This PR adds `linalg.lu_solve`. While doing so, I found a bug in MAGMA
when calling the batched MAGMA backend with trans=True. We work around
that by solving the system solving two triangular systems.
We also update the heuristics for this function, as they were fairly
updated. We found that cuSolver is king, so luckily we do not need to
rely on the buggy backend from magma for this function.
We added tests testing this function left and right. We also added tests
for the different backends. We also activated the tests for AMD, as
those should work as well.
Fixes https://github.com/pytorch/pytorch/issues/61657
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77634
Approved by: https://github.com/malfet
This PR adds `linalg.vander`, the linalg version of `torch.vander`.
We add autograd support and support for batched inputs.
We also take this chance to improve the docs (TODO: Check that they
render correctly!) and add an OpInfo.
**Discussion**: The current default for the `increasing` kwargs is extremely
odd as it is the opposite of the classical definition (see
[wiki](https://en.wikipedia.org/wiki/Vandermonde_matrix)). This is
reflected in the docs, where I explicit both the odd defaults that we
use and the classical definition. See also [this stackoverflow
post](https://stackoverflow.com/a/71758047/5280578), which shows how
people are confused by this defaults.
My take on this would be to correct the default to be `increasing=True`
and document the divergence with NumPy (as we do for other `linalg`
functions) as:
- It is what people expect
- It gives the correct determinant called "the Vandermonde determinant" rather than (-1)^{n-1} times the Vandermonde det (ugh).
- [Minor] It is more efficient (no `flip` needed)
- Since it's under `linalg.vander`, it's strictly not a drop-in replacement for `np.vander`.
We will deprecate `torch.vander` in a PR after this one in this stack
(once we settle on what's the correct default).
Thoughts? mruberry
cc kgryte rgommers as they might have some context for the defaults of
NumPy.
Fixes https://github.com/pytorch/pytorch/issues/60197
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76303
Approved by: https://github.com/albanD, https://github.com/mruberry
This PR adds `linalg.lu_solve`. While doing so, I found a bug in MAGMA
when calling the batched MAGMA backend with trans=True. We work around
that by solving the system solving two triangular systems.
We also update the heuristics for this function, as they were fairly
updated. We found that cuSolver is king, so luckily we do not need to
rely on the buggy backend from magma for this function.
We added tests testing this function left and right. We also added tests
for the different backends. We also activated the tests for AMD, as
those should work as well.
Fixes https://github.com/pytorch/pytorch/issues/61657
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72935
Approved by: https://github.com/IvanYashchuk, https://github.com/mruberry
This PR modifies `lu_unpack` by:
- Using less memory when unpacking `L` and `U`
- Fuse the subtraction by `-1` with `unpack_pivots_stub`
- Define tensors of the correct types to avoid copies
- Port `lu_unpack` to be a strucutred kernel so that its `_out` version
does not incur on extra copies
Then we implement `linalg.lu` as a structured kernel, as we want to
compute its derivative manually. We do so because composing the
derivatives of `torch.lu_factor` and `torch.lu_unpack` would be less efficient.
This new function and `lu_unpack` comes with all the things it can come:
forward and backward ad, decent docs, correctness tests, OpInfo, complex support,
support for metatensors and support for vmap and vmap over the gradients.
I really hope we don't continue adding more features.
This PR also avoids saving some of the tensors that were previously
saved unnecessarily for the backward in `lu_factor_ex_backward` and
`lu_backward` and does some other general improvements here and there
to the forward and backward AD formulae of other related functions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67833
Approved by: https://github.com/IvanYashchuk, https://github.com/nikitaved, https://github.com/mruberry
This PR adds `linalg.vander`, the linalg version of `torch.vander`.
We add autograd support and support for batched inputs.
We also take this chance to improve the docs (TODO: Check that they
render correctly!) and add an OpInfo.
