This change fixes the RUNPATH of installed c++ tests so that the linker can find the shared libraries they depend on.
For example, currently:
```bash
venv/lib/python3.10/site-packages/torch $ ./bin/test_lazy
./bin/test_lazy: error while loading shared libraries: libtorch.so: cannot open shared object file: No such file or directory
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/136627
Approved by: https://github.com/malfet
Fixes#127920
This commit addresses a build failure occurring with GCC 12 and above due to the -Werror=nonnull flag. The error manifests in the test_api target.
**Issue:**
When building with GCC 12+, the following error occurs:
```
error: argument 1 null where non-null expected [-Werror=nonnull]
431 | __builtin_memmove(__result, __first, sizeof(_Tp) * _Num);
| ~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This change ensures that:
1. The flag is only added for GCC 12 or higher
2. The flag is only added if it's supported by the compiler
3. The flag is added specifically to the test_api target, not globally
By disabling this specific error, we allow the build to proceed while maintaining other compiler warnings.
**Test Plan:**
- Verified successful build with GCC 12 and above
- Ensured no regression in builds with earlier GCC versions and other compilers
Pull Request resolved: https://github.com/pytorch/pytorch/pull/137092
Approved by: https://github.com/malfet
Fixes#10536
Reattempt of #61467. Thank you so much to @mskoh52 for your excellent work!
As I was trying to create a more efficient LLM data collator, I realized that `pad_sequence` only supports right padding, even though left padding is a very common format for LLMs, like Llama and Mistral.
The proposed alternative implementation was to use multiple flips, which tends to be 1.5x-2x slower. Instead we can add a [`padding_side` parameter as there is for for Hugging Face tokenizers](9d6c0641c4/src/transformers/tokenization_utils_base.py (L1565)), which requires only a very small change in the C++ code.
Here are the benchmarks of the new implementation!
`float32`:

`bool`:

Code:
```python
from __future__ import annotations
import random
import time
from typing import Literal
import numpy as np
import torch
def pad_sequence_with_flips(
sequences: list[torch.Tensor],
batch_first: bool = False,
padding_value: int | float | bool = 0.0,
padding_side: Literal["left", "right"] | str = "left",
) -> torch.Tensor:
if padding_side == 'right':
padded_sequence = torch._C._nn.pad_sequence([t.flatten() for t in sequences], batch_first=batch_first, padding_value=padding_value)
elif padding_side=='left':
padded_sequence = torch._C._nn.pad_sequence([t.flatten().flip(0) for t in sequences], batch_first=batch_first, padding_value=padding_value) # pyright: ignore[reportArgumentType]
padded_sequence = padded_sequence.flip(int(batch_first))
else:
raise ValueError(f"padding_side should be either 'right' or 'left', but got {padding_side}")
return padded_sequence
sequence_lengths: list[int] = []
flip_left_pad_times: list[float] = []
flip_left_pad_times_std: list[float] = []
left_pad_times: list[float] = []
left_pad_times_std: list[float] = []
RUNS_PER_LOOP: int = 100
for i in range(1, 7):
sequence_length = i * int(1e6) // 6
sequence_lengths.append(sequence_length)
sequences = [torch.randint(0, 2, (random.randint(1, sequence_length),), dtype=torch.bool) for _ in range(64)]
inner_left_pad_times: list[float] = []
inner_right_pad_times: list[float] = []
inner_flip_left_pad_times: list[float] = []
inner_flip_right_pad_times: list[float] = []
for _ in range(RUNS_PER_LOOP):
start = time.perf_counter()
torch._C._nn.pad_sequence(sequences, batch_first=True, padding_value=False, padding_side="left")
end = time.perf_counter()
inner_left_pad_times.append(end - start)
start = time.perf_counter()
pad_sequence_with_flips(sequences, batch_first=True, padding_value=False, padding_side="left")
end = time.perf_counter()
inner_flip_left_pad_times.append(end - start)
left_pad_times.append(sum(inner_left_pad_times) / len(inner_left_pad_times))
left_pad_times_std.append(np.std(inner_left_pad_times))
flip_left_pad_times.append(sum(inner_flip_left_pad_times) / len(inner_flip_left_pad_times))
flip_left_pad_times_std.append(np.std(inner_flip_left_pad_times))
print(f"Sequence Length: {sequence_length}, Left Pad Time: {left_pad_times[-1]}, Left with Flips Pad Time: {flip_left_pad_times[-1]}")
import matplotlib.pyplot as plt
plt.plot(sequence_lengths, left_pad_times, label="new pad_sequence left")
plt.scatter(sequence_lengths, left_pad_times)
plt.errorbar(sequence_lengths, left_pad_times, yerr=left_pad_times_std, linestyle='None', marker='^')
plt.plot(sequence_lengths, flip_left_pad_times, label="old pad_sequence left (2 flips)")
plt.scatter(sequence_lengths, flip_left_pad_times)
plt.errorbar(sequence_lengths, flip_left_pad_times, yerr=flip_left_pad_times_std, linestyle='None', marker='^')
plt.xlabel("Sequence Length")
plt.ylabel("Time (s)")
plt.legend(loc="upper right")
# Sequence Length: 166666, Left Pad Time: 0.06147645162009212, Left with Flips Pad Time: 0.09842291727001794
# Sequence Length: 333333, Left Pad Time: 0.08933195920990329, Left with Flips Pad Time: 0.15597836187991562
# Sequence Length: 500000, Left Pad Time: 0.08863158334006585, Left with Flips Pad Time: 0.15224887342999863
# Sequence Length: 666666, Left Pad Time: 0.10524682551997103, Left with Flips Pad Time: 0.18177212480995877
# Sequence Length: 833333, Left Pad Time: 0.11801802741003485, Left with Flips Pad Time: 0.20821274195001024
# Sequence Length: 1000000, Left Pad Time: 0.131894061660023, Left with Flips Pad Time: 0.23223503091008751
```
Co-authored-by: mskoh52 <mskoh52@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/131884
Approved by: https://github.com/ezyang
Copy of #126089, with some additional fixes & tests
Partial fix for #125635: previously, the deepcopy implementation would group together any tensors with any aliasing relationship and assign them to the same tensor. This was sort of good if you have two tensors `b = a.detach()`, because then if you deepcopy `list = [a, b]` to `list2 = list.deepcopy()`, then writes to `list2[0]` will also modify `list2[1]`. But for the most part, it's bad; (1) if you have `b = a.as_strided((4, 4), (16, 1), 16)`, then it'll make `b == a` in the deepcopied implementation, which is completely wrong; and (2) even if you have `b = a.detach()`, these are still initially two different tensors which become the same tensor after the old deepcopy implementation.
