pull/138760
# Motivation
I could technically bypass it with a torch.int tensor. However, it doesn't work with torch.cond. I want the following to work. It would also require https://github.com/pytorch/pytorch/pull/138760 for aot compile to work.
```
class M(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.dilate_flag = 0
def forward(self, dilate_flag):
self.dilate_flag = dilate_flag.item()
def true_fn(dilate_flag):
return dilate_flag.clone()
def false_fn(dilate_flag):
return dilate_flag.clone()
torch.cond(
self.dilate_flag,
true_fn,
false_fn,
(dilate_flag,),
)
return self.dilate_flag
input1 = (torch.tensor([1], dtype=torch.bool, device="cuda"),)
input2 = (torch.tensor([0], dtype=torch.bool, device="cuda"),)
inputs = (input1, input2)
model = M().cuda()
for input in inputs:
expected_output = model(*input)
ep = torch.export.export(model, input, strict=False)
path = torch._inductor.aot_compile(ep.module(), input)
aot_model = torch._export.aot_load(path, device="cuda")
actual_output = aot_model(*input)
assert (
expected_output == actual_output
), f"henry they are not equal {expected_output} != {actual_output}"
```
Differential Revision: D64867504
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138765
Approved by: https://github.com/ydwu4
This refactoring is for getting a deterministic ordering of binding tensors and sizes of tensors. When seeing a free tensor x with shape (s0,) in subgraph, the ordering of lifting changes from
```
lift_x_in_child, lift_s0_in_child, lift_s0_in_parent, lift_x_in_parent
```
to
```
lift_x_in_parent, lift_s0_in_parent, lift_x_in_child, lift_s0_in_child
```
This produces a determinstic ordering of handling the symints in lifted tensors.
This is also the current contract of dynamo top-level graph: we lift free_symbols in sizes after tensor x and insert the free symbols before the tensor x's proxy.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138559
Approved by: https://github.com/zou3519
ghstack dependencies: #138345, #138428, #138558, #138737
Code refactoring only. We move the wrap_to_fake_tensor_logic out of wrap_fx_proxy for placeholders to provide the invariant that **all graph inputs must set their example values when creating the inputs**. This invariant helps us to identify all the free symbols in the graph in top-level and sub-graphs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138428
Approved by: https://github.com/ezyang, https://github.com/zou3519
ghstack dependencies: #138345
Partially fixing https://github.com/pytorch/pytorch/issues/138685
Add a (relatively safe?) heuristics to skip fusion if we can potentially increasing peak memory.
The doc string mainly explains what this PR is doing:
```
The implementation is more like a heuristic since we don't really know if we are at peak
or not when trying to fuse these two ndoes. The order of nodes may change later which makes the
peak memory estimation hard.
Here is how we decide the LOWER BOUND of extra memory allocation if we fuse these 2 nodes:
1. find all buffers read by each node with a single user. These buffers are supposed to
be reused if we don't fuses these 2 nodes
2. find the intersection of these buffers for the two node and sum the total buffer size.
If we don't fuse these two nodes, we can at lease avoid this much memory allocation.
Note that the extra memory allocation is not necessarily causing peak memory increase.
This is just a heuristic.
We return true only if the saving for fusion can not trade off the extra memory allocation.
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138756
Approved by: https://github.com/jansel
ghstack dependencies: #139136
Since any stage can run a mixture of full backwards and split backwards,
it is important to count the sum of (full_backwards + backward_weight)
when comparing to num microbatches to determine last backward.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139415
Approved by: https://github.com/H-Huang
This addresses
https://github.com/pytorch/pytorch/pull/137677/files#r1799836499, which
had to set `allow_cache=False` for codegen on `DataPtrVariable.base`,
which is a `TensorVariable`, otherwise we observe failure of
`test_no_grad_copy` when testing with Dynamo.
I've seen `test_no_grad_copy` failing a few times, and every single time
it's related to cyclic reference, my best guess is the cyclic reference
holds some tensor object longer in memory than necessary, preventing the
optimization introduced in #11165.