**Discussion**: The current default for the `increasing` kwargs is extremely
odd as it is the opposite of the classical definition (see
[wiki](https://en.wikipedia.org/wiki/Vandermonde_matrix)). This is
reflected in the docs, where I explicit both the odd defaults that we
use and the classical definition. See also [this stackoverflow
post](https://stackoverflow.com/a/71758047/5280578), which shows how
people are confused by this defaults.
My take on this would be to correct the default to be `increasing=True`
and document the divergence with NumPy (as we do for other `linalg`
functions) as:
- It is what people expect
- It gives the correct determinant called "the Vandermonde determinant" rather than (-1)^{n-1} times the Vandermonde det (ugh).
- [Minor] It is more efficient (no `flip` needed)
- Since it's under `linalg.vander`, it's strictly not a drop-in replacement for `np.vander`.
We will deprecate `torch.vander` in a PR after this one in this stack
(once we settle on what's the correct default).
Thoughts? mruberry
cc kgryte rgommers as they might have some context for the defaults of
NumPy.
Fixes https://github.com/pytorch/pytorch/issues/60197
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76303
Approved by: https://github.com/albanD
This PR adds a function for computing the LDL decomposition and a function that can solve systems of linear equations using this decomposition. The result of `torch.linalg.ldl_factor_ex` is in a compact form and it's required to use it only through `torch.linalg.ldl_solve`. In the future, we could provide `ldl_unpack` function that transforms the compact representation into explicit matrices.
Fixes https://github.com/pytorch/pytorch/issues/54847.
cc @jianyuh @nikitaved @pearu @mruberry @walterddr @IvanYashchuk @xwang233 @Lezcano
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69828
Approved by: https://github.com/Lezcano, https://github.com/mruberry, https://github.com/albanD
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66933
This PR exposes `torch.lu` as `torch.linalg.lu_factor` and
`torch.linalg.lu_factor_ex`.
This PR also adds support for matrices with zero elements both in
the size of the matrix and the batch. Note that this function simply
returns empty tensors of the correct size in this case.
We add a test and an OpInfo for the new function.
This PR also adds documentation for this new function in line of
the documentation in the rest of `torch.linalg`.
Fixes https://github.com/pytorch/pytorch/issues/56590
Fixes https://github.com/pytorch/pytorch/issues/64014
cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano
Test Plan: Imported from OSS
Reviewed By: gchanan
Differential Revision: D32834069
Pulled By: mruberry
fbshipit-source-id: 51ef12535fa91d292f419acf83b800b86ee9c7eb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66933
This PR exposes `torch.lu` as `torch.linalg.lu_factor` and
`torch.linalg.lu_factor_ex`.
This PR also adds support for matrices with zero elements both in
the size of the matrix and the batch. Note that this function simply
returns empty tensors of the correct size in this case.
We add a test and an OpInfo for the new function.
This PR also adds documentation for this new function in line of
the documentation in the rest of `torch.linalg`.
Fixes https://github.com/pytorch/pytorch/issues/56590
Fixes https://github.com/pytorch/pytorch/issues/64014
cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D32521980
Pulled By: mruberry
fbshipit-source-id: 26a49ebd87f8a41472f8cd4e9de4ddfb7f5581fb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63568
This PR adds the first solver with structure to `linalg`. This solver
has an API compatible with that of `linalg.solve` preparing these for a
possible future merge of the APIs. The new API:
- Just returns the solution, rather than the solution and a copy of `A`
- Removes the confusing `transpose` argument and replaces it by a
correct handling of conj and strides within the call
- Adds a `left=True` kwarg. This can be achieved via transposes of the
inputs and the result, but it's exposed for convenience.
This PR also implements a dataflow that minimises the number of copies
needed before calling LAPACK / MAGMA / cuBLAS and takes advantage of the
conjugate and neg bits.
This algorithm is implemented for `solve_triangular` (which, for this, is
the most complex of all the solvers due to the `upper` parameters).
