By finally breaking FC promise on new dtypes by serializing untyped
storage and tensor dtypes
- Add `_rebuild_tensor_v3` that takes an extra dtype argument
- In `Tensor.__reduce_ex__` serialize tensor using untyped storage for
v3_dtypes (which are at the moment limited to float8 dtypes)
Test plan: `python -c "import torch;x=torch.arange(10).to(dtype=torch.float8_e4m3fn);torch.save(x, 'pt.pt');print(torch.load('pt.pt'))"`
Fixes https://github.com/pytorch/pytorch/issues/114634
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114662
Approved by: https://github.com/ngimel
Use the same strategy as for unsafe pickler, i.e. use dummy `torch.serialization.StorageType` to represent legacy typed storage classes during deserialization. Add `_dtype` property to be able to use it for both new and legacy format deserialization.
Parametrize `test_serialization_new_format_old_format_compat`
Add regression test to validate that loading legacy modes can be done
without any warnings
Before the change:
```
% python test_serialization.py -v -k test_serialization_new_format_old_format_compat_
test_serialization_new_format_old_format_compat_cpu (__main__.TestBothSerializationCPU) ... ok
test_serialization_new_format_old_format_compat_safe_cpu (__main__.TestBothSerializationCPU) ... /Users/nshulga/git/pytorch/pytorch/torch/_utils.py:836: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()
return self.fget.__get__(instance, owner)()
ok
----------------------------------------------------------------------
Ran 2 tests in 0.116s
OK
```
Without the change but update test to catch warnings:
```
% python test_serialization.py -v -k test_serialization_new_format_old_format_compat_
test_serialization_new_format_old_format_compat_weights_only_False_cpu (__main__.TestBothSerializationCPU) ... ok
test_serialization_new_format_old_format_compat_weights_only_True_cpu (__main__.TestBothSerializationCPU) ... FAIL
======================================================================
FAIL: test_serialization_new_format_old_format_compat_weights_only_True_cpu (__main__.TestBothSerializationCPU)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/Users/nshulga/git/pytorch/pytorch/torch/testing/_internal/common_utils.py", line 2536, in wrapper
method(*args, **kwargs)
File "/Users/nshulga/git/pytorch/pytorch/torch/testing/_internal/common_device_type.py", line 415, in instantiated_test
result = test(self, **param_kwargs)
File "/Users/nshulga/git/pytorch/pytorch/test/test_serialization.py", line 807, in test_serialization_new_format_old_format_compat
self.assertTrue(len(w) == 0, msg=f"Expected no warnings but got {[str(x) for x in w]}")
AssertionError: False is not true : Expected no warnings but got ["{message : UserWarning('TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()'), category : 'UserWarning', filename : '/Users/nshulga/git/pytorch/pytorch/torch/_utils.py', lineno : 836, line : None}"]
To execute this test, run the following from the base repo dir:
python test/test_serialization.py -k test_serialization_new_format_old_format_compat_weights_only_True_cpu
This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0
----------------------------------------------------------------------
Ran 2 tests in 0.109s
FAILED (failures=1)
```
Fixes problem reported in https://github.com/pytorch/pytorch/issues/52181#issuecomment-1715738910
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113614
Approved by: https://github.com/kit1980, https://github.com/albanD
This was discussed in feedback from the original version of my "reorder proxy/fake" PR. This PR allows calls to `tensor.untyped_storage()` to **always** return a python storage object to the user. Previously, we would error loudly if we detected that the storage had a null dataptr.
Instead, I updated the python bindings for the python storage methods that I saw involve data access, to throw an error later, only if you try to access those methods (e.g. `storage.data_ptr()` will now raise an error if the data ptr is null).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107417
Approved by: https://github.com/albanD, https://github.com/ezyang, https://github.com/zou3519
Fixes#42376
`torch.save` serializes bound methods inside LR scheduler resulting in large serialized file.
