Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62030
Remove dtype tracking from Python Storage interface, remove all the different `<type>Storage` classes except for `ByteStorage`, and update serialization accordingly, while maintaining as much FC/BC as possible
Fixes https://github.com/pytorch/pytorch/issues/47442
* **THE SERIALIZATION FORMAT IS FULLY FC/BC.** We worked very hard to make sure this is the case. We will probably want to break FC at some point to make the serialization structure of tensors make more sense, but not today.
* There is now only a single torch.ByteStorage class. Methods like `Tensor.set_` no longer check that the dtype of storage is appropriate.
* As we no longer know what dtype of a storage is, we've **removed** the size method from Storage, replacing it with nbytes. This is to help catch otherwise silent errors where you confuse number of elements with number of bytes.
* `Storage._new_shared` takes a `nbytes` kwarg and will reject previous positional only calls. `Storage._new_with_file` and `_set_from_file` require explicit element size arguments.
* It's no longer possible to convert storages to different types using the float/double/etc methods. Instead, do the conversion using a tensor.
* It's no longer possible to allocate a typed storage directly using FloatStorage/DoubleStorage/etc constructors. Instead, construct a tensor and extract its storage. The classes still exist but they are used purely for unpickling.
* The preexisting serialization format stores dtype with storage, and in fact this dtype is used to determine the dtype of the tensor overall.
To accommodate this case, we introduce a new TypedStorage concept that exists only during unpickling time which is used to temporarily store the dtype so we can construct a tensor. **If you overrode the handling of pickling/unpickling, you MUST add handling for TypedStorage** or your serialization code will degrade to standard file-based serialization.
Original pull request: https://github.com/pytorch/pytorch/pull/59671
Reviewed By: soulitzer, ngimel
Differential Revision: D29466819
Pulled By: ezyang
fbshipit-source-id: 4a14e5d3c2b08e06e558683d97f7378a3180b00e
Summary:
As GoogleTest `TEST` macro is non-compliant with it as well as `DEFINE_DISPATCH`
All changes but the ones to `.clang-tidy` are generated using following script:
```
for i in `find . -type f -iname "*.c*" -or -iname "*.h"|xargs grep cppcoreguidelines-avoid-non-const-global-variables|cut -f1 -d:|sort|uniq`; do sed -i "/\/\/ NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)/d" $i; done
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62008
Reviewed By: driazati, r-barnes
Differential Revision: D29838584
Pulled By: malfet
fbshipit-source-id: 1b2f8602c945bd4ce50a9bfdd204755556e31d13
Summary:
This PR suppresses clang-tidy warnings in the codebase (for now) so that we can re-enable clang-tidy checks on master.
I ran this script to add the `NOLINTNEXTLINE` comments (on a devserver):
```bash
python3 setup.py develop
# Uses same script that's run on CI and adds the -j (parallel), -s (add comments), -k (continue if diagnostic errors are found) options
python3 tools/clang_tidy.py \
-j \
-s \
-k \
-v \
--paths torch/csrc/ \
-g"-torch/csrc/jit/passes/onnx/helper.cpp" \
-g"-torch/csrc/jit/passes/onnx/shape_type_inference.cpp" \
-g"-torch/csrc/jit/serialization/onnx.cpp" \
-g"-torch/csrc/jit/serialization/export.cpp" \
-g"-torch/csrc/jit/serialization/import.cpp" \
-g"-torch/csrc/jit/serialization/import_legacy.cpp" \
-g"-torch/csrc/onnx/init.cpp" \
-g"-torch/csrc/cuda/nccl.*" \
-g"-torch/csrc/cuda/python_nccl.cpp" \
-g"-torch/csrc/autograd/FunctionsManual.cpp" \
-g"-torch/csrc/generic/*.cpp" \
-g"-torch/csrc/jit/codegen/cuda/runtime/*" \
-g"-torch/csrc/deploy/interpreter/interpreter.cpp" \
-g"-torch/csrc/deploy/interpreter/interpreter.h" \
-g"-torch/csrc/deploy/interpreter/interpreter_impl.h" \
-g"-torch/csrc/deploy/interpreter/test_main.cpp"
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/60649
Test Plan: Verified changes by re-running the script (without the `-s` option) and seeing no warnings/errors.