Once more solvers are added, we will factor out this calling algorithm,
so that all of them can take advantage of it.
Given the complexity of this algorithm, we implement some thorough
testing. We also added tests for all the backends, which was not done
before.
We also add forward AD support for `linalg.solve_triangular` and improve the
docs of `linalg.solve_triangular`. We also fix a few issues with those of
`torch.triangular_solve`.
Resolves https://github.com/pytorch/pytorch/issues/54258
Resolves https://github.com/pytorch/pytorch/issues/56327
Resolves https://github.com/pytorch/pytorch/issues/45734
cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D32588230
Pulled By: mruberry
fbshipit-source-id: 69e484849deb9ad7bb992cc97905df29c8915910
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63568
This PR adds the first solver with structure to `linalg`. This solver
has an API compatible with that of `linalg.solve` preparing these for a
possible future merge of the APIs. The new API:
- Just returns the solution, rather than the solution and a copy of `A`
- Removes the confusing `transpose` argument and replaces it by a
correct handling of conj and strides within the call
- Adds a `left=True` kwarg. This can be achieved via transposes of the
inputs and the result, but it's exposed for convenience.
This PR also implements a dataflow that minimises the number of copies
needed before calling LAPACK / MAGMA / cuBLAS and takes advantage of the
conjugate and neg bits.
This algorithm is implemented for `solve_triangular` (which, for this, is
the most complex of all the solvers due to the `upper` parameters).
Once more solvers are added, we will factor out this calling algorithm,
so that all of them can take advantage of it.
Given the complexity of this algorithm, we implement some thorough
testing. We also added tests for all the backends, which was not done
before.
We also add forward AD support for `linalg.solve_triangular` and improve the
docs of `linalg.solve_triangular`. We also fix a few issues with those of
`torch.triangular_solve`.
Resolves https://github.com/pytorch/pytorch/issues/54258
Resolves https://github.com/pytorch/pytorch/issues/56327
Resolves https://github.com/pytorch/pytorch/issues/45734
cc jianyuh nikitaved pearu mruberry walterddr IvanYashchuk xwang233 Lezcano
Test Plan: Imported from OSS
Reviewed By: zou3519, JacobSzwejbka
Differential Revision: D32283178
Pulled By: mruberry
fbshipit-source-id: deb672e6e52f58b76536ab4158073927a35e43a8
Summary:
### Create `linalg.cross`
Fixes https://github.com/pytorch/pytorch/issues/62810
As discussed in the corresponding issue, this PR adds `cross` to the `linalg` namespace (**Note**: There is no method variant) which is slightly different in behaviour compared to `torch.cross`.
**Note**: this is NOT an alias as suggested in mruberry's [https://github.com/pytorch/pytorch/issues/62810 comment](https://github.com/pytorch/pytorch/issues/62810#issuecomment-897504372) below
> linalg.cross being consistent with the Python Array API (over NumPy) makes sense because NumPy has no linalg.cross. I also think we can implement linalg.cross without immediately deprecating torch.cross, although we should definitely refer users to linalg.cross. Deprecating torch.cross will require additional review. While it's not used often it is used, and it's unclear if users are relying on its unique behavior or not.
The current default implementation of `torch.cross` is extremely weird and confusing. This has also been reported multiple times previously. (See https://github.com/pytorch/pytorch/issues/17229, https://github.com/pytorch/pytorch/issues/39310, https://github.com/pytorch/pytorch/issues/41850, https://github.com/pytorch/pytorch/issues/50273)
- [x] Add `torch.linalg.cross` with default `dim=-1`
- [x] Add OpInfo and other tests for `torch.linalg.cross`
- [x] Add broadcasting support to `torch.cross` and `torch.linalg.cross`
- [x] Remove out skip from `torch.cross` OpInfo
- [x] Add docs for `torch.linalg.cross`. Improve docs for `torch.cross` mentioning `linalg.cross` and the difference between the two. Also adds a warning to `torch.cross`, that it may change in the future (we might want to deprecate it later)
---
### Additional Fixes to `torch.cross`
- [x] Fix Doc for Tensor.cross
- [x] Fix torch.cross in `torch/overridres.py`
While working on `linalg.cross` I noticed these small issues with `torch.cross` itself.