This patch makes `OutputGraph.cleanup()` more aggressive by clearing out
all fields that might reference a `VariableTracker`. As a result, we can
remove the aforementioned `allow_cache=False`, which helps generate
better code (e.g., in the case of `test_no_grad_copy`, it skipped generating
a redundant graph whose only op is returning the input tensor; instead we just
generate a single `LOAD_FAST`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139487
Approved by: https://github.com/jansel, https://github.com/aakhundov
These are not artificial patterns I come up. They shows up in linear+CrossEntropyLoss graph.
Consider this snippet:
```
class LinearAndCEL(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(C, V)
self.ce = nn.CrossEntropyLoss()
def forward(self, x, y):
return self.ce(self.linear(x).view(B * T, V), y.view(-1))
```
`x` passed to `forward` is a 3D tensor of shape [B, T, C].
The `self.linear` will view x as [BxT, C] shape tensor first, do the matmul and produce a [BxT, V] tensor, and then view this output back to a 3D tensor with shape [B, T, V]. User code is gonna add another view op to convert the tensor shape to [B x T, V]. This generates a pair of redundant views . A pair of redundant permute happens in the backward part when we compute gradients.
The view ops makes it hard to chunk linear+CEL. When the view op breaks up the dimension being chunked, what should the chunker do (even if we merge those dimension again later)? Removing these pointless view pairs makes the chunker simpler. And I think it's in general nice to do.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139136
Approved by: https://github.com/Chillee, https://github.com/jansel
This is tested in PR stacked above in
```python
python test/distributed/fsdp/test_fsdp_state_dict.py TestFSDPStateDict.test_torch_save_load
```
We cannot depend on whether `hasattr(..., __slots__)` to know whether a BUILD instruction has slotstate. For example, if a class subclasses ABC `hasattr(__slots__)` will be `True` but there might be no slots (and hence `state` will not be a tuple). So revert #138936 to following the pickle library's code
```python
>>> from abc import ABC
>>> hasattr(ABC, "__slots__")
True
```
So
```python
import torch
from abc import ABC
from dataclasses import dataclass
class Foo(ABC):
pass
class FooWrapper(Foo):
def __init__(self, x, y):
self.x = x
self.y = y
f = FooWrapper(1, 2)
torch.save(f, "temp.pt")
with torch.serialization.safe_globals([FooWrapper]):
torch.load("temp.pt")
```
Would fail on the previous code with
```
File "/data/users/mg1998/pytorch/torch/serialization.py", line 1934, in _load
result = unpickler.load()
File "/data/users/mg1998/pytorch/torch/_weights_only_unpickler.py", line 366, in load
for k, v in slotstate.items():
```
As there is actually no slotstate
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139541
Approved by: https://github.com/malfet
ghstack dependencies: #138936, #139221, #139433
In this diff, i make test_torchbind.py tests to handle training IR. Today in the training IR, we don't see the effect token and HOP because this happens at the FunctionalTensorMode. Maybe in the future, we should move this logic up to the training IR so that writing passes etc on training Ir is safer. But for the migration purposes, i think it is ok for now. I also fixed two bugs:
1. ep.module() doesn't register all aliased constants in the module.
2. When we retrace, we need to fakify the original Torchbind object.
3. We don't run any DCE on training IR so we need to add some more torch ops to verifier.
Differential Revision: [D64853530](https://our.internmc.facebook.com/intern/diff/D64853530)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/138658
Approved by: https://github.com/ydwu4, https://github.com/zhxchen17
Adds a few more dynamo_timed() to measure triton compilation and load_by_key_path times.
In the case of async compilation with multiple threads, we'll generate a single `kernel_compile` event that occurs when waiting on all the parallel compiles to finish.
In the case where async parallel compilation is disabled (or, compile threads are warming up), we'll generate a `triton_compile` event for each kernel.
The `triton_compile` events is a bit questionable: do we need a row for each triton compile event? It might eat up on our already low retention, so I might just remove that. Will discuss with @slarsen.
Differential Revision: [D65215707](https://our.internmc.facebook.com/intern/diff/D65215707/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/139402
Approved by: https://github.com/oulgen