Test cases include checking file size, checking if the `anneal_func` is bounded and file is loaded correctly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102627
Approved by: https://github.com/albanD
Using [`nanoGPT/model.py`](https://github.com/karpathy/nanoGPT/blob/master/model.py) run
<details><summary><b>Click for script to save gpt2-xlarge (1.5B params)</b></summary>
```
# test_load_save_gpt.py
from model import GPT
import torch
import time
torch.manual_seed(5)
# gpt2-xlarge 1558M parameters
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
n_layer: int = 48
n_head: int = 25
n_embd: int = 1600
dropout: float = 0.0
bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
def f():
model = GPT(GPTConfig())
state_dict = model.state_dict()
start_saving = time.time()
torch.save(state_dict, "gpt2-xlarge.pth")
end_saving = time.time()
if __name__ == "__main__":
f()
```
</details>
<details><summary><b>Click for script to load</b></summary>
```
# test_load_gpt.py
import torch
from model import GPT
from test_load_save_gpt import GPTConfig
import time
import argparse
def f(mmap, meta):
device = 'meta' if meta else 'cpu'
assign = True if meta else False
with torch.device(device):
model = GPT(GPTConfig())
start_loading = time.time()
loaded_state_dict = torch.load("gpt2-xlarge.pth", _mmap=mmap)
end_loading = time.time()
print(f"loading time using torch.load with mmap={mmap}: ", end_loading - start_loading)
model.load_state_dict(loaded_state_dict, assign=assign)
end_load_state_dict = time.time()
print("load_state_dict time: ", end_load_state_dict - end_loading)
model.cuda()
end_cuda = time.time()
print("cuda time using torch.load with mmap: ", end_cuda - end_load_state_dict)
if __name__ == "__main__":
parser = argparse.ArgumentParser(prog='load_gpt_xlarge')
parser.add_argument('-m', '--mmap', action='store_true')
parser.add_argument('-d', '--devicemeta', action='store_true')
args = parser.parse_args()
mmap = args.mmap
meta = args.devicemeta
f(mmap, meta)
```
</details>
`python test_load_gpt.py`
<img width="614" alt="Screenshot 2023-06-06 at 1 35 43 PM" src="https://github.com/pytorch/pytorch/assets/35276741/ee06e5b3-b610-463b-a867-df995d21af29">
`python test_load_gpt.py --mmap`
<img width="622" alt="Screenshot 2023-06-06 at 1 35 30 PM" src="https://github.com/pytorch/pytorch/assets/35276741/00d2fdd0-b1f5-4313-83dc-e540b654b2af">
If we further use the `with torch.device('meta')` context manager and pull the changes from https://github.com/pytorch/pytorch/pull/102212 that allow the model to reuse tensors from the state_dict, we have
`python test_load_gpt.py --mmap --devicemeta`
<img width="727" alt="Screenshot 2023-06-06 at 1 35 51 PM" src="https://github.com/pytorch/pytorch/assets/35276741/b50257d9-092a-49c3-acae-876ee44d009f">
\
\
Running the above in a docker container containing a build of PyTorch with RAM limited to 512mb by
1) running `make -f docker.Makefile` from `pytorch/` directory
2) `docker run -m 512m -it <image> bash`
3) docker cp `gpt2-xlarge.pth` and `test_load_gpt.py` into the image
`python test_load_gpt.py`
Docker will Kill the process due to OOM whereas
`python test_load_gpt.py --mmap --devicemeta`
<img width="635" alt="Screenshot 2023-06-06 at 1 55 48 PM" src="https://github.com/pytorch/pytorch/assets/35276741/f3820d9e-f24c-43e7-885b-3bfdf24ef8ad">
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102549
Approved by: https://github.com/albanD
#85303 added a patch to `torch.testing.assert_close` to handle `torch.storage.TypedStorage`'s. This change is not reflected in the docs and is not intended for the public API. This PR removes the patch ones again and moves the behavior to `TestCase.assertEqual` instead. Meaning, `TypedStorage`'s are again not supported by the public API, but the behavior is the same for all internal use cases.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89557
Approved by: https://github.com/kurtamohler, https://github.com/mruberry
Preparation for the next PR in this stack: #89559.
I replaced
- `self.assertTrue(torch.equal(...))` with `self.assertEqual(..., rtol=0, atol=0, exact_device=True)`,
- the same for `self.assertFalse(...)` with `self.assertNotEqual(...)`, and
- `assert torch.equal(...)` with `torch.testing.assert_close(..., rtol=0, atol=0)` (note that we don't need to set `check_device=True` here since that is the default).
There were a few instances where the result of `torch.equal` is used directly. In that cases I've replaced with `(... == ...).all().item()` while sometimes also dropping the `.item()` depending on the context.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89527
Approved by: https://github.com/mruberry
Fixes#81690
TODO:
* [x] C++ Unpickler Fix (locally tested pickled in Python and unpickled in C++)
* [x] C++ Pickler Fix (locally tested pickled in C++ and unpickled in Python)
* [x] Do quant_tensor, sparse_tensor, etc require similar changes? (Sparse and Quant don't need this)
* [x] Add Comments
* [x] How to make sure C++ and Python are in sync? (Functions in `pickler.h` help in getting and setting Tensor Metadata (math-bits for now) on a tensor. They are the only place which should handle this.)