[Tensor.cross docs](https://pytorch.org/docs/stable/generated/torch.Tensor.cross.html) still mentions `dim=-1` default which is actually wrong. It should be `dim=None` after the behaviour was updated in PR https://github.com/pytorch/pytorch/issues/17582 but the documentation for the `method` or `function` variant wasn’t updated. Later PR https://github.com/pytorch/pytorch/issues/41850 updated the documentation for the `function` variant i.e `torch.cross` and also added the following warning about the weird behaviour.
> If `dim` is not given, it defaults to the first dimension found with the size 3. Note that this might be unexpected.
But still, the `Tensor.cross` docs were missed and remained outdated. I’m finally fixing that here. Also fixing `torch/overrides.py` for `torch.cross` as well now, with `dim=None`.
To verify according to the docs the default behaviour of `dim=-1` should raise, you can try the following.
```python
a = torch.randn(3, 4)
b = torch.randn(3, 4)
b.cross(a) # this works because the implementation finds 3 in the first dimension and the default behaviour as shown in documentation is actually not true.
>>> tensor([[ 0.7171, -1.1059, 0.4162, 1.3026],
[ 0.4320, -2.1591, -1.1423, 1.2314],
[-0.6034, -1.6592, -0.8016, 1.6467]])
b.cross(a, dim=-1) # this raises as expected since the last dimension doesn't have a 3
>>> RuntimeError: dimension -1 does not have size 3
```
Please take a closer look (particularly the autograd part, this is the first time I'm dealing with `derivatives.yaml`). If there is something missing, wrong or needs more explanation, please let me know. Looking forward to the feedback.
cc mruberry Lezcano IvanYashchuk rgommers
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63285
Reviewed By: gchanan
Differential Revision: D32313346
Pulled By: mruberry
fbshipit-source-id: e68c2687c57367274e8ddb7ef28ee92dcd4c9f2c
Summary:
Fixes https://github.com/pytorch/pytorch/issues/62811
Add `torch.linalg.matmul` alias to `torch.matmul`. Note that the `linalg.matmul` doesn't have a `method` variant.
Also cleaning up `torch/_torch_docs.py` when formatting is not needed.
cc IvanYashchuk Lezcano mruberry rgommers
Pull Request resolved: https://github.com/pytorch/pytorch/pull/63227
Reviewed By: mrshenli
Differential Revision: D30770235
Pulled By: mruberry
fbshipit-source-id: bfba77dfcbb61fcd44f22ba41bd8d84c21132403
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/58039
The new function has the following signature
`inv_ex(Tensor inpit, *, bool check_errors=False) -> (Tensor inverse, Tensor info)`.
When `check_errors=True`, an error is thrown if the matrix is not invertible; `check_errors=False` - responsibility for checking the result is on the user.
`linalg_inv` is implemented using calls to `linalg_inv_ex` now.
Resolves https://github.com/pytorch/pytorch/issues/25095
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D28405148
Pulled By: mruberry
fbshipit-source-id: b8563a6c59048cb81e206932eb2f6cf489fd8531
Summary:
This PR is focused on the API for `linalg.matrix_norm` and delegates computations to `linalg.norm` for the moment.
