Commit Graph

1027 Commits

Author SHA1 Message Date
Tom Ritchford
c0582fd0f8 Remove unused Python variables in torch/[b-z]* (#136963)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136963
Approved by: https://github.com/ezyang
2024-10-19 16:45:22 +00:00
Aaron Gokaslan
51e13745be [BE]: Update ruff to 0.6.0 (#133609)
Updates ruff and fixes a couple false negatives it discovered.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/133609
Approved by: https://github.com/malfet
2024-08-16 14:11:01 +00:00
Xuehai Pan
758a0a88a2 [BE][Easy] enable ruff rule PIE790: unnecessary pass statement (#133200)
This PR removes unnecessary `pass` statement. This is semanticly safe because the bytecode for the Python code does not change.

Note that if there is a docstring in the function, a empty function does not need a `pass` statement as placeholder.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/133200
Approved by: https://github.com/malfet, https://github.com/eqy, https://github.com/kit1980
2024-08-15 15:50:19 +00:00
Xuehai Pan
f3fce597e9 [BE][Easy][17/19] enforce style for empty lines in import segments in torch/[a-c]*/ and torch/[e-n]*/ (#129769)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129769
Approved by: https://github.com/ezyang
2024-08-04 10:24:09 +00:00
Oguz Ulgen
72d2dba992 Add None return type to init (#132335)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132335
Approved by: https://github.com/albanD
2024-08-01 15:26:45 +00:00
PyTorch MergeBot
609447a626 Revert "[BE] typing for decorators - _jit_internal (#131573)"
This reverts commit f0f20f7e97.

Reverted https://github.com/pytorch/pytorch/pull/131573 on behalf of https://github.com/clee2000 due to breaking lint internally D60265575 ([comment](https://github.com/pytorch/pytorch/pull/131572#issuecomment-2254328359))
2024-07-28 03:29:32 +00:00
Aaron Orenstein
f0f20f7e97 [BE] typing for decorators - _jit_internal (#131573)
See #131429

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131573
Approved by: https://github.com/oulgen, https://github.com/zou3519
ghstack dependencies: #131568, #131569, #131570, #131571, #131572
2024-07-25 22:24:19 +00:00
Aaron Orenstein
44fdf24967 [BE] typing for decorators - jit/_decompositions (#131566)
See #131429
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131566
Approved by: https://github.com/oulgen, https://github.com/zou3519
2024-07-24 20:28:28 +00:00
Aaron Orenstein
5a0068cc69 [BE] mypy: disallow untyped decorators (#131428)
Untyped decorators strip the types from their decorated function so even if the underlying function is fully typed then callers to it don't get any benefit from type annotations.

Step 1 - Enable the error and override in all the offending files.

#131429

Pull Request resolved: https://github.com/pytorch/pytorch/pull/131428
Approved by: https://github.com/justinchuby, https://github.com/oulgen
2024-07-23 21:50:55 +00:00
Xuehai Pan
973037be6a [BE][Easy] apply autofix for ruff rules unnecessary-collection-call (C408): list() / tuple() / dict() (#130199)
This PR changes the empty collection factory call to Python literals:

- `list()` -> `[]`
- `tuple()` -> `()`
- `dict()` -> `{}`

The Python literals are more performant and safer. For example, the bytecode for building an empty dictionary:

```bash
$ python3 -m dis - <<EOS
import collections

d1 = {}
d2 = dict()

dict = collections.OrderedDict
d3 = dict()
EOS
```

```text
  0           0 RESUME                   0

  1           2 LOAD_CONST               0 (0)
              4 LOAD_CONST               1 (None)
              6 IMPORT_NAME              0 (collections)
              8 STORE_NAME               0 (collections)

  3          10 BUILD_MAP                0
             12 STORE_NAME               1 (d1)

  4          14 PUSH_NULL
             16 LOAD_NAME                2 (dict)
             18 CALL                     0
             26 STORE_NAME               3 (d2)

  6          28 LOAD_NAME                0 (collections)
             30 LOAD_ATTR                8 (OrderedDict)
             50 STORE_NAME               2 (dict)

  7          52 PUSH_NULL
             54 LOAD_NAME                2 (dict)
             56 CALL                     0
             64 STORE_NAME               5 (d3)
             66 RETURN_CONST             1 (None)
```