Notes:
Quant Tensor don't support complex dtypes and for float they segfault with `_neg_view` : https://github.com/pytorch/pytorch/issues/88484
Sparse Tensor:
```python
>>> a = torch.tensor([[0, 2.], [3j, 0]]).to_sparse()
>>> a.conj().is_conj()
False
>>> a._neg_view()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NotImplementedError: Cannot access storage of SparseTensorImpl
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88182
Approved by: https://github.com/ezyang, https://github.com/anjali411
Avoid double exception in destructor if attempting to serialize to
python object that does not have `write` method
Use `Finalizer` class in `PyTorchStreamWriter::writeEndOfFile()` to a
always set `finailized_` property even if excretion occurs. (as there
isn't much one can do at this point)
Add expicit check for the attribue to `_open_zipfile_writer_buffer` and
add unitests
Modernize code a bit by using Python-3 `super()` method
Fixes https://github.com/pytorch/pytorch/issues/87997
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88128
Approved by: https://github.com/albanD
This addresses the security issue in default Python's `unpickler` that allows arbitrary code execution while unpickling.
Restrict classes allowed to be unpicked to in `None`, `int`, `bool`, `str`, `float`, `list`, `tuple`, `dict`/`OrderedDict` as well as `torch.Size`, `torch.nn.Param` as well as `torch.Tensor` and `torch.Storage` variants.
Defaults `weights_only` is set to `False`, but allows global override to safe only load via `TORCH_FORCE_WEIGHTS_ONLY_LOAD` environment variable.
To some extent, addresses https://github.com/pytorch/pytorch/issues/52596
Pull Request resolved: https://github.com/pytorch/pytorch/pull/86812
Approved by: https://github.com/ezyang
### Description
Since the major changes for `_TypedStorage` and `_UntypedStorage` are now complete, they can be renamed to be public.
`TypedStorage._untyped()` is renamed to `TypedStorage.untyped()`.
Documentation for storages is improved as well.
### Issue
Fixes#82436
### Testing
N/A
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82438
Approved by: https://github.com/ezyang
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71708
In Python 3.2, a number of asserts were deprecated.
In Python 3.11, these asserts are deleted completely. The files in this change still use the deprecated asserts.
Switch over to the supported syntax for 3.2 onwards.
Test Plan: Tested on the internal test suite runner.
Reviewed By: ajtulloch
Differential Revision: D33503694
fbshipit-source-id: a150f296033260acf8365d77b837ce0679f57361
(cherry picked from commit abf60ed97409265222915d8265aaabedd625fd93)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030
Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible
Fixes https://github.com/pytorch/pytorch/issues/47442
* **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today.
* There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate.
* As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes.
* `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls. `Storage._new_with_file` and `_set_from_file` require explicit element size arguments.
* It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor.
* It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling.
* The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall.
To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization.
Original pull request: https://github.com/pytorch/pytorch/pull/59671
Reviewed By: soulitzer, ngimel
Differential Revision: D29466819
Pulled By: ezyang
fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
Summary:
Happy to get any feedback on how to make this code cleaner!
This:
- Fix Tensor attribute deepcopy BC-breaking?
- Add a test for Tensor attribute deepcopy
- Fix subclass deepcopy
- Moves the subclass serialization tests into their own class not to interfere with other serialization test logic
- Add a test for subclass deepcopy
cc ezyang gchanan
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65584
Reviewed By: gchanan
Differential Revision: D31206590
Pulled By: albanD
fbshipit-source-id: 74a8f0767f4933b9c941fbea880a8fd1b893ea2f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62192
This support is hacky because it doesn't preserve meta tensor storage
sharing (e.g., if you serialize a model with shared storage, e.g., a
tensor and a view on a tensor, when I deserialize the viewing
relationship will be broken and these are just different tensors.) The
hack is also durable, in the sense that we will be on the hook for
supporting `_rebuild_meta_tensor_no_storage` in perpetuity in the
future, even if we change our mind about the serialization format.