The new implementation only groups together tensors that have the same identity. This is a partial fix, but it's more reasonable. What changes:
* (becomes more correct): different views of the same base tensor will no longer all become equal after deepcopying
* (still kind of wrong): views won't actually alias each other after deepcopying.
* (arguably a minor regression): equivalent views of the same tensor will no longer be copied to the same tensor - so they won't alias.
BC breaking: C++ deepcopy interface changes from accepting `IValue::HashAliasedIValueMap memo` to accepting `IValue::HashIdentityIValueMap memo`. If there are objections, we can keep the old API. However, it seems likely that users generally won't try to deepcopy from C++.
Differential Revision: [D57406306](https://our.internmc.facebook.com/intern/diff/D57406306)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/126126
Approved by: https://github.com/ezyang
This PR makes libtorch behave the same as PyTorch when loading optimizer state from archive. With PyTorch, options of parameter groups are loaded from the archive, which is missing currently in libtorch.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125215
Approved by: https://github.com/janeyx99
This PR updates the error message in autograd when an input tensor does not set to `require_grad`. The original message does not contain the index info, making users hard to debug.
The error message style consists with that on line 105-109.
Co-authored-by: Jeffrey Wan <soulitzer@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123154
Approved by: https://github.com/soulitzer
As this is the oldest gcc that is fully compatible with C++17 standard.
- Replace number of conditional version with simpler `if(CMAKE_COMPILER_IS_GNUCXX)` or `append_cxx_flag_if_supported`.
- As `-Wsuggest-override` condition was hidden before incorrect guard, add missing `override` keywords to `torch::autograd::PyFunctionTensorPostAccGradHooks::apply_with_saved` , `caffe2::python::TensorFeeder::Feed` and `cafee2::NetObserverReporterPrint::report```
Fixes https://github.com/pytorch/pytorch/issues/101839
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112858
Approved by: https://github.com/Skylion007, https://github.com/albanD
As this is the oldest gcc that is fully compatible with C++17 standard.
- Replace number of conditional version with simpler `if(CMAKE_COMPILER_IS_GNUCXX)` or `append_cxx_flag_if_supported`.
- As `-Wsuggest-override` condition was hidden before incorrect guard, add missing `override` keywords to `torch::autograd::PyFunctionTensorPostAccGradHooks::apply_with_saved` , `caffe2::python::TensorFeeder::Feed` and `cafee2::NetObserverReporterPrint::report```
Fixes https://github.com/pytorch/pytorch/issues/101839
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112858
Approved by: https://github.com/Skylion007, https://github.com/albanD
This PR replace c10::guts::to_string with std::to_string. The major part of changes is using void* as optimizer state key since string is used only for serialization and using pointers as hashing keys is more efficient than a string.
Some other guts functions in the affected source files are also replaced.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108480
Approved by: https://github.com/Skylion007
```
In file included from /local/pytorch3/test/cpp/api/optim.cpp:7:
local/pytorch3/test/cpp/api/support.h:44:3: warning: '~WarningCapture' overrides a destructor but is not marked 'override' [-Winconsistent-missing-destructor-override]
~WarningCapture() {
^
local/pytorch3/c10/util/Exception.h:167:11: note: overridden virtual function is here
virtual ~WarningHandler() = default;
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107191
Approved by: https://github.com/janeyx99
This is part of effort to enable missed cpp tests for ROCm platform.
In this change,
- enabled test_libtorch cpp tests (more than 3107 tests)
- fixed missing dependency: libcaffe2_nvrtc.so required by FunctionalTest.Conv1d
- test_api binary is changed to exclude failed tests InitTest and IntegrationTest - to revisit later
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106712
Approved by: https://github.com/jithunnair-amd, https://github.com/kit1980
When the hook registered by Tensor::register_hook (in C++) gets passed
an undefined tensor, it raises an internal assert in debug mode.
The cause is that we attempt to construct an OptionalTensorRef
(4448c78a5d/aten/src/ATen/core/Tensor.h (L68))
which asserts that the passed-in TensorBase is defined.
The fix is that we create a new TensorRef class to convert the
TensorBase into a Tensor without bumping the refcount (which is what
OptionalTensorRef does). We cannot reuse OptionalTensorRef because
OptionalTensorRef represents `optional<Tensor>` that cannot hold an
Undefined Tensor.
For some more historical context, it looks like this behavior was introduced
in #63612
Test Plan:
- new tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105587
Approved by: https://github.com/soulitzer