The main difference between the norms is when `dim=None`. In this case
- `linalg.norm` will compute a vector norm on the flattened input if `ord=None`, otherwise it requires the input to be either 1D or 2D in order to disambiguate between vector and matrix norm
- `linalg.vector_norm` will flatten the input
- `linalg.matrix_norm` will compute the norm over the last two dimensions, treating the input as batch of matrices
In future PRs, the computations will be moved to `torch.linalg.matrix_norm` and `torch.norm` and `torch.linalg.norm` will delegate computations to either `linalg.vector_norm` or `linalg.matrix_norm` based on the arguments provided.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/57127
Reviewed By: mrshenli
Differential Revision: D28186736
Pulled By: mruberry
fbshipit-source-id: 99ce2da9d1c4df3d9dd82c0a312c9570da5caf25
Summary:
The new function has the following signature `cholesky_ex(Tensor input, *, bool check_errors=False) -> (Tensor L, Tensor infos)`. When `check_errors=True`, an error is thrown if the decomposition fails; `check_errors=False` - responsibility for checking the decomposition is on the user.
When `check_errors=False`, we don't have host-device memory transfers for checking the values of the `info` tensor.
Rewrote the internal code for `torch.linalg.cholesky`. Added `cholesky_stub` dispatch. `linalg_cholesky` is implemented using calls to `linalg_cholesky_ex` now.
Resolves https://github.com/pytorch/pytorch/issues/57032.
Ref. https://github.com/pytorch/pytorch/issues/34272, https://github.com/pytorch/pytorch/issues/47608, https://github.com/pytorch/pytorch/issues/47953
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56724
Reviewed By: ngimel
Differential Revision: D27960176
Pulled By: mruberry
fbshipit-source-id: f05f3d5d9b4aa444e41c4eec48ad9a9b6fd5dfa5
Summary:
This PR tries to make the docs of `torch.linalg` have/be:
- More uniform notation and structure for every function.
- More uniform use of back-quotes and the `:attr:` directive
- More readable for a non-specialised audience through explanations of the form that factorisations take and when would it be beneficial to use what arguments in some solvers.
- More connected among the different functions through the use of the `.. seealso::` directive.
- More information on when do gradients explode / when is a function silently returning a wrong result / when things do not work in general
I tried to follow the structure of "one short description and then the rest" to be able to format the docs like those of `torch.` or `torch.nn`. I did not do that yet, as I am waiting for the green light on this idea:
https://github.com/pytorch/pytorch/issues/54878#issuecomment-816636171
What this PR does not do:
- Clean the documentation of other functions that are not in the `linalg` module (although I started doing this for `torch.svd`, but then I realised that this PR would touch way too many functions).
Fixes https://github.com/pytorch/pytorch/issues/54878
cc mruberry IvanYashchuk
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56265
Reviewed By: H-Huang
Differential Revision: D27993986
Pulled By: mruberry
fbshipit-source-id: adde7b7383387e1213cc0a6644331f0632b7392d
Summary:
Related to https://github.com/pytorch/pytorch/issues/52256
Use autosummary instead of autofunction to create subpages for `torch.fft` and `torch.linalg` functions.
zou3519
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55748
Reviewed By: jbschlosser
Differential Revision: D27739282
Pulled By: heitorschueroff
fbshipit-source-id: 37aa06cb8959721894ffadc15ae8c3b83481a319
Summary:
This PR adds `torch.linalg.eig`, and `torch.linalg.eigvals` for NumPy compatibility.
MAGMA uses a hybrid CPU-GPU algorithm and doesn't have a GPU interface for the non-symmetric eigendecomposition. It means that it forces us to transfer inputs living in GPU memory to CPU first before calling MAGMA, and then transfer results from MAGMA to CPU. That is rather slow for smaller matrices and MAGMA is faster than CPU path only for matrices larger than 3000x3000.
Unfortunately, there is no cuSOLVER function for this operation.
Autograd support for `torch.linalg.eig` will be added in a follow-up PR.
Ref https://github.com/pytorch/pytorch/issues/42666
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52491
Reviewed By: anjali411
Differential Revision: D27563616
Pulled By: mruberry
fbshipit-source-id: b42bb98afcd2ed7625d30bdd71cfc74a7ea57bb5
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52859
This reverts commit 92a4ee1cf6.
