Commit Graph

226 Commits

Author SHA1 Message Date
Animesh Jain
d91db70295 [dynamo][cpp-guards] Optimize tensor.grad accessor (#123226)
For LayoutLM model, reduces C++ guard overhead by 1.48x. These are the numbers

![image](https://github.com/pytorch/pytorch/assets/13822661/25cfc35b-b67d-4903-8403-71fa931dacdd)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123226
Approved by: https://github.com/jansel
2024-04-03 05:32:13 +00:00
Animesh Jain
969bbf8e82 [dynamo][guards] Skip aliasing guards for optimizers (#123044)
I am ok if people don't want this PR to be merged.

For optimizers, we know that the state dict and param_group have same parameters. So, I think its ok to skip TENSOR_MUST_ALIAS guards.

Similarly for state tensors, all of them are different. Therefore, we can skip the tensor aliasing guards.

With this PR, these are the numbers for Megatron which has 394 parameters

<img width="290" alt="image" src="https://github.com/pytorch/pytorch/assets/13822661/0ce75dc6-4299-46bb-bf3c-7989ebc7cfc4">

C++ numbers jump a lot because of 2 reasons
1) We are now not doing INCREF/DECREF for a large number of tensors.
2) For python guards, we can expect higher numbers but that requires some more plumbing because the Python tensor guards are all collapsed into one.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/123044
Approved by: https://github.com/jansel, https://github.com/mlazos
2024-04-02 08:51:00 +00:00
Animesh Jain
234287aa16 [dynamo][cpp-guards] DUAL_LEVEL guard (#123058)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123058
Approved by: https://github.com/jansel
ghstack dependencies: #123046
2024-04-01 21:09:38 +00:00
Animesh Jain
99d939f51f [dynamo] Bugfix for HASATTR guard (#122947)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122947
Approved by: https://github.com/jansel
ghstack dependencies: #122828
2024-03-29 18:50:33 +00:00
Animesh Jain
8d676a6e8e [dynamo][cpp-guards] Bugfix for size/strides for tensor match (#122828)
This got missed because CPP guard manager is not ON by default.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122828
Approved by: https://github.com/mlazos, https://github.com/jansel
2024-03-28 00:16:49 +00:00
Animesh Jain
ceff2205e9 [dynamo][cpp-guards] Bugfix to pass on correct example_value (#122769)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122769
Approved by: https://github.com/jansel
ghstack dependencies: #122646, #122647, #122716
2024-03-27 19:40:46 +00:00
Animesh Jain
5b42c41b19 [dynamo][improve-guard-overhead] Skip TENSOR_MATCH guards on parameters for optimizers (#122647)
**1.32x  guard overhead reduction** (1.092 vs vs 0.827 ms) for MegatronBertForCausalLM with 394 params.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122647
Approved by: https://github.com/jansel, https://github.com/mlazos
ghstack dependencies: #122646
2024-03-27 19:40:43 +00:00
Joel Schlosser
07b618e2d4 Graph break cleanly in Dynamo for module parametrization (#121041)
Fixes #118795

This is a graph breaking partial fix for #120914. We still need -actual- module parametrization tracing support, but at least it doesn't blow up hard now.

**Background**: Module parametrization injects a property as the module parameter attribute that calls a `nn.Module` whose forward takes in a module parameter and returns a reparametrized module parameter.
Example:
```
class MyParametrization(nn.Module):
    def forward(X):
        # This reparametrization just negates the original parameter value
        return -X

m = nn.Linear(...)
p = MyParametrization()
register_parametrization(m, "weight", p)

# Accessing the "weight" attribute will invoke p's forward() on m's original weight and return the output as the new weight.
# m.weight here is now an injected property that does the above instead of an actual Parameter.
# This property is defined in torch/nn/utils/parametrize.py.
m.weight

# NB: Parametrization changes the module type (e.g. torch.nn.utils.parametrize.ParametrizedLinear)
print(type(m))
```

**Problem 1**: Dynamo has special tracing rules for things in `torch.nn`. Parametrizing a module changes the type of the module and the parametrized attribute, so now these rules wrongly affect tracing here. To fix this:
* For parametrized modules, call `convert_to_unspecialized()` to restart analysis where Dynamo starts inlining the module.

