This PR re-implements pin memory aiming to get rid of the optional `device` argument and makes all related APIs to be device-agnostic. We add two new abstract APIs in [AcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/detail/AcceleratorHooksInterface.h#L12) and redefine pin memory as: "Pin memory is always pinned for the current accelerator device". In detail, it uses [getAcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/Context.h#L61) in pin_memory/is_pinned to get an appropriate device and invoke the corresponding overridden interfaces, instead of using BackendSelect and then dispatching to CUDA or other specific backends' implement methods.
Note: For new backends who want to implement and use pin memory, just inherit AcceleratorHooksInterface and overwrite the `isPinnedPtr` and `getPinnedMemoryAllocator` methods.
Additional context: To avoid BC-breaking, this PR just preserves the `device` arg of related APIs and would throw a deprecation warning if `device` arg is passed. Another PR will be submitted to update all PT callers (`Tensor.is_pinned()`, `Tensor.pin_memory()`...) not to pass this arg based on this PR. In future, `device` arg will be actually removed.
Relates #124908
Relates #14560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126376
Approved by: https://github.com/albanD
1) Add skip undefined tensor in cpu fallback when call _copy_from_and_resize;
2) Modify to_cpu function support optional tensor;
3) Add copy back to origin optional tensor when alias_info isWrite is true.
@ezyang @bdhirsh
Fixes #ISSUE_NUMBER
Pull Request resolved: https://github.com/pytorch/pytorch/pull/130237
Approved by: https://github.com/ezyang
This PR re-implements pin memory aiming to get rid of the optional `device` argument and makes all related APIs to be device-agnostic. We add two new abstract APIs in [AcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/detail/AcceleratorHooksInterface.h#L12) and redefine pin memory as: "Pin memory is always pinned for the current accelerator device". In detail, it uses [getAcceleratorHooksInterface](https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/Context.h#L61) in pin_memory/is_pinned to get an appropriate device and invoke the corresponding overridden interfaces, instead of using BackendSelect and then dispatching to CUDA or other specific backends' implement methods.
Note: For new backends who want to implement and use pin memory, just inherit AcceleratorHooksInterface and overwrite the `isPinnedPtr` and `getPinnedMemoryAllocator` methods.
Additional context: To avoid BC-breaking, this PR just preserves the `device` arg of related APIs and would throw a deprecation warning if `device` arg is passed. Another PR will be submitted to update all PT callers (`Tensor.is_pinned()`, `Tensor.pin_memory()`...) not to pass this arg based on this PR. In future, `device` arg will be actually removed.
Relates #124908
Relates #14560
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126376
Approved by: https://github.com/albanD
1) add operand and get_dim_names API;
2) set will_resize to true when output tensor is undefined;
3) add abs_stub for dummy device and calculate on cpu device;
4) support dummy device copy with stride;
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120792
Approved by: https://github.com/ezyang
Fixes https://github.com/pytorch/pytorch/issues/102970. See the comment [here](https://github.com/pytorch/pytorch/issues/102970#issuecomment-1577223773) for details.
We normally treat "outputs that alias inputs" specially in AOTAutograd, by replaying the views at runtime, instead of baking them into the graph. For views that are part of custom autograd functions though, we can't do that view-replay, since it will clobber the backwards function that the user specified in their custom autograd.Function.
Right now in this PR, I distinguish between "aliased inputs that are normal views" vs. "aliased inputs that are views that came from an autograd.Function call" by checking the outputs `.grad_fn` field, to see if it inherits from our custom CBackward function class. Then I added a new `OutputType` enum value, that we effectively treat the "normal" way (the same way that we treat ordinary, non-aliased outputs). The new enum val is mostly for debugging - so we can print it and know that our graph had custom autograd.Function aliased outputs in it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102992
Approved by: https://github.com/ezyang, https://github.com/zou3519
Fixes #ISSUE_NUMBER
as the title, add context support for custom device and testcase.
And in the future, we may want to refactor these hooks for different device to unify the APIs, would you agree my
idea? @albanD
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105056
Approved by: https://github.com/albanD
Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.
In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang, https://github.com/huydhn
Fixes #ISSUE_NUMBER
For the scenario where users inherit storageimpl to implement their own subclasses, the current storage creation method cannot correctly create storage objects.
Refer to the registration method of Allocator to expand the creation method of storageimpl, users can register their own custom storageimpl creation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100237
Approved by: https://github.com/albanD
Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.
In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang
Fixes #ISSUE_NUMBER
Add the serialization logic of backend metadata to the serialization of tensor, which is implemented through custom registration functions.
In #97429 , the structure backendMeta is provided in TensorImpl, and we think that this part of information may also need to be serialized for custom.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99808
Approved by: https://github.com/ezyang
Fixes#99326
Support storage pin_memory and is_pinned for custom device, by calling dispatched tensor operations.
@ezyang this pr is what we have discussed in issue #99326, would you please take a moment to review it, thanks.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99712
Approved by: https://github.com/ezyang
Currently storage only considers partial backend. We want storage to create on custom backend by key PrivateUse1.
It also provides an easy automatic generation of storage-related attributes.
When the user registers a new backend, the corresponding methods and attributes can be automatically generated.
Do this code.
`torch.utils.rename_privateuse1_backend('foo')`
`torch.utils.generate_storage_for_privateuse1_backend()`
Then, get the following methods and attributes.
`torch.TypedStorage.is_foo`
`torch.TypedStorage.foo()`
`torch.UntypedStorage.is_foo`
`torch.UntypedStorage.foo()`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98478
Approved by: https://github.com/albanD
Fixes #ISSUE_NUMBER
#97593
A new extension mechanism has been added.
When the user registers a new backend, the corresponding methods and attributes can be automatically generated.
Do this code.
`torch.utils.rename_privateuse1_backend('foo')`
`torch.utils.generate_for_privateuse1_backend()`
Then, get the following methods and attributes.
`torch.Tensor.is_foo`
`torch.Tensor.foo()`
`torch.nn.Module.foo()`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98066
Approved by: https://github.com/albanD
Add a PrivateUse1 folder to contain all the feature adaptations for PrivateUse1 under Aten,For example GetGeneratorPrivate which is used for the three-party backend to register his own Generator implementation.This makes it easier for us to centrally manage these features, and it will increase the convenience of adaptation for different back-end manufacturers. For more info: https://github.com/pytorch/pytorch/issues/98073
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98127
Approved by: https://github.com/bdhirsh
Previously, when we SymInt-ify a schema, this is a BC-breaking change
for all people who registered functions for that function; they
must accept c10::SymInt where they previously accepted int64_t.
This is not great.
With this change, I accept old type registrations transparently. The
idea is in several parts:
- At the registration site, at compile time I have no idea whether or not
if the function being registered has a SymInt schema or not. So I
must defer the exact compatibility check. What I do instead is
check if the function pointer registered to me has SymInt in the
argument or not. If it does, I assume it is new-style and ensure
it is also registered to a special sym_ slot on KernelFunction.
If not, it only goes in the conventional slot.
- At the dispatcher site, I know at compile time whether or not this
is a SymInt function. If it is, I check for a sym_ slot on the
KernelFunction, and preferentially use that. If no such slot
exists, I then fall back to the regular slot... but I convert
all SymInt arguments to int64_t arguments (doing assertions that
no true symbolic integer was passed.) I can skip this test entirely
if the function doesn't have any SymInts in it; in that case I know
that only the original slot could have been registered. Fortunately,
both branches of the short circuit typecheck, so I didn't have to
use SFINAE or if-constexpr to make it work; just a plain if statement
that I expect the compiler to optimize away.
- Schema validation is now modestly more complicated. There are two parts. First, function schema validation proceeds by checking if the signature in question has any SymInt-like types in it or not. If it does, we do function schema validation against the real types; if it doesn't, we do validation against the fake types (but only for symint; MemoryFormat is always MemoryFormat). Second, cpp signature validation also keeps track of a "symint" cpp signature and a "non-symint" cpp signature. We only compare symint with symint, and non-symint with non-symint. I did not implement checking a conflict between a symint and non-symint cpp signature, though in principle you could try converting the SymInt types to non-SymInt types and doing the comparison that way.
To show it is working, I remove a bunch of c10::asIntArrayRefSlow shims, as the dispatcher is able to insert them automatically now.
I didn't update the Metal registrations (though they can get similar treatment) as OSS CI coverage is insufficient for this case.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Differential Revision: [D39280965](https://our.internmc.facebook.com/intern/diff/D39280965)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84557
Approved by: https://github.com/wconstab
Also Back out "Revert D39075159: [acc_tensor] Use SymIntArrayRef for overloaded empty.memory_format's signature"
Original commit changeset: dab4a9dba4fa
Original commit changeset: dcaf16c037a9
Original Phabricator Diff: D38984222
Original Phabricator Diff: D39075159
Also update Metal registrations for C++ registration changes.
Also update NNPI registration to account for tightened schema checking
Differential Revision: [D39084762](https://our.internmc.facebook.com/intern/diff/D39084762/)
**NOTE FOR REVIEWERS**: This PR has internal Facebook specific changes or comments, please review them on [Phabricator](https://our.internmc.facebook.com/intern/diff/D39084762/)!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84173
Approved by: https://github.com/Krovatkin
Previously, we introduced new SymInt overloads for every function we wanted. This led to a lot of boilerplate, and also a lot of confusion about how the overloads needed to be implemented.