Added support for bfloat16 for CUDA 11 and removed fast-path for empty input tensors that was affecting autograd graph.
Test Plan: Imported from OSS
Reviewed By: H-Huang
Differential Revision: D27402390
Pulled By: heitorschueroff
fbshipit-source-id: 73c5ccf54f3da3d29eb63c9ed3601e2fe6951034
Summary:
This PR adds autograd support for `torch.orgqr`.
Since `torch.orgqr` is one of few functions that expose LAPACK's naming and all other linear algebra routines were renamed a long time ago, I also added a new function with a new name and `torch.orgqr` now is an alias for it.
The new proposed name is `householder_product`. For a matrix `input` and a vector `tau` LAPACK's orgqr operation takes columns of `input` (called Householder vectors or elementary reflectors) scalars of `tau` that together represent Householder matrices and then the product of these matrices is computed. See https://www.netlib.org/lapack/lug/node128.html.
Other linear algebra libraries that I'm aware of do not expose this LAPACK function, so there is some freedom in naming it. It is usually used internally only for QR decomposition, but can be useful for deep learning tasks now when it supports differentiation.
Resolves https://github.com/pytorch/pytorch/issues/50104
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52637
Reviewed By: agolynski
Differential Revision: D27114246
Pulled By: mruberry
fbshipit-source-id: 9ab51efe52aec7c137aa018c7bd486297e4111ce
Summary:
Fixes https://github.com/pytorch/pytorch/issues/44378 by providing a wider range of drivers similar to what SciPy is doing.
The supported CPU drivers are `gels, gelsy, gelsd, gelss`.
The CUDA interface has only `gels` implemented but only for overdetermined systems.
The current state of this PR:
- [x] CPU interface
- [x] CUDA interface
- [x] CPU tests
- [x] CUDA tests
- [x] Memory-efficient batch-wise iteration with broadcasting which fixes https://github.com/pytorch/pytorch/issues/49252
- [x] docs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49093
Reviewed By: albanD
Differential Revision: D26991788
Pulled By: mruberry
fbshipit-source-id: 8af9ada979240b255402f55210c0af1cba6a0a3c
Summary:
Fixes https://github.com/pytorch/pytorch/issues/44378 by providing a wider range of drivers similar to what SciPy is doing.
The supported CPU drivers are `gels, gelsy, gelsd, gelss`.
The CUDA interface has only `gels` implemented but only for overdetermined systems.
The current state of this PR:
- [x] CPU interface
- [x] CUDA interface
- [x] CPU tests
- [x] CUDA tests
- [x] Memory-efficient batch-wise iteration with broadcasting which fixes https://github.com/pytorch/pytorch/issues/49252
- [x] docs
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49093
Reviewed By: H-Huang
Differential Revision: D26723384
Pulled By: mruberry
fbshipit-source-id: c9866a95f14091955cf42de22f4ac9e2da009713
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51807
Implemented torch.linalg.multi_dot similar to [numpy.linalg.multi_dot](https://numpy.org/doc/stable/reference/generated/numpy.linalg.multi_dot.html).
This function does not support broadcasting or batched inputs at the moment.
**NOTE**
numpy.linalg.multi_dot allows the first and last tensors to have more than 2 dimensions despite their docs stating these must be either 1D or 2D. This PR diverges from NumPy in that it enforces this restriction.
**TODO**
- [ ] Benchmark against NumPy
- [x] Add OpInfo testing
- [x] Remove unnecessary copy for out= argument
Test Plan: Imported from OSS
Reviewed By: nikithamalgifb
Differential Revision: D26375734
Pulled By: heitorschueroff
fbshipit-source-id: 839642692424c4b1783606c76dd5b34455368f0b
Summary:
Notes the module is in beta and that the policy for returning optionally computed tensors may change in the future.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51620
Reviewed By: heitorschueroff
Differential Revision: D26220254
Pulled By: mruberry
fbshipit-source-id: edf78fe448d948b43240e138d6d21b780324e41e
Summary:
This PR adds `torch.linalg.slogdet`.