**Problem 2**: The issue seen in #118795 is that Dynamo will see a dynamically constructed tensor when `m.weight` is called and introduce that to its `tensor_weakref_to_sizes_strides` cache during fake-ification. This tensor is also made to be a graph input, since it's a module parameter. When guards are created for this module parameter input, the logic calls `m.weight` again and tries to look the result up in the cache, but this is a different tensor now, giving the `KeyError` symptom. To fix this:
* Replace Dynamo's `tensor_weakref_to_sizes_strides` cache with a `input_source_to_sizes_strides` cache.
    * This cache was originally introduced in #100128.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121041
Approved by: https://github.com/anijain2305
2024-03-26 23:44:51 +00:00
Jason Ansel
5f7e71c411 [dynamo] Add HASATTR guard for UserDefinedObject attrs (#122555)
Fixes #111522

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122555
Approved by: https://github.com/Skylion007
2024-03-24 03:41:58 +00:00
Guilherme Leobas
4eaa000acc Teach dynamo about torch.func.jvp (#119926)
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
2024-03-22 20:25:47 +00:00
PyTorch MergeBot
0696db8202 Revert "Teach dynamo about torch.func.jvp (#119926)"
This reverts commit 17489784b6.

Reverted https://github.com/pytorch/pytorch/pull/119926 on behalf of https://github.com/peterbell10 due to broken mac jobs on main ([comment](https://github.com/pytorch/pytorch/pull/119926#issuecomment-2010327997))
2024-03-20 18:34:43 +00:00
Guilherme Leobas
17489784b6 Teach dynamo about torch.func.jvp (#119926)
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
2024-03-20 13:09:19 +00:00
PyTorch MergeBot
36e5c1dcab Revert "Teach dynamo about torch.func.jvp (#119926)"
This reverts commit edd04b7c16.

Reverted https://github.com/pytorch/pytorch/pull/119926 on behalf of https://github.com/jeanschmidt due to lots of breakages in pull jobs, checking if reverting this one will help ([comment](https://github.com/pytorch/pytorch/pull/119926#issuecomment-2007915919))
2024-03-19 18:59:46 +00:00
Guilherme Leobas
edd04b7c16 Teach dynamo about torch.func.jvp (#119926)
List of changes:
- Replace JVP_NESTING by torch._C._functorch.maybe_current_level()
- Remove all increment nesting functions from wrap_fx_proxy_cls
- fwAD.make_dual receives the dual_level as keyword argument
- Add jvp_increment_nesting, set_fwd_grad_enabled and dual_level context managers to dynamo

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119926
Approved by: https://github.com/zou3519
2024-03-19 13:06:42 +00:00
Animesh Jain
8860c625ea [dynamo][guards-cpp-refactor] Integrate cpp guard manager with CheckFnManager (#120726)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120726
Approved by: https://github.com/jansel
2024-03-19 03:11:31 +00:00
Oguz Ulgen
7c5e29ae71 Back out "Support triton.language.dtype with torch.compile (#121690)" (#122108)
Summary: Some hard to deal with package import/export related problems. Lets revert and start with clean slate.

Test Plan: CI

Differential Revision: D55024877

Pull Request resolved: https://github.com/pytorch/pytorch/pull/122108
Approved by: https://github.com/ezyang
2024-03-18 20:50:28 +00:00
Animesh Jain
c568b84794 [dynamo][guards] Move backend match to eval_frame (#121954)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121954
Approved by: https://github.com/jansel
2024-03-17 06:52:10 +00:00
Oguz Ulgen
79ee6bbde3 Support triton.language.dtype with torch.compile (#121690)
Putting this PR as an RFC since I have resorted to some horrible hacks in order to make this work.
```
(Pdb) p triton.language.float32
triton.language.fp32
(Pdb) p str(triton.language.float32)
'fp32'
(Pdb) p repr(triton.language.float32)
'triton.language.fp32'
```
This means that we need to "rewrite" them for fx graph and inductor execution.