The dict literal `{}` only has one bytecode `BUILD_MAP`, while the factory call `dict()` has three `PUSH_NULL + LOAD_NAME + CALL`. Also, the factory call is not safe if users override the `dict` name in `locals` or `globals` (see the example of replacing with `OrderedDict` above).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130199
Approved by: https://github.com/malfet
2024-07-11 17:30:28 +00:00
Zhengxu Chen
37d4d04309 [torchscript] Add logging for model id. (#130118)
Summary: as title.

Test Plan: CI

Reviewed By: angelayi

Differential Revision: D59348256

Pull Request resolved: https://github.com/pytorch/pytorch/pull/130118
Approved by: https://github.com/BoyuanFeng
2024-07-09 22:24:16 +00:00
Xuehai Pan
4ee1cb9b95 [BE][Easy] replace import pathlib with from pathlib import Path (#129426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129426
Approved by: https://github.com/malfet
2024-06-30 01:36:07 +00:00
PyTorch MergeBot
2effbcfcd8 Revert "[BE][Easy] replace import pathlib with from pathlib import Path (#129426)"
This reverts commit 6d75604ef1.

Reverted https://github.com/pytorch/pytorch/pull/129426 on behalf of https://github.com/XuehaiPan due to recognize `Path` as new exported API ([comment](https://github.com/pytorch/pytorch/pull/129426#issuecomment-2198371625))
2024-06-29 23:24:06 +00:00
Xuehai Pan
6d75604ef1 [BE][Easy] replace import pathlib with from pathlib import Path (#129426)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/129426
Approved by: https://github.com/malfet
2024-06-29 15:42:09 +00:00
Xuehai Pan
56935684c3 Use Generic TypeAlias (PEP 585) and Union Type (PEP 604) in .pyi stub files (#129419)
------

- [Generic TypeAlias (PEP 585)](https://peps.python.org/pep-0585): e.g. `typing.List[T] -> list[T]`, `typing.Dict[KT, VT] -> dict[KT, VT]`, `typing.Type[T] -> type[T]`.
- [Union Type (PEP 604)](https://peps.python.org/pep-0604): e.g. `Union[X, Y] -> X | Y`, `Optional[X] -> X | None`, `Optional[Union[X, Y]] -> X | Y | None`.

Note that in `.pyi` stub files, we do not need `from __future__ import annotations`. So this PR does not violate issue #117449:

- #117449

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129419
Approved by: https://github.com/ezyang
ghstack dependencies: #129375, #129376
2024-06-29 09:23:39 +00:00
PyTorch MergeBot
83caf4960f Revert "Use Generic TypeAlias (PEP 585) and Union Type (PEP 604) in .pyi stub files (#129419)"
This reverts commit e40f50cb87.

Reverted https://github.com/pytorch/pytorch/pull/129419 on behalf of https://github.com/huydhn due to Sorry for reverting your change but I need to revert to cleanly revert https://github.com/pytorch/pytorch/pull/129374, please do a rebase and reland this ([comment](https://github.com/pytorch/pytorch/pull/129375#issuecomment-2197800541))
2024-06-29 00:44:24 +00:00
Xuehai Pan
e40f50cb87 Use Generic TypeAlias (PEP 585) and Union Type (PEP 604) in .pyi stub files (#129419)
------

- [Generic TypeAlias (PEP 585)](https://peps.python.org/pep-0585): e.g. `typing.List[T] -> list[T]`, `typing.Dict[KT, VT] -> dict[KT, VT]`, `typing.Type[T] -> type[T]`.
- [Union Type (PEP 604)](https://peps.python.org/pep-0604): e.g. `Union[X, Y] -> X | Y`, `Optional[X] -> X | None`, `Optional[Union[X, Y]] -> X | Y | None`.