Changes compared to the original torch.slogdet:
- Complex input now works as in NumPy
- Added out= variant (allocates temporary and makes a copy for now)
- Updated `slogdet_backward` to work with complex input
Ref. https://github.com/pytorch/pytorch/issues/42666
Pull Request resolved: https://github.com/pytorch/pytorch/pull/49194
Reviewed By: VitalyFedyunin
Differential Revision: D25916959
Pulled By: mruberry
fbshipit-source-id: cf9be8c5c044870200dcce38be48cd0d10e61a48
Summary:
This PR adds `torch.linalg.pinv`.
Changes compared to the original `torch.pinverse`:
* New kwarg "hermitian": with `hermitian=True` eigendecomposition is used instead of singular value decomposition.
* `rcond` argument can now be a `Tensor` of appropriate shape to apply matrix-wise clipping of singular values.
* Added `out=` variant (allocates temporary and makes a copy for now)
Ref. https://github.com/pytorch/pytorch/issues/42666
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48399
Reviewed By: zhangguanheng66
Differential Revision: D25869572
Pulled By: mruberry
fbshipit-source-id: 0f330a91d24ba4e4375f648a448b27594e00dead
Summary:
This PR adds `torch.linalg.inv` for NumPy compatibility.
`linalg_inv_out` uses in-place operations on provided `result` tensor.
I modified `apply_inverse` to accept tensor of Int instead of std::vector, that way we can write a function similar to `linalg_inv_out` but removing the error checks and device memory synchronization.
I fixed `lda` (leading dimension parameter which is max(1, n)) in many places to handle 0x0 matrices correctly.
Zero batch dimensions are also working and tested.
Ref https://github.com/pytorch/pytorch/issues/42666
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48261
Reviewed By: gchanan
Differential Revision: D25849590
Pulled By: mruberry
fbshipit-source-id: cfee6f1daf7daccbe4612ec68f94db328f327651
Summary:
This is related to https://github.com/pytorch/pytorch/issues/42666 .
I am opening this PR to have the opportunity to discuss things.
First, we need to consider the differences between `torch.svd` and `numpy.linalg.svd`:
1. `torch.svd` takes `some=True`, while `numpy.linalg.svd` takes `full_matrices=True`, which is effectively the opposite (and with the opposite default, too!)
2. `torch.svd` returns `(U, S, V)`, while `numpy.linalg.svd` returns `(U, S, VT)` (i.e., V transposed).
3. `torch.svd` always returns a 3-tuple; `numpy.linalg.svd` returns only `S` in case `compute_uv==False`
4. `numpy.linalg.svd` also takes an optional `hermitian=False` argument.
I think that the plan is to eventually deprecate `torch.svd` in favor of `torch.linalg.svd`, so this PR does the following:
1. Rename/adapt the old `svd` C++ functions into `linalg_svd`: in particular, now `linalg_svd` takes `full_matrices` and returns `VT`
2. Re-implement the old C++ interface on top of the new (by negating `full_matrices` and transposing `VT`).
3. The C++ version of `linalg_svd` *always* returns a 3-tuple (we can't do anything else). So, there is a python wrapper which manually calls `torch._C._linalg.linalg_svd` to tweak the return value in case `compute_uv==False`.
Currently, `linalg_svd_backward` is broken because it has not been adapted yet after the `V ==> VT` change, but before continuing and spending more time on it I wanted to make sure that the general approach is fine.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/45562
Reviewed By: H-Huang
Differential Revision: D25803557
Pulled By: mruberry
fbshipit-source-id: 4966f314a0ba2ee391bab5cda4563e16275ce91f
Summary:
I am opening this PR early to have a place to discuss design issues.
The biggest difference between `torch.qr` and `numpy.linalg.qr` is that the former `torch.qr` takes a boolean parameter `some=True`, while the latter takes a string parameter `mode='reduced'` which can be one of the following:
`reduced`
this is completely equivalent to `some=True`, and both are the default.