Reviewed By: walterddr, janeyx99
Differential Revision: D29504258
Pulled By: 1ntEgr8
fbshipit-source-id: 78310b30ee8213b73ddb4771ad874665323e7a4e
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37776
* Remove type-specific size tracking in favor of byte size tracking in Storage and StorageImpl
* Changed numel() and set_numel() to nbytes() and set_nbytes()
* Added enum argument to Storage/StorageImpl constructor to indicate new meaning of the size parameter
* Update all callers of the changed API
Part of issue https://github.com/pytorch/pytorch/issues/33950
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37028
Differential Revision: D21171334
Pulled By: ezyang
fbshipit-source-id: 37329a379de9a3a83cc5e9007e455a3e1c2d10b8
Summary:
Following up on this: https://github.com/pytorch/pytorch/pull/35851 cross dtype storage copy is not being used internally, so I have not included cross dtype copy for complex.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35771
Differential Revision: D21319650
Pulled By: anjali411
fbshipit-source-id: 07c72996ee598eba0cf401ad61534494d6f5b5b3
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37527
This is yet another place that needs to be updated for adding a new "Backend" and is unnecessary. Instead, just use layout_from_backend and have a map from Layout -> THPLayout.
Other changes:
- rename torch::getDtype and torch::getLayout to torch::getTHPDtype and torch::getTHPLayout since e.g. for layout you are both passing in and returning a "layout" type.
- add NumOptions to Layout to match the dtype/ScalarType formulation.
Test Plan: Imported from OSS
Differential Revision: D21309836
Pulled By: gchanan
fbshipit-source-id: ede0e4f3bf7ff2cd04a9b17df020f0d4fd654ba3
Summary:
Follow-up to gh-25483, more of the same fixes for warnings like:
```
../torch/csrc/autograd/python_variable.cpp:503:31: warning: cast between incompatible function types from ‘PyObject* (*)(THPVariable*)’ {aka ‘_object* (*)(THPVariable*)’} to ‘getter’ {aka ‘_object* (*)(_object*, void*)’} [-Wcast-function-type]
503 | {"_backward_hooks", (getter)THPVariable_get_backwards_hooks, (setter)THPVariable_set_backwards_hooks, nullptr, nullptr},
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
This takes the build log output for a full rebuild with GCC 9.1 from ~10,000 to ~7,000 lines.
`clang-tidy` is going to complain, no way around that - see discussion at the end of gh-25483.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26104
Differential Revision: D17396831
Pulled By: ezyang
fbshipit-source-id: d71696bfe4dbe25519e4bcb7753151c118bd39f7
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18749
ghimport-source-id: 9026a037f5e11cdb9ccd386f4b6b5768b9c3259b
Stack from [ghstack](https://github.com/ezyang/ghstack):
* #18751 Disallow changing the device of a tensor via set_.
* #18750 Use non-legacy constructors for tensor deserialization.
* **#18749 Add device and dtype to storage.**
The goal here is to fix our serialization, which currently depends on the legacy constructors. Having dtype and device on Storage allows us to use the non-legacy constructors.
This fits somewhat along our goal of removing Storage, my having Storage act like a Tensor.
Differential Revision: D14729516
fbshipit-source-id: bf4a3e8669ad4859931f4a3fa56df605cbc08dcb
Summary:
This is the first commit from a series of planned changes in order to add boolean tensors to PyTorch. The whole plan looks like this:
0. Storage Implementation (this change)
1. Tensor Creation.
2. Tensor Conversions.
3. Tensor Indexing.
4. Tensor Operations.
5. Back compatibility related changes.
This feature was requested by the community:
https://github.com/pytorch/pytorch/issues/4764https://github.com/pytorch/pytorch/issues/4219https://github.com/pytorch/pytorch/issues/4288
**Change**:
Added boolean type to the Storage class for CPU and CUDA backends.