Note that in `.pyi` stub files, we do not need `from __future__ import annotations`. So this PR does not violate issue #117449:

- #117449

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129419
Approved by: https://github.com/ezyang
ghstack dependencies: #129375, #129376
2024-06-28 15:37:57 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
734891ac22 Fix export log script (#128967)
Summary: Title

Test Plan: CI

Differential Revision: D58699557

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128967
Approved by: https://github.com/jiashenC
2024-06-20 17:01:00 +00:00
Jiashen Cao
316b729677 [Fix] TS converter constant to tensor (#128442)
#### Issue
Tensor constant was previously lifted directly as an input in the fx graph, which results errors for multiple test cases with tensor constant. This PR introduces a fix to convert tensor constant to a `GetAttr` in the fx graph.

This PR also introduces other fixes to maintain a valid `state_dict` for exported program when there are tensor constants. In short, after tensor constants are converted as `GetAttr`, they are treated as buffers during retracing. The fix will convert those back from buffer to constant.

#### Test Plan
Add new test cases that generate tensor constants
* `pytest test/export/test_converter.py -s -k test_implicit_constant_to_tensor_handling`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128442
Approved by: https://github.com/angelayi
2024-06-17 16:42:43 +00:00
Andrew Hoblitzell
6211e67e49 Document torch.jit.frontend.get_default_args (#128408)
Fixes #127896

### Description
Add docstring to `torch/jit/frontend.py:get_default_args` function

### Checklist
- [x] The issue that is being fixed is referred in the description
- [x] Only one issue is addressed in this pull request
- [x] Labels from the issue that this PR is fixing are added to this pull request
- [x] No unnecessary issues are included into this pull request

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128408
Approved by: https://github.com/malfet
2024-06-13 21:49:16 +00:00
Arun Pa
c0b40ab42e doc string for torch.jit.frontend.get_jit_class_def method (#128391)
Fixes #127904

Pull Request resolved: https://github.com/pytorch/pytorch/pull/128391
Approved by: https://github.com/jgong5, https://github.com/malfet
2024-06-13 19:51:02 +00:00
Jiashen Cao
3d55d84ec2 [Fix] Check tensor dtype before using torch.allclose in _trace log (#128438)
#### Issue
`torch.allclose` errors out during logging due to different dtypes.

#### Test
* `pytest test/test_jit.py`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/128438
Approved by: https://github.com/angelayi
2024-06-12 01:52:09 +00:00
Aaron Orenstein
038b927590 Flip default value for mypy disallow_untyped_defs [7/11] (#127844)
See #127836 for details.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127844
Approved by: https://github.com/oulgen
ghstack dependencies: #127842, #127843
2024-06-08 18:49:45 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
ff32f6c93b Use freshly traced jit-traced module to be used in export analysis (#127577)
Summary: When we export already traced module, it seems to be modifying some global state causing the traced modules to fail to run. For now, we are only logging for test cases, so it is probs ok to trace fresh copy to be used in export for now.

Test Plan: CI

Differential Revision: D57983518

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127577
Approved by: https://github.com/pianpwk
2024-06-04 16:54:23 +00:00
Xuehai Pan
67ef2683d9 [BE] wrap deprecated function/class with typing_extensions.deprecated (#127689)
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.

Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.

Resolves #126888

- #126888

This PR is split from PR #126898.

- #126898

------

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127689
Approved by: https://github.com/Skylion007
2024-06-02 12:30:43 +00:00
PyTorch MergeBot
033e733021 Revert "[BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)"
This reverts commit 749a132fb0.

Reverted https://github.com/pytorch/pytorch/pull/126898 on behalf of https://github.com/fbgheith due to switching typing-extensions=4.3.0 to 4.9.0 causes internal failure ([comment](https://github.com/pytorch/pytorch/pull/126898#issuecomment-2142884456))
2024-05-31 19:47:24 +00:00
Xuehai Pan
749a132fb0 [BE] wrap deprecated function/class with typing_extensions.deprecated (#126898)
Use `typing_extensions.deprecated` for deprecation annotation if possible. Otherwise, add `category=FutureWarning` to `warnings.warn("message")` if the category is missing.