This PR allows Mamba2 to work with `torch.compile`.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121690
Approved by: https://github.com/Skylion007
2024-03-12 23:21:46 +00:00
Jason Ansel
4f19b5f7ef [dynamo] Remove extra guard for tensor constant attrs (#121106)
Also deletes some unused code.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/121106
Approved by: https://github.com/yanboliang, https://github.com/anijain2305
2024-03-05 17:16:04 +00:00
Nikita Shulga
a3b81666b1 [Dynamo] Fix guards for code objects (#120909)
By comparing them only by id, and raising an assert if someone calls into `EQUALS_MATCH`
Which render following example compileable:
```python
import torch

@torch.compile()
def foo(x, y):
    code = compile(y, "foo", "exec")
    exec(y)
    return x

print(foo(torch.rand(3), "print('Hello World')"))
```

Fixes https://github.com/pytorch/pytorch/issues/120647

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120909
Approved by: https://github.com/jansel
2024-03-02 02:17:17 +00:00
cpuhrsch
576c0482a5 Remove hard numpy dependency from guards.py (#119519)
I'm not sure if this is the ideal behavior / best fix for this.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119519
Approved by: https://github.com/albanD
2024-02-29 14:37:33 +00:00
Avik Chaudhuri
5472923998 derived dim (#118729)
With the current `Dim`-based dynamic shapes API for export, one can express that shapes of different input shapes must be equal by reusing the same `Dim`. However, non-trivial relationships between such input shapes cannot be expressed.

Recently we are seeing more and more examples of code that require this additional expressibility, e.g., where a pair of shapes might differ by one, or a shape might be double another (or simply even).

This PR introduces the concept of a "derived" `Dim`, i.e., a linear arithmetic expression over a `Dim`. By using a combination of `Dim`s and derived `Dim`s to specify input shapes, the desired relationships can be expressed naturally. E.g., a pair of shapes might be `dim` and `dim + 1`, or `dim` and `2*dim`, or even `2*dim` and `dim + 1`.

We extend the current infrastructure that translates `Dim`s to deprecated `dynamic_dim`-based constraints to work with derived `Dim`s. As usual, we raise constraint violation errors when shape guards cannot be verified given a dynamic shapes spec; suggest fixes; and raise runtime errors when future inputs violate the spec.

Importantly, some guards that used to cause forced specializations in the constraint solver because they were deemed "too complex" now do not do so, because they can now be specified as constraints. Since this was what motivated the introduction of a `disable_constraint_solver` flag to some internal APIs, we may not need that flag any more.

Note that shapes of placeholders in exported programs can now contain symbolic expressions and not just symbols.

Differential Revision: D53254587

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118729
Approved by: https://github.com/ezyang
2024-02-28 19:48:32 +00:00
Animesh Jain
e9a961f66a [dynamo][refactor] Use originating_source for HASATTR (#120723)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120723
Approved by: https://github.com/jansel
ghstack dependencies: #120520, #120590, #120721
2024-02-28 05:00:59 +00:00
Animesh Jain
5a53c0ff23 [dynamo][refactor] Rename LIST_LENGTH to SEQUENCE_LENGTH, separate DICT_LENGTH (#120721)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120721
Approved by: https://github.com/jansel
ghstack dependencies: #120520, #120590
2024-02-28 02:19:10 +00:00
Edward Z. Yang
1a1fc1047d Add structured trace logs (#120289)
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit

How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.

https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
ghstack dependencies: #120712
2024-02-28 01:01:41 +00:00
PyTorch MergeBot
f3dd2a544c Revert "Add structured trace logs (#120289)"
This reverts commit 9dfaef962c.