`complete`
this is completely equivalent to `some=False`.
`r`
this returns only `r` instead of a tuple `(r, q)`. We have already decided that we don't want different return types depending on the parameters, so I propose to return `(r, empty_tensor)` instead. I **think** that in this mode it will be impossible to implement the backward pass, so we should raise an appropriate error in that case.
`raw`
in this mode, it returns `(h, tau)` instead of `(q, r)`. Internally, `h` and `tau` are obtained by calling lapack's `dgeqrf` and are later used to compute the actual values of `(q, r)`. The numpy docs suggest that these might be useful to call other lapack functions, but at the moment none of them is exposed by numpy and I don't know how often it is used in the real world.
I suppose the implementing the backward pass need attention to: the most straightforward solution is to use `(h, tau)` to compute `(q, r)` and then use the normal logic for `qr_backward`, but there might be faster alternatives.
`full`, `f`
alias for `reduced`, deprecated since numpy 1.8.0
`economic`, `e`
similar to `raw but it returns only `h` instead of `(h, tau). Deprecated since numpy 1.8.0
To summarize:
* `reduce`, `complete` and `r` are straightforward to implement.
* `raw` needs a bit of extra care, but I don't know how much high priority it is: since it is used rarely, we might want to not support it right now and maybe implement it in the future?
* I think we should just leave `full` and `economic` out, and possibly add a note to the docs explaining what you need to use instead
/cc mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47764
Reviewed By: ngimel
Differential Revision: D25708870
Pulled By: mruberry
fbshipit-source-id: c25c70a23a02ec4322430d636542041e766ebe1b
Summary:
This PR adds `torch.linalg.inv` for NumPy compatibility.
`linalg_inv_out` uses in-place operations on provided `result` tensor.
I modified `apply_inverse` to accept tensor of Int instead of std::vector, that way we can write a function similar to `linalg_inv_out` but removing the error checks and device memory synchronization.
I fixed `lda` (leading dimension parameter which is max(1, n)) in many places to handle 0x0 matrices correctly.
Zero batch dimensions are also working and tested.
Ref https://github.com/pytorch/pytorch/issues/42666
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48261
Reviewed By: ngimel
Differential Revision: D25690129
Pulled By: mruberry
fbshipit-source-id: edb2d03721f22168c42ded8458513cb23dfdc712
Summary:
This PR adds `torch.linalg.solve`.
`linalg_solve_out` uses in-place operations on the provided result tensor.
I modified `apply_solve` to accept tensor of Int instead of std::vector, that way we can write a function similar to `linalg_solve_out` but removing the error checks and device memory synchronization.
In comparison to `torch.solve` this routine accepts 1-dimensional tensors and batches of 1-dim tensors for the right-hand-side term. `torch.solve` requires it to be at least 2-dimensional.
Ref. https://github.com/pytorch/pytorch/issues/42666
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48456
Reviewed By: izdeby
Differential Revision: D25562222
Pulled By: mruberry
fbshipit-source-id: a9355c029e2442c2e448b6309511919631f9e43b
Summary:
This PR adds `torch.linalg.matrix_rank`.
Changes compared to the original `torch.matrix_rank`:
- input with the complex dtype is supported
- batched input is supported
- "symmetric" kwarg renamed to "hermitian"
Should I update the documentation for `torch.matrix_rank`?
For the input with no elements (for example 0×0 matrix), the current implementation is divergent from NumPy. NumPy stumbles on not defined max for such input, here I chose to return appropriately sized tensor of zeros. I think that's mathematically a correct thing to do.
Ref https://github.com/pytorch/pytorch/issues/42666.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/48206
Reviewed By: albanD
Differential Revision: D25211965
Pulled By: mruberry
fbshipit-source-id: ae87227150ab2cffa07f37b4a3ab228788701837