**Tested via**:
1. unit tests
2. running this:
-> import torch
-> torch.BoolStorage
<class 'torch.BoolStorage'>
-> torch.cuda.BoolStorage
<class 'torch.cuda.BoolStorage'>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16810
Reviewed By: gchanan
Differential Revision: D14087246
Pulled By: izdeby
fbshipit-source-id: 042642ced1cb0fd1bb6bff05f9ca871a5c54ee5e
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16061
I discovered I needed to delete these names in preparation of moving
THCCachingAllocator to c10_cuda; might as well also fix all the other
sites too.
Reviewed By: dzhulgakov
Differential Revision: D13686869
fbshipit-source-id: e8cc55d39ac4bfd3e3a22c761f89a7a111ce5f5e
Summary:
Anywhere we used #include "foo.h", we now say #include <foo.h>
Paths are adjusted to be rooted out of aten/src, torch/lib, or
the root level directory.
I modified CMakeLists.txt by hand to remove TH and THC from
the include paths.
I used the following script to do the canonicalization:
```
import subprocess
import re
import os.path
files = subprocess.check_output(['git', 'ls-files']).decode('utf-8').rstrip().split('\n')
for fn in files:
if not any(fn.endswith(suff) for suff in ['.cu', '.cpp', '.in', '.h', '.hpp', '.cu', '.cuh', '.cc']):
continue
if not any(fn.startswith(pref) for pref in ["aten/", "torch/"]):
continue
with open(fn, 'r') as f:
c = f.read()
def fmt(p):
return "#include <{}>".format(p)
def repl(m):
p = m.group(1)
if p in ["dlfcn.h", "unistd.h", "nvrtc.h", "cuda.h", "cuda_runtime.h", "cstdint", "cudnn.h", "Python.h", "cusparse.h", "cuda_runtime_api.h", "cuda_fp16.h", "cublas_v2.h", "stdint.h", "curand_kernel.h"]:
return fmt(p)
if any(p.startswith(pref) for pref in ["torch/csrc", "c10/", "ATen/", "caffe2/", "TH/", "THC/", "Eigen/", "gtest/", "zdl/", "gloo/", "onnx/", "miopen/"]):
return fmt(p)
for root in ["aten/src", "torch/lib", ""]:
for bad_root in [os.path.dirname(fn), "aten/src/TH", "aten/src/THC", "torch/csrc"]:
new_p = os.path.relpath(os.path.join(bad_root, p), root)
if not new_p.startswith("../") and (os.path.exists(os.path.join(root, new_p)) or os.path.exists(os.path.join(root, new_p + ".in"))):
return fmt(new_p)
print("ERROR: ", fn, p)
return m.group(0)
new_c = re.sub(r'#include "([^"]+)"', repl, c)
if new_c != c:
print(fn)
with open(fn, 'w') as f:
f.write(new_c)
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14849
Reviewed By: dzhulgakov
Differential Revision: D13363445
Pulled By: ezyang
fbshipit-source-id: 52361f878a672785f9306c9e9ab2513128092b68
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/14802
The definetion of THPStorage does not depend on any Real, its macro
defintion is unnecessary, refactor the code so that THPStorage is not macro
defined.
Reviewed By: ezyang
Differential Revision: D13340445
fbshipit-source-id: 343393d0a36c868b9a06eea2ad9b80f5e395e947
Summary:
In particular, this was breaking the logic for cudnn algorithm to fall back to a less memory hungry algorithm if the selected one OOM when creating the workspace.
c10::Error are subclass of `std::exception` and not `std::runtime_error`.
I removed `runtime_error` in all places in our code and replaced them with `const exception`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13665
Differential Revision: D12958396
Pulled By: soumith
fbshipit-source-id: af557efd9887b013140113d3067de157ffcf8465
Summary:
In #9466 I got rid of storage views and eliminated all places where
they were used... OR SO I THOUGHT. In actuality, under certain
conditions (specifically, if you trained a CUDA multiprocessing model
shared over CUDA IPC and then serialized your parameters), you could
also serialize storage slices to the saved model format. In #9466,
I "fixed" the case when you loaded the legacy model format (really,
just unshared the storages--not strictly kosher but if you aren't
updating the parameters, shouldn't matter), but NOT the modern model format, so
such models would fail.
So, I could have applied the legacy model format fix too, but
hyperfraise remarked that he had applied a fix that was effectively
the same as unsharing the storages, but it had caused his model to
behave differently. So I looked into it again, and realized that
using a custom deleter, I could simulate the same behavior as old
storage slices. So back they come.
In principle, I could also reimplement storage views entirely using
our allocators, but I'm not going to do that unless someone really
really wants it.
Fixes#10120.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11314
Reviewed By: ailzhang
Differential Revision: D9671966
Pulled By: ezyang
fbshipit-source-id: fd863783d03b6a6421d6b9ae21ce2f0e44a0dcce
Summary:
This is necessary to allow us to use the complex header
which defines real (and is very sad if real is macro'ed).
We should also fix accreal, ureal, Real and REAL, but
only 'real' is the real blocker.
```
codemod -d aten/src/TH --extensions c,cc,cpp,cu,cuh,h,TARGETS,py,hpp '\breal\b' scalar_t
codemod -d aten/src/THC --extensions c,cc,cpp,cu,cuh,h,TARGETS,py,hpp '\breal\b' scalar_t
codemod -d aten/src/THNN --extensions c,cc,cpp,cu,cuh,h,TARGETS,py,hpp '\breal\b' scalar_t
codemod -d aten/src/THCUNN --extensions c,cc,cpp,cu,cuh,h,TARGETS,py,hpp '\breal\b' scalar_t
```
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11163
Reviewed By: SsnL
Differential Revision: D9619906
Pulled By: ezyang
fbshipit-source-id: 922cb3a763c0bffecbd81200c1cefc6b8ea70942
Summary:
How did we get so many uses of `NULL` again?
ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11047
Differential Revision: D9566799
Pulled By: goldsborough
fbshipit-source-id: 83469f352ac69aa65bdaf1a1a21f922d892e0db3
Summary:
This PR removes couple of macros throughout TH* as part of the re-factoring effort for ATen. Removing these macros should avoid confusion among developers who are trying to move things from TH* to ATen. This PR is part of the THCNumerics deprecation that I have been working on following up on mruberry's https://github.com/pytorch/pytorch/pull/9318. I am separating these two commits to see if removal of these macros doesn't upset the pytorch public CI, as well as internal builds.
- Commit 1248de7baf removes the code paths guarded by `CUDA_HALF_INSTRUCTIONS` macro. Since the macro was removed in commit 2f186df52d, `ifdef CUDA_HALF_INSTRUCTIONS` would return false and hence the code path that is kept after this change is for the false case of `ifdef CUDA_HALF_INSTRUCTIONS`
- Commit 520c99b057 removes the code paths guarded by `CUDA_HALF_TENSOR` macro. Since Pytorch now provides support for only CUDA 8.0 and above, `CUDA_HALF_TENSOR` is always true since CUDA 8.0 satisfies `CUDA_HAS_FP16` and hence, the code path that is kept after this change is for the true case of `ifdef CUDA_HALF_TENSOR`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10147
Differential Revision: D9345940
Pulled By: soumith
fbshipit-source-id: c9392261dd432d304f1cdaf961760cbd164a59d0
Summary:
I got some tensor->variable conversion exceptions from `torch/csrc/autograd/variable.h`, which used the `TORCH_ASSERTM` macros instead of `AT_CHECK`, so they didn't have backtraces. This was such a substantial loss for debugability that I decided to update the whole codebase to use the backtrace-enabled ATen macros instead of `TORCH_ASSERT` and `JIT_ASSERT`, the latter having been an alias of the former.
ezyang apaszke zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9575
Differential Revision: D8924566
Pulled By: goldsborough
fbshipit-source-id: 7a4013b13eec9dbf024cef94cf49fca72f61d441
Summary:
Storage views were previously used to implement CUDA IPC sharing,
but they weren't necessary. The new strategy is described in
Note [CUDA IPC and the caching allocator].
This also fixes an unrelated bug, where we weren't actually using
the Tensor forking pickler, because we didn't register a pickler
for torch.Tensor.
Fixes#9447. Fixes#46.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
CC apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9466
Reviewed By: apaszke
Differential Revision: D8859698
Pulled By: ezyang
fbshipit-source-id: 3362cb92f6ae4aa37084c57d79b31004bd0b4a97
Summary:
See Note [Supervisor deleter] for how SupervisedPtr works.
This design is not the obvious one, but there were a lot of
constraints feeding into it:
- It must support the reallocation usage-pattern, where, given
an existing Storage, we allocate a new region of memory,
copy the existing data to it, and then deallocate the old
region of memory.
- Creation of a deleter for memory MUST avoid dynamic allocations
in the common case. We've done some benchmarking in Caffe2
where dynamic allocation for deleters is ruinously expensive,
and it's really hard to avoid these performance tarpits in
very general function wrappers like std::function or
folly::Function (while benchmarking this, we discovered that
folly::Function's move constructor was way more expensive
than it should be).
- We need to be able to deallocate data that comes from external
sources, e.g., dlpack and numpy tensors. Most notably,
you often cannot deallocate these with merely the void*
data pointer; you need some extra, out-of-band information
(e.g., the managing struct) to deallocate it. Sometimes,
you may even want to resize data living in an external source!
- The "core" allocators need to support being wrapped in a Thrust
allocator, so you need to be implement the following two functions:
char* allocate(size_t);
void deallocate(char*, size_t);
- We need to support tensors which contain non-POD, non-trivially
copyable data; specifically tensors of std::string. This is
an upcoming requirement from Caffe2. It's dirty AF, but
it's really useful.
- It should use C++ standard library types like std::unique_ptr
(which is hugely problematic because std::unique_ptr doesn't
call the deleter when the pointer is null.)
Here is the billing of changes:
- Built-in support for realloc() has been DROPPED ENTIRELY.
Instead, you're expected to allocate and then copy from
the old memory to the new memory if you want to do a
reallocation. This is what you'd generally have expected
to occur; and axing realloc() from the design lets us avoid
some tricky correctness issues with std::realloc(), namely
the fact that we must refuse the realloc if the type of the
elements are not trivially copyeable. If it really matters,
we can add this back, but there really needs to be a good
explanation WHY you need fast resizing reallocations (by in
large, people don't resize their storages, and it should
be acceptable to have a performance degradation when they
do).
- TH_STORAGE_FREEMEM is no more; instead, if you want a
storage which doesn't free its result, you just give it
an empty deleter.
- What we used to call an "allocator" (really, a combined
object for allocating/deleting) has been split into two
concepts, an allocator, and a smart pointer (SupervisedPtr)
which knows how to delete data.
- Unlike previously, where THAllocator/THCDeviceAllocator
could have a per-tensor context storing extra information
(e.g., a pointer to the metadata you need to actually
free the tensor), there is no context in the allocator or
the deleter of the smart pointer; instead, the smart
pointer directly holds an owning reference to the
metadata necessary to free the data. This metadata
is *freshly manufactured* upon every allocation, which
permits us to resize tensors even in the absence of
built-in support for realloc().
- By default, allocators don't support "raw" allocations
and deallocations with raw pointers. This is because
some allocations may return a different context every
time, in which case you need to reconstruct the context
at delete time (because all you got was a void*, not
a unique_ptr that carries the deleter).
- The diff between at::Allocator and THCDeviceAllocator is a
bit larger:
- It used to return a cudaError_t. Now, allocators
are expected to check the error status immediately and throw
an exception if there was an error. It turns out that this
is what was immediately done after all occurrences of
allocate/release, so it wasn't a big deal (although some
subsidiary interfaces had to themselves be converted to
not return cudaError_t).
There is one notable exception to this, and it is how
we handle CUDA OOM: if this occurs, we attempt to return
unused memory to the system and try again. This is now
handled by a catch-all try-catch block. The cost of
catching the exception is probably the least of your worries
if you're about to OOM.
- It used to take the CUDA stream to perform the allocation
on as an argument. However, it turned out that all call
sites, this stream was the stream for the current device.
So we can push this into the allocator (and the choice,
in the future, could be made explicitly by twiddling
thread local state.)
- It held two extra methods, emptyCache and cacheInfo, specifically
for interacting with some state in THCCachingAllocator.
But this "generality" was a lie, since THCCachingAllocator
was the only allocator that actually implemented these
methods, and there is actually a bunch of code in THC
which assumes that it is the caching allocator that is
the underlying allocator for CUDA allocations. So I
folded these two methods into this interface as
THCCachingAllocator_emptyCache and THCCachingAllocator_cacheInfo.
- It held its context directly inside the THCDeviceAllocator
struct. This context has been moved out into whatever
is holding the at::Allocator*.
- The APIs for getting at allocators/deleters is now a little different.
- Previously there were a bunch of static variables you could get
the address of (e.g., &THDefaultAllocator); now there is a
function getTHDefaultAllocator().
- Some "allocators" didn't actually know how to allocate (e.g.,
the IPC "allocator"). These have been deleted; instead, you
can wrap the produced pointers into SupervisedPtr using
an appropriate makeSupervisedPtr() static method.
- Storage sharing was a lot of work to wrangle, but I think I've
tamed the beast.
- THMapAllocator and its "subclasses" have been refactored to
be proper, honest to goodness C++ classes. I used the enum
argument trick to get "named" constructors. We use inheritance
to add refcounting and management (in libshm). What we previously
called the "Context" class (Context has been dropped from the name)
is now the supervisor for the data.
- Sometimes, we need to pull out the file descriptor from a
tensor. Previously, it was pulled out of the allocator context.
Now, we pull it out of the supervisor of the SupervisorPtr,
using the static method fromSupervisedPtr(), which uses the
deleter as the typeid, and refines the type if it matches.
- I renamed the std::function deleter into
InefficientStdFunctionSupervisor, to emphasize the fact that it does
a dynamic allocation to save the std::function deleter.
TODO:
- Windows libshm is in shambles and needs to be fixed.
Perhaps for the future:
- newFromFd is now unconditionally calling cudaPointerGetAttributes
even though this is unnecessary, because we know what the device
is from higher up in the callstack. We can fix this by making
newWithDataAndAllocator also take an explicit device argument.
- Consider statically distinguishing between allocators that
support raw_allocate/raw_deallocate, and those which don't.
The Thrust constraint applies only to the CUDA device allocator;
you never need to allocate CPU memory this way
- Really want to get rid of storage views. Ugh.
Nontrivial bugs I noticed when preparing this patch:
- I forgot to placement-new unique pointers and attempted to
assign them directly on uninitialized memory; very bad! Sam
Gross has encouraged me to replace this with a proper constructor
but I keep putting it off, because once everything goes in
StorageImpl there really will be a proper constructor.
- I rewrote a number of APIs to use newWithDataAndAllocator
instead of newWithAllocator, calling the allocator at the
call site (because they required "allocation context" which
we no longer give to "allocators"). When I did this, I forgot
to insert the multiplication with sizeof(real) to scale from
numels to number of bytes.
- The implementation of swap on storages was missing it for
scalarType and backend. It was benign (because the only case
we call swap is when these are the same), but I fixed it anyway.
- I accidentally returned a nullptr unique_ptr with no deleter,
even though there was a legitimate one. This matters, because
some code still shoves its hands in the deleter context to
get extra metadata about the function.