Reverted https://github.com/pytorch/pytorch/pull/120289 on behalf of https://github.com/kit1980 due to breaking internal builds, see D54230697 ([comment](https://github.com/pytorch/pytorch/pull/120289#issuecomment-1967477120))
2024-02-27 19:49:05 +00:00
Animesh Jain
8a59f49da2 [dynamo][compile-time] Collect guard debug stack info only with logs enabled (#120520)
Reduces backend=eager compile time from 33 to 19 seconds for `MobileBertForQuestionAnswering`. This also helps an internal model where guards.add function is taking 124 seconds.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120520
Approved by: https://github.com/mlazos
2024-02-27 01:51:16 +00:00
Edward Z. Yang
9dfaef962c Add structured trace logs (#120289)
Overall design: https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit

How to read the diff:
* Most files are me augmenting pre-existing logging with structured variants. For the most part it's simple (esp FX graphs, which have a canonical string representation); it gets more complicated when I decided to JSON-ify some data structure instead of keeping the ad hoc printing (notably, guards and dynamo output graph sizes)
* torch/_functorch/_aot_autograd/collect_metadata_analysis.py is some unrelated fixes I noticed while auditing artifact logs
* torch/_logging/_internal.py has the actual trace log implementation. The trace logger is implement as a logger named torch.__trace which is disconnected from the logging hierarchy. It gets its own handler and formatter (TorchLogsFormatter with _is_trace True). There's a teensy bit of FB specific code to automatically enable trace logging if a /logs directory exists. `trace_structured` is the main way to emit a trace log. Unusually, there's a separate "metadata" and "payload" field. The metadata field should not be too long (as it is serialized as a single line) and is always JSON (we put contextual things like compile id in it); the payload field can be long and is emitted after the metadata log line and can span multiple lines.
* torch/_logging/structured.py contains some helpers for converting Python data structures into JSON form. Notably, we have a string interning implementation here, which helps reduce the cost of serializing filenames into the log.
* test/dynamo/test_structured_trace.py the tests are cribbed from test_logging.py, but all rewritten to use expect tests on munged versions of what we'd actually output. Payloads are never tested, since they tend not be very stable.

https://github.com/ezyang/tlparse is a POC Rust program that can interpret these logs.

Testing that the fbcode detection works at https://www.internalfb.com/mlhub/pipelines/runs/fblearner/534553450 (Meta-only)

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120289
Approved by: https://github.com/Skylion007
2024-02-27 00:04:23 +00:00
Edward Z. Yang
fd3cf88f27 Rewrite docs about why we guard on dynamic dims (#120566)
Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120566
Approved by: https://github.com/desertfire
2024-02-26 18:58:30 +00:00
Animesh Jain
c18623b7ed [dynamo] Reland 120147 - - Use EQUALS_MATCH guard for mod.training (#120578)
To fix Memory leak discovered in https://github.com/pytorch/pytorch/issues/112090

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120578
Approved by: https://github.com/jansel
2024-02-26 03:49:47 +00:00
Animesh Jain
834c7a1d3e [dynamo][refactor] Move some helper functions to global scope (#120426)
This is to prepare for guard C++ refactor work.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/120426
Approved by: https://github.com/ezyang
2024-02-25 04:38:20 +00:00
PyTorch MergeBot
722afe6171 Revert "[dynamo] Use EQUALS_MATCH guard for mod.training (#120147)"
This reverts commit b642a18e80.

Reverted https://github.com/pytorch/pytorch/pull/120147 on behalf of https://github.com/williamwen42 due to memory leak, see https://github.com/pytorch/pytorch/issues/112090 ([comment](https://github.com/pytorch/pytorch/pull/120147#issuecomment-1960522018))
2024-02-22 23:46:55 +00:00
Animesh Jain
b642a18e80 [dynamo] Use EQUALS_MATCH guard for mod.training (#120147)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120147
Approved by: https://github.com/jansel
ghstack dependencies: #120132, #120140, #120145
2024-02-18 00:31:36 +00:00
Animesh Jain
0b11b0edd6 [dynamo][refactor] Use existing helper functions for CLOSURE_MATCH (#120145)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120145
Approved by: https://github.com/jansel, https://github.com/Fidget-Spinner
ghstack dependencies: #120132, #120140
2024-02-18 00:31:36 +00:00
Animesh Jain
757fc663a8 [dynamo][refactor] Use TYPE_MATCH instead of manually constructing guