According to the documentation, decay is a number in [0,1] range,[ i.e.](https://pytorch.org/docs/stable/optim.html)
```
Decay is a parameter between 0 and 1 that controls how fast the averaged parameters are decayed. If not provided to get_ema_multi_avg_fn, the default is 0.999.
```
An inspection of `swa_utils.py` indicates there are no checks for invalid values of `decay`. Adding asserts as suggested in this PR ensures valid compute range (one way to enforce correct behavior, there are perhaps more suitable ones). Papers `torch` cites for reference idea/implementation also consider exclusively this range (e.g., https://arxiv.org/pdf/2310.04415).
Fixes https://github.com/pytorch/pytorch/issues/133772
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133773
Approved by: https://github.com/janeyx99
A proposal addressing Issue #1489: **Optimizer should track parameter names and not id.**
(also mentioned in here: [[RFC] Introducing FQNs/clarity eyeglasses to optim state_dict](https://dev-discuss.pytorch.org/t/rfc-introducing-fqns-clarity-to-optim-state-dict/1552)
## Summary
This PR introduces a backward-compatible enhancement where optimizers track parameter names instead of just their id.
Optimizers can be initialized with `named_parameters()` as:
```python
optimizer = optim.SGD(model.named_parameters(), lr=0.01, momentum=0.9)
```
This allows for greater clarity and ease when handling optimizers, as the parameters' names are preserved within the optimizer’s `state_dict` as:
```
state_dict =
{
'state': {
0: {'momentum_buffer': tensor(...), ...},
1: {'momentum_buffer': tensor(...), ...},
},
'param_groups': [
{
'lr': 0.01,
'weight_decay': 0,
...
'params': [0,1]
'param_names' ['layer.weight', 'layer.bias'] (optional)
}
]
}
```
Loading `state_dict` is not changed (backward-compatible) and the `param_names` key will be ignored.
## Key Features
#### Named Parameters in Optimizer Initialization:
Optimizers can accept the output of `model.named_parameters()` during initialization, allowing them to store parameter names directly.
#### Parameter Names in `state_dict`:
The parameter names are saved as a list in the optimizer’s `state_dict` with key `param_names`, alongside the `params` indices, ensuring seamless tracking of both names and parameters.
## Backward Compatibility
#### No Breaking Changes:
This change is fully backward-compatible. The added `param_names` key in the optimizer's `state_dict` is ignored when loading a state to the optimizer.
#### Customization with Hooks:
For more control, the loaded state_dict can be modified using a custom `register_load_state_dict_pre_hook`, providing flexibility for different design needs.
## Documentation Updates
Please refer to the documentation changes for more details on how this feature is implemented and how it can be used effectively.
## Solution Example:
A suggested solution to the problem mentioned in #1489, for the same parameters but in a different order.
The following `register_load_state_dict_pre_hook` should be added to the optimizer before loading to enable loading the state dict :
```python
def adapt_state_dict_ids(optimizer, state_dict):
# assuming a single param group.
current_state_group = optimizer.state_dict()['param_groups'][0]
loaded_state_group = state_dict['param_groups'][0]
# same number of params, same names, only different ordering
current_state_name_to_id_mapping = {} # mapping -- param_name: id
for i, name in enumerate(current_state_group['param_names']):
current_state_name_to_id_mapping[name] = current_state_group['params'][i]
# changing the ids of the loaded state dict to match the order of the given state dict.
for i, name in enumerate(current_state_group['param_names']):
loaded_state_group['params'][i] = current_state_name_to_id_mapping[name]
return state_dict
```
In this code, the loaded `state_dict` ids are adapted to match the order of the current optimizer `state_dict`.
Both the previous and the current optimizers are required to be initiated with `named_parameters()` to have the 'param_names' key in the dict.
### Note
This is my first contribution to PyTorch, and I wish to receive feedback or suggestions for improvement.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/134107
Approved by: https://github.com/janeyx99
Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
When stub files (`*.pyi`) were removed from `optim` (#125556, #125452), some types that existed are no longer available. This pull request adds them back.
Just for reference, these types are used in `pytorch-lightning`'s `LightningCLI`. Command line interfaces are created automatically, and having type hints make them nicer.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136185
Approved by: https://github.com/janeyx99
Link various classes and functions of the `optim.swa.util` to make doc content accessible from the `torch.optim` doc.
Currently, if you click the link,
https://pytorch.org/docs/stable/optim.html#module-torch.optim.swa_utils it goes to a blank, bottom of the page section of `torch.optim`.
Also,
`torch.optim.swa_utils.AveragedModel` and `torch.optim.swa_utils.SWALR` classes as well as `torch.optim.swa_utils.update_bn()` and `optim.swa_utils.get_ema_multi_avg_fn` are not linked to doc.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133393
Approved by: https://github.com/janeyx99
There could be some cases where the params have the meta device when calling optimizer's dunder init and those params are materialized in the first computation. This change would allow such situation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131153
Approved by: https://github.com/mlazos, https://github.com/janeyx99
Co-authored-by: Jane (Yuan) Xu <31798555+janeyx99@users.noreply.github.com>
This PR adds the foreach impl for Adafactor knowing that there are many ways to improve its runtime perf today (by adding more foreach support). After this PR:
- we have a foreach flag for Adafactor
- It is NOT the default. Why not? It is only slightly faster + uses O(n) more memory where n is the number of params in your max param group. People tend to use Adafactor for memory efficiency.
Next steps:
- make torch.compile possible on it
- make it faster (by adding more foreach apis)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132336
Approved by: https://github.com/albanD
ghstack dependencies: #133360
This PR fixes a bug in `test_correct_module_names` introduced in #130497. It also addresses post-fix test failures in:
* `torch/ao/quantization/__init__.py` - set the correct `__module__` for several public API helpers
* `torch/library.py` - add `register_vmap` to `__all__`
* `torch/nn/attention/flex_attention.py` - make `round_up_to_multiple` private by prepending an underscore
* `torch/storage.py` - introduce `__all__` to avoid `Self` being re-exported as a public API
* `torch/distributed/pipelining/schedules.py` - add `ZeroBubbleAlgorithm` to `__all__`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131386
Approved by: https://github.com/albanD
This PR fixes a bug in `test_correct_module_names` introduced in #130497. It also addresses post-fix test failures in:
* `torch/ao/quantization/__init__.py` - set the correct `__module__` for several public API helpers
* `torch/library.py` - add `register_vmap` to `__all__`
* `torch/nn/attention/flex_attention.py` - make `round_up_to_multiple` private by prepending an underscore
* `torch/storage.py` - introduce `__all__` to avoid `Self` being re-exported as a public API
* `torch/distributed/pipelining/schedules.py` - add `ZeroBubbleAlgorithm` to `__all__`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131386
Approved by: https://github.com/albanD
#109581
At this point, the vanilla implementation (the default) is good.
Docs: https://docs-preview.pytorch.org/pytorch/pytorch/129905/generated/torch.optim.Adafactor.html#torch.optim.Adafactor
Specifically, the impl in this PR, which attempts to replicate the paper,
```
optim = torch.optim.Adafactor([weight])
```
is close enough to https://pytorch-optimizers.readthedocs.io/en/latest/optimizer/#pytorch_optimizer.AdaFactor
```
optim_c = AdaFactor([weight], betas=(0, 0.999), scale_parameter=False)
```
is close enough to https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adafactor
```
optim = keras.optimizers.Adafactor(learning_rate=0.01)
```
The three results respectively for the same randomly generated weights:
```
# ours
tensor([[ 0.3807594, -0.3912092],
[ 0.0762539, 0.5377805],
[ 0.2459473, 0.4662207]])
# pytorch-optimizer
tensor([[ 0.3807592, -0.3912172],
[ 0.0762507, 0.5377818],
[ 0.2459457, 0.4662213]])
# keras
array([[ 0.38076326, -0.39121315],
[ 0.0762547 , 0.5377859 ],
[ 0.24594972, 0.46622536]], dtype=float32)
```
This gives me confidence to move forward in speeding up the implementation now that a baseline has been established. If you're curious about differences:
* keras assigns step_size (rho_t in their code) to `min(lr, 1 / sqrt(step)` whereas the OG impl uses a hardcoded 0.01 instead of lr. We do the same thing as keras, but our lr default is 0.01.
* We differ from the pytorch-optimizers default in that our default will not track momentum (thus `beta1=0`) and we do not apply parameter scaling.
<details>
Keras collab: https://colab.research.google.com/drive/1i3xF8ChL7TWKJGV_5v_5nMhXKnYmQQ06?usp=sharing
My script repro:
```
import torch
from pytorch_optimizer import AdaFactor
torch.set_printoptions(precision=7)
weight = torch.tensor([[ 0.37697506, -0.39500135],
[ 0.07246649, 0.53399765],
[ 0.24216151, 0.46243715]], dtype=torch.float32)
# bias = torch.tensor([0, 0], dtype=torch.float32)
weight.grad = torch.tensor([[-0.5940447, -0.7743838],
[-0.5940447, -0.7743838],
[-0.5940447, -0.7743838]], dtype=torch.float32)
# bias.grad = torch.tensor([-2.5027974, 1.5422692], dtype=torch.float32)
weight_c = weight.clone()
weight_c.grad = weight.grad.clone()
optim = torch.optim.Adafactor([weight])
optim.step()
print(weight)
optim_c = AdaFactor([weight_c], betas=(0, 0.999), scale_parameter=False)
optim_c.step()
print(weight_c)
```
<details>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129905
Approved by: https://github.com/albanD
Fix docstrings in Learning Rate Scheduler.
The fix can be verified by running pydocstyle path-to-file --count
Related #112593
**BEFORE the PR:**
pydocstyle torch/optim/lr_scheduler.py --count
92
**AFTER the PR:**
pydocstyle torch/optim/lr_scheduler.py --count
0
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128679
Approved by: https://github.com/janeyx99