This PR takes a simpler but more risky approach: just take the original function and changes its ints to SymInts.
This is BC-breaking in the following ways:
* The C++ API for registering implementations for aten operators will change from int64_t to SymInt whenever you make this change. Code generated registrations in PyTorch do not change as codegen handles the translation automatically, but manual registrations will need to follow the change. Typically, if you now accept a SymInt where you previously only took int64_t, you have to convert it back manually. This will definitely break XLA, see companion PR https://github.com/pytorch/xla/pull/3914 Note that not all dispatch keys get the automatic translation; all the composite keys and Meta keys are modified to take SymInt directly (because they should handle them directly), and so there are adjustments for this.
This is not BC-breaking in the following ways:
* The user facing C++ API remains compatible. Even if a function changes from int to SymInt, the default C++ binding still takes only ints. (e.g., at::empty(IntArrayRef, ...). To call with SymInts, you must call at::empty_symint instead. This involved adding two more signatures to CppSignatureGroup; in many cases I refactored code to iterate over all signatures in the group instead of hard-coding the two that previously existed.
* This is TorchScript compatible; internally we treat SymInts as ints so there is no change to what happens at runtime in TorchScript. In particular, it's OK to reference an empty schema by its old type (using int types), as long as you're not doing string equality (which you shouldn't be), these parse to the same underyling type.
Structure of the PR:
* The general strategy of this PR is that, even when you write `SymInt` inside `native_functions.yaml`, sometimes, we will treat it *as if* it were an `int`. This idea pervades the codegen changes, where we have a translation from SymInt to c10::SymInt or int64_t, and this is controlled by a symint kwarg which I added and then audited all call sites to decide which I wanted. Here are some of the major places where we pick one or the other:
* The C++ FunctionSchema representation represents `SymInt` as `int`. There are a few places we do need to know that we actually have a SymInt and we consult `real_type()` to get the real type in this case. In particular:
* When we do schema validation of C++ operator registration, we must compare against true schema (as the C++ API will provide `c10::SymInt`, and this will only be accepted if the schema is `SymInt`. This is handled with cloneWithRealTypes before we check for schema differences.
* In `toIValue` argument parsing, we parse against the true schema value. For backwards compatibility reasons, I do still accept ints in many places where Layout/SymInt/etc were expected. (Well, accepting int where SymInt is expected is not BC, it's just the right logic!)
* In particular, because SymInt never shows up as type() in FunctionSchema, this means that we no longer need a dedicated Tag::SymInt. This is good, because SymInts never show up in mobile anyway.
* Changes to functorch/aten are mostly about tracking changes to the C++ API registration convention. Additionally, since SymInt overloads no longer exist, registrations for SymInt implementations are deleted. In many cases, the old implementations did not properly support SymInts; I did not add any new functionality with this PR, but I did try to annotate with TODOs where this is work to do. Finally, because the signature of `native::` API changed from int to SymInt, I need to find alternative APIs for people who were directly calling these functions to call. Typically, I insert a new dispatch call when perf doesn't matter, or use `at::compositeexplicitautograd` namespace to handle other caes.
* The change to `make_boxed_from_unboxed_functor.h` is so that we accept a plain IntList IValue anywhere a SymIntList is expected; these are read-only arguments so covariant typing is OK.
* I change how unboxing logic works slightly. Previously, we interpret the C++ type for Layout/etc directly as IntType JIT type, which works well because the incoming IValue is tagged as an integer. Now, we interpret the C++ type for Layout as its true type, e.g., LayoutType (change to `jit_type.h`), but then we accept an int IValue for it anyway. This makes it symmetric with SymInt, where we interpret the C++ type as SymIntType, and then accept SymInt and int IValues for it.
* I renamed the `empty.names` overload to `empty_names` to make it less confusing (I kept mixing it up with the real empty overload)
* I deleted the `empty.SymInt` overload, which ended up killing a pile of functions. (This was originally a separate PR but the profiler expect test was giving me grief so I folded it in.)
* I deleted the LazyDynamicOpsTest tests. These were failing after these changes, and I couldn't figure out why they used to be passing: they make use of `narrow_copy` which didn't actually support SymInts; they were immediately converted to ints.
* I bashed LTC into working. The patches made here are not the end of the story. The big problem is that SymInt translates into Value, but what if you have a list of SymInt? This cannot be conveniently represented in the IR today, since variadic Values are not supported. To work around this, I translate SymInt[] into plain int[] (this is fine for tests because LTC dynamic shapes never actually worked); but this will need to be fixed for proper LTC SymInt support. The LTC codegen also looked somewhat questionable; I added comments based on my code reading.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83628
Approved by: https://github.com/albanD, https://github.com/bdhirsh