- I used std::move() on a unique_ptr, and then did a boolean
test on the pointer aftewards (always false!)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9358
Reviewed By: SsnL
Differential Revision: D8811822
Pulled By: ezyang
fbshipit-source-id: 4befe2d12c3e7fd62bad819ff52b054a9bf47c75
* Don't override Tensor, Storage macros defined outside torch/csrc in torch/csrc.
This PR does the following:
1) Removes THSTensor macros in torch/csrc, which aren't used.
2) For macros defined outside of torch/csrc (THTensor, THTensor_, THStorage, THStorage_):
a) No longer override them, i.e. previously THTensor could actually be THCTensor if a generic file was included from a file including THCP.h.
b) Instead, introduce new macros THW* (e.g. THWTensor) to represent a (potentially empty) wildcard character.
In addition to making this code easier to read and codemod, this allows us to more freely change TH/THC; for example:
currently in the THC random code, the state is casted to THByteTensor*; this happens to work because the macros don't happen to override THByteTensor.
But if THByteTensor just becomes an alias of THTensor (which is the plan for a single tensor type), then this no longer works.
The whole thing is a bit of a mess previously because you really have to understand which macros and redefined and which aren't.
We could also rename the macros that live in torch/csrc (e.g. the THPTensor macros), but since that is more self contained, I punted for now.
* Don't change the plugin.
No longer generate data-type specific Storage types, since all Storage types are now identical anyway.
For (some) backwards compatibility and documentation purposes, the Real names, e.g. THLongStorage are now #defined as aliases to the single THStorage type
* Make THStorage / THCStorage have void* data ptr.
This is the initial step in unifying the ATen and TH tensor representations, next is to only generate a single THStorage / THCStorage type.
The major changes here are:
1) data has been renamed to data_ptr and made void* in THStorage/THCStorage.
2) THStorage / THCStorage stores a at::ScalarType representing its data type (This will be useful when we generate a single THStorage/THCStorage).
3) APIs for Accessing the data as a real*:
a) storage->data<real>() -- this does runtime-type checking (checks that the at::ScalarType is correct).
b) storage->unsafeData<real>() -- as above, but no runtime-type checking (used in inner loops / fast code paths).
c) THStorage_(data)(storage) -- this already existed, just calls storage->data<real>().
* Add include.
* Attempt to fix clang build issues.
* Clarify comment and remove extra character.
* Rename unsafeData -> unsafe_data.
* Remove unnecessary 'to' function to get compile time rather than link time errors.
* Remove templatization of PyTypeObject in THP copy storage methods.
An in-progress refactoring of THStorage is collapsing the types of THStorages to not be ScalarType-specific.
The revelant PyTypeObject to use for the THPStorageType is currently templatized based on the current THStorage;
this doesn't work if the ScalarType is collapsed. Instead, just pass it explicitly.
* Pass src type instead of dst type.
* Line up columns.
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.
To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.
There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:
https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
* Add interpreter support for Handles/PythonOp/CppOp
This treats Handles as a first-class type in the interpreter
since this turned out to be conceptually simpler than treating
them as a separate concept, which requires a second channel for
register allocating and moving data from one op to the next.
Notes:
* The refcounting nature of tensors is factored into its own base type
so that it can be shared with other refcounted types such as handle.
* Some methods redundant with TensorBase have been deleted from Tensor
* The interpreter uses raw refcounted handles. In addition to being
able to treat Tensors and Handles as the same base object, it removes
a lot of redundant refcounting as objects moved from tensors to input/
output lists.
* aten_dispatch has been updated to work directly on the raw refcounted
lists to avoid refcounting and duplicate lists.
* Removing jit_closure.cpp, The interpreter can now handle all pathways.
* Functions like `unsafeToTensorShare` describe how
ownership transfers in the interpreter. The `Steal` variants
take rvalue references as arguments, and invalidate those
arguments to prevent potential problems.
* Make TensorTemporary is not a subtype relationship because it is too easy to
do something horribly unsafe:
```
void foo(at::Tensor bar) {
// bar destructor call release on a temporary!
}
foo(TensorTemporary(retainable)); // structure slicing!
```