This unblocks an FB production use case. I didn't add C++ support to minimize
blast area of this patch.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Test Plan: Imported from OSS
Reviewed By: zou3519
Differential Revision: D29910535
Pulled By: ezyang
fbshipit-source-id: d98dcdd0108dfc3ae730a071d3c583b6d0281d21
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/46036
Previously, this function didn't do error-bounds checking on the GetItem (GET_ITEM) calls, which led to issues like https://github.com/pytorch/pytorch/issues/46020.
A better solution would be to use pybind, but given writing the file is going to dominate bounds checking, this is strictly better.
Test Plan: Imported from OSS
Reviewed By: mruberry
Differential Revision: D24228370
Pulled By: gchanan
fbshipit-source-id: f5d0a3d21ff12b4380beefe1e9954fa81ea2f567
Summary:
This updates assertEqual and assertEqual-like functions to either require both or neither of atol and rtol be specified. This should improve clarity around handling precision in the test suite, and it allows us to remove the legacy positional atol argument from assertEqual. In addition, the "message" kwarg is replace with a kwarg-only "msg" argument whose name is consistent with unittest's assertEqual argument.
In the future we could make "msg" an optional third positional argument to be more consistent with unittest's assertEqual, but requiring it be specified should be clear, and we can easily update the signature to make "msg" an optional positional argument in the future, too.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38872
Differential Revision: D21740237
Pulled By: mruberry
fbshipit-source-id: acbc027aa1d7877a49664d94db9a5fff91a07042
Summary:
This updates assertEqual and assertEqual-like functions to either require both or neither of atol and rtol be specified. This should improve clarity around handling precision in the test suite, and it allows us to remove the legacy positional atol argument from assertEqual. In addition, the "message" kwarg is replace with a kwarg-only "msg" argument whose name is consistent with unittest's assertEqual argument.
In the future we could make "msg" an optional third positional argument to be more consistent with unittest's assertEqual, but requiring it be specified should be clear, and we can easily update the signature to make "msg" an optional positional argument in the future, too.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38872
Differential Revision: D21717199
Pulled By: mruberry
fbshipit-source-id: 9feb856f94eee911b44f6c7140a1d07c1b026d3a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35615
Python 2 has reached end-of-life and is no longer supported by PyTorch.
Now we can clean up a lot of cruft that we put in place to support it.
These changes were all done manually, and I skipped anything that seemed
like it would take more than a few seconds, so I think it makes sense to
review it manually as well (though using side-by-side view and ignoring
whitespace change might be helpful).
Test Plan: CI
Differential Revision: D20842886
Pulled By: dreiss
fbshipit-source-id: 8cad4e87c45895e7ce3938a88e61157a79504aed
Summary:
Fixes https://github.com/pytorch/pytorch/issues/32289
This has been fixed upstream as of Python 3.8.2. I think the easiest and least invasive way to ameliorate this is to catch the error condition and print a more informative error asking the user to update their Python version. It might be possible to buffer the data into memory and then read from memory, but that would be an invasive change and might cause memory exhaustion for very large models.
Suggestions for alternate fixes or ways to improve the error message wording are very welcome.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33824
Differential Revision: D20131722
Pulled By: ezyang
fbshipit-source-id: a6e3fbf4bf7f9dcce5772b36f7a622cbf14b5ae4
Summary:
Stacked PRs
* #32958 - Make zip serialization the default
* **#32244 - Fix some bugs with zipfile serialization**
It includes the following changes:
* Split up tests so that we can test both serialization methods
* Loading something within a buffer doesn't work anymore, so those tests are only on the old serialization method (it's possible but introduces a big slowdown since it requires a linear scan of the entire zipfile to find the magic number at the end)
* Call `readinto` on a buffer if possible instead of `read` + a copy
* Disable CRC-32 checks on read (there was some issue where miniz said the CRC was wrong but `zipinfo` and `unzip` said the zip file was fine)
](https://our.intern.facebook.com/intern/diff/19418935/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32244
Pulled By: driazati
Reviewed By: eellison
Differential Revision: D19418935
fbshipit-source-id: df140854f52ecd04236225417d625374fd99f573
Summary:
Stacked PRs
* #32244 - Make zip serialization the default
* **#32241 - Split serialization tests to their own file**
This makes them all easier to run as a batch. This PR is just a code move / fixing up imports. There are still some serialization tests in `test_torch.py` as part of `TestDeviceType`.
](https://our.intern.facebook.com/intern/diff/19415826/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32241
Pulled By: driazati
Differential Revision: D19415826
fbshipit-source-id: a3f6cfe1626ff2f9b9631c409bf525bd32e4639b