Note that only warnings that their messages contain `[Dd]eprecat(ed|ion)` are updated in this PR.

UPDATE: Use `FutureWarning` instead of `DeprecationWarning`.

Resolves #126888

- #126888

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126898
Approved by: https://github.com/albanD
2024-05-29 12:09:27 +00:00
Janani Sriram
f4cbcff8ef [TorchScript] Expand TorchScript __init__ annotation warning (#127045)
Summary:
Expand TorchScript `__init__` annotation warning to `list` and `dict` with reference to GSD task T187638414 and annotation warning reproduction D56834720.

Currently, the TorchScript compiler ignores and throws `UserWarning`s for the following annotation types for empty values within the `__init__` function: `List`, `Dict`, `Optional`. However, the compiler should additionally cover warnings for `list` and `dict`. This diff adds support for `list` and `dict`.

Test Plan:
Added 4 new unit tests:

`test_annotated_empty_list_lowercase` and `test_annotated_empty_dict_lowercase` verify that TorchScript throws UserWarnings for the list and dict type annotations on empty values.
```
(base) [jananisriram@devvm2248.cco0 /data/users/jananisriram/fbsource/fbcode (e4ce427eb)]$ buck2 test @mode/{opt,inplace} //caffe2/test:jit -- --regex test_annotated_empty_list_lowercase
...
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0
```
```
(base) [jananisriram@devvm2248.cco0 /data/users/jananisriram/fbsource/fbcode (e4ce427eb)]$ buck2 test @mode/{opt,inplace} //caffe2/test:jit -- --regex test_annotated_empty_dict_lowercase
...
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0
```

`test_annotated_with_jit_empty_list_lowercase` and `test_annotated_with_jit_empty_dict_lowercase` verify that TorchScript throws UserWarnings for the list and dict type annotations on empty values with the jit annotation.
```
(base) [jananisriram@devvm2248.cco0 /data/users/jananisriram/fbsource/fbcode (e4ce427eb)]$ buck2 test @mode/{opt,inplace} //caffe2/test:jit -- --regex test_annotated_with_jit_empty_list_lowercase
...
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0
```
```
(base) [jananisriram@devvm2248.cco0 /data/users/jananisriram/fbsource/fbcode (e4ce427eb)]$ buck2 test @mode/{opt,inplace} //caffe2/test:jit -- --regex test_annotated_with_jit_empty_dict_lowercase
...
Tests finished: Pass 2. Fail 0. Fatal 0. Skip 0. Build failure 0
```

Differential Revision: D57752002

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127045
Approved by: https://github.com/davidberard98
2024-05-28 23:49:10 +00:00
Tugsbayasgalan (Tugsuu) Manlaibaatar
9521528f71 Log export result of torch.jit.trace to scuba (#126900)
Summary: We want to track how well torch.jit.trace can be converted to export in large scale. As a first step, we log all of torch.jit.trace unittests whether we can convert the traced module to export module OR we can export the model directly

Test Plan: CI

Differential Revision: D57629682

Pull Request resolved: https://github.com/pytorch/pytorch/pull/126900
Approved by: https://github.com/SherlockNoMad
2024-05-28 17:49:34 +00:00
Xuehai Pan
ba3b05fdf3 [1/N][Easy] fix typo for usort config in pyproject.toml (kown -> known): sort stdlib (#127122)
The `usort` config in `pyproject.toml` has no effect due to a typo. Fixing the typo make `usort` do more and generate the changes in the PR. Except `pyproject.toml`, all changes are generated by `lintrunner -a --take UFMT --all-files`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/127122
Approved by: https://github.com/kit1980
2024-05-25 08:25:50 +00:00
Xuehai Pan
4996a3fda3 [BE][Easy] Remove usage of deprecated ast.Str, ast.Ellipsis and ast.NameConstant (#125912)
`ast.Str`, `ast.Ellipsis`, and `ast.NameConstant` are deprecated in Python 3.8 and will be removed in Python 3.14. Replace them with `ast.Constant`.

Ref: https://docs.python.org/3/library/ast.html#node-classes

> **Changed in version 3.8:** Class [ast.Constant](https://docs.python.org/3/library/ast.html#ast.Constant) is now used for all constants.
>
> **Deprecated since version 3.8:** Old classes ast.Num, ast.Str, ast.Bytes, ast.NameConstant and ast.Ellipsis are still available, but they will be removed in future Python releases. In the meantime, instantiating them will return an instance of a different class.

CI log: https://github.com/metaopt/torchopt/actions/runs/9031146681/job/24816802280?pr=216#step:11:6706
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125912
Approved by: https://github.com/soulitzer
2024-05-10 17:35:35 +00:00
Zhengxu Chen
37d2ecd123 Only log toplevel torchscript calls. (#125714)
Summary: as title.

Test Plan: CI

Reviewed By: gmagogsfm

Differential Revision: D57069719

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125714
Approved by: https://github.com/SherlockNoMad
2024-05-09 22:29:53 +00:00
William Wen
bdaa7bbd7d [dynamo] fix potentially missing _torchdynamo_inline from ScriptFunction (#125447)
Fix https://github.com/pytorch/pytorch/issues/119747

Pull Request resolved: https://github.com/pytorch/pytorch/pull/125447
Approved by: https://github.com/jansel
2024-05-06 20:36:56 +00:00
Sharvil Nanavati
14857e71c2 Export torch.jit.interface from torch.jit package (#125209)
Seems like this symbol was overlooked when other symbols were exported from `torch.jit`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125209
Approved by: https://github.com/ezyang
2024-05-01 05:38:05 +00:00
Aaron Gokaslan
c5fafe9f48 [BE]: TRY002 - Ban raising vanilla exceptions (#124570)
Adds a ruff lint rule to ban raising raw exceptions. Most of these should at the very least be runtime exception, value errors, type errors or some other errors. There are hundreds of instance of these bad exception types already in the codebase, so I have noqa'd most of them. Hopefully this error code will get commiters to rethink what exception type they should raise when they submit a PR.

I also encourage people to gradually go and fix all the existing noqas that have been added so they can be removed overtime and our exception typing can be improved.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124570
Approved by: https://github.com/ezyang
2024-04-21 22:26:40 +00:00
Aaron Gokaslan
5a1216bb2e [BE]: Update ruff to 0.4.1 (#124549)
Update ruff to 0.4.1 .
This version fixes a lot false negatives/false positives, is 20-40% faster, and has various other bug fixes.

Below is a before and after table showing the execution time of ruff lint and ruff format in milliseconds courtesy of https://astral.sh/blog/ruff-v0.4.0

| Repository                                         | Linter (v0.3) | Linter (v0.4) | Formatter (v0.3) | Formatter (v0.4) |
|----------------------------------------------------|---------------|---------------|------------------|------------------|
| [pytorch/pytorch](https://github.com/pytorch/pytorch) | 328.7         | 251.8         | 351.1            | 274.9            |

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124549
Approved by: https://github.com/ezyang
2024-04-21 14:06:23 +00:00
Xuehai Pan
93e249969b [BE] enable ruff rule RSE and remove useless parentheses in raise statements (#124261)
Remove useless parentheses in `raise` statements if the exception type is raised with no argument.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/124261
Approved by: https://github.com/albanD
2024-04-17 19:29:34 +00:00
Markus Hennerbichler
5a15cbfa44 Fix typo in TorchScript annotate docstring (#123719)
It's already in the docstring for torch.jit.Attribute to use Attribute in a __init__ method of a Module. However, this was wrong in the `annotate` docstring
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123719
Approved by: https://github.com/mikaylagawarecki
2024-04-15 22:52:20 +00:00
Aaron Gokaslan
1d6c5972c1 [BE]: Optimize min/max/sum comprehensions C419 (#123960)
Automatic fixes that replaces certain list comprehensions with generator ones where appropriate so that they are immediately consumed. This is preview functionality in ruff for rule C419 and it was automatically applied.

Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123960
Approved by: https://github.com/malfet
2024-04-12 23:54:15 +00:00
Victor Toni
380180c918 Fix typo (#123767)
Fixes a tiny typo.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123767
Approved by: https://github.com/Skylion007
2024-04-12 22:26:08 +00:00
andrewor14
6e6891e843 [jit] Fix _batch_norm_with_update shape function (#122430)
Summary: We used `native_batch_norm`'s shape function before,
but the schemas are actually different. We need to create new
shape functions for `_batch_norm_with_update` specifically.

Test Plan:
buck2 test '@fbcode//mode/opt-tsan' fbcode//caffe2/test/cpp/jit:jit -- --exact 'caffe2/test/cpp/jit:jit - TestShapeGraphLinting.Basic'

Reviewers: bdhirsh, davidberard98, eellison

Differential Revision: [D55211182](https://our.internmc.facebook.com/intern/diff/D55211182)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122430
Approved by: https://github.com/eellison, https://github.com/bdhirsh
2024-03-22 14:21:57 +00:00
Yanan Cao (PyTorch)
ba9a1d96a4 Add scuba logging for TorchScript usage (#121936)
Summary: Infra to log live usage of TorchScript internally

Test Plan: manually tested

Differential Revision: D54923510

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121936
Approved by: https://github.com/zhxchen17
2024-03-19 17:38:27 +00:00
andrewor14
773ae817f7 Batch Norm Consolidation (#116092)
**Summary:**

This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:

```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
  aten.native_batch_norm ->
  aten._native_batch_norm_legit (export only) ->
  _batch_norm_legit_cpu/cuda (kernels, export only) ->
  _batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```

Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.

Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:

```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```

The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:

```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```

Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.

Test Plan: `OpInfo` tests for `batch_norm_with_update`.

Reviewers: albanD, bdhirsh

Subscribers: albanD, bdhirsh, supriyar

Tasks: https://github.com/pytorch/pytorch/issues/111384

Differential Revision: [D54805279](https://our.internmc.facebook.com/intern/diff/D54805279)
Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
2024-03-18 21:01:30 +00:00
Aidyn-A
af86d67d61 [Doc][NVTX] Add documentation for nvtx.range (#121699)
The context manager `torch.cuda.nvtx.range` has been around for about 4 years (see #42925). Unfortunately, it was never documented and as a consequence users are just unaware of it (see #121663).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121699
Approved by: https://github.com/janeyx99
2024-03-15 20:26:44 +00:00
PyTorch MergeBot
fd0dbcd891 Revert "Batch Norm Consolidation (#116092)"
This reverts commit 7b4f70eda5.

Reverted https://github.com/pytorch/pytorch/pull/116092 on behalf of https://github.com/osalpekar due to Causes build failure in //caffe2:aten-hip (AMD build) target. See [D54707318](https://www.internalfb.com/diff/D54707318) for more details, may require internal build system changes to resolve. ([comment](https://github.com/pytorch/pytorch/pull/116092#issuecomment-1989542965))
2024-03-11 22:22:41 +00:00
Daniel Herrera
dccc1ca839 [torch] Use __prepare_scriptable__ for closures (#121553)
Summary:
This fixes a case left incomplete by https://github.com/pytorch/pytorch/pull/106229
The object is using __prepare_scriptable__ correctly inside of torch.jit.script()
but the clousre that is obtained below is using the non-prepared version.
This causes issues when the prepared and non-prepared versions are in different python modules.

Test Plan:
```
buck2 run mode/opt caffe2/test:jit -- -r test_decorator
```

Differential Revision: D54308741

Re-exporting, as #120806 #121307 were not properly merged.

Co-authored-by: Daniel Herrera <dherrera@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121553
Approved by: https://github.com/huydhn, https://github.com/seemethere
2024-03-11 19:14:19 +00:00
andrewor14
7b4f70eda5 Batch Norm Consolidation (#116092)
**Summary:**

This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:

```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
  aten.native_batch_norm ->
  aten._native_batch_norm_legit (export only) ->
  _batch_norm_legit_cpu/cuda (kernels, export only) ->
  _batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```

Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.

Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:

```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```

The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:

```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```

Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.

Test Plan: `OpInfo` tests for `batch_norm_with_update`.

Reviewers: albanD, bdhirsh

Subscribers: albanD, bdhirsh, supriyar

Tasks: https://github.com/pytorch/pytorch/issues/111384

Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
2024-03-08 15:07:15 +00:00
PyTorch MergeBot
b529c19bdf Revert "Batch Norm Consolidation (#116092)"
This reverts commit 5680f565d5.

Reverted https://github.com/pytorch/pytorch/pull/116092 on behalf of https://github.com/jeffdaily due to broke ROCm, PR signal was clean but trunk was not, the merge should have been blocked but wasn't ([comment](https://github.com/pytorch/pytorch/pull/116092#issuecomment-1981373237))
2024-03-06 17:10:01 +00:00
Tugsbayasgalan Manlaibaatar
5680f565d5 Batch Norm Consolidation (#116092)
**Summary:**

This commit simplifies the existing decomposition hierarchy
of batch norm ops by adding a single, backend agnostic op:
`batch_norm_with_update`. The existing hierarchy looks like:

```
aten.batch_norm ->
aten._batch_norm_impl_index ->
[
  aten.native_batch_norm ->
  aten._native_batch_norm_legit (export only) ->
  _batch_norm_legit_cpu/cuda (kernels, export only) ->
  _batch_norm_cpu/cuda (kernels)
] OR
[ aten.cudnn_batch_norm ] OR
[ aten.miopen_batch_norm ]
```

Aside from complexity, an important problem with the
above decomposition hierarchy is cuda numerics in
export flows. We observed significantly worse convergence
when training a mobilenetv2-like model when using the
`_batch_norm_cuda` kernel instead of the `cudnn_batch_norm`
kernel. This means users who export their models on CPU
first then move the models to cuda later may silently
see worse accuracies even when cudnn is installed,
because they are using the worse kernel. This issue is
summarized in https://github.com/pytorch/pytorch/issues/111384.

Instead, the new hierarchy proposed by consolidating
existing batch norm ops will look like:

```
aten.batch_norm ->
aten.batch_norm_with_update ->
[ _batch_norm_cpu (kernel) ] OR
[ _batch_norm_cuda (kernel) ] OR
[ cudnn_batch_norm (kernel) ] OR
[ miopen_batch_norm (kernel) ]
```

The new op `batch_norm_with_update` hides backend
implementation details and automatically picks the right
kernel based on what is installed. This commit also adds
the following variants to this op:

```
batch_norm_with_update_functional
batch_norm_with_update.out
batch_norm_no_update
batch_norm_no_update.out
batch_norm_backward
```

Note that this commit only adds this op and its variants,
but does not actually change the decomps to produce these
ops in the graph. This will be done after the 2 week FC
window, and the ops used in the old stack is planned to
be removed after the 6 month BC window.

Test Plan: `OpInfo` tests for `batch_norm_with_update`.

Reviewers: albanD, bdhirsh

Subscribers: albanD, bdhirsh, supriyar

Tasks: https://github.com/pytorch/pytorch/issues/111384

Co-authored-by: Tugsbayasgalan Manlaibaatar <tmanlaibaatar@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/116092
Approved by: https://github.com/bdhirsh, https://github.com/albanD
2024-03-06 04:50:46 +00:00
David Berard
cead0363a8 [jit][nested strided tensor] support nested tensor in check_trace (#121039)
Summary:
torch.testing.assert_equal doesn't support nested strided tensors because sizes is not implemented.

This adds special handling for nested tensors by checking for nested tensors unbinding if they are found.

Test Plan: test_trace_with_nested_strided_tensor_output

Differential Revision: D54430238

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121039
Approved by: https://github.com/YuqingJ
2024-03-04 01:15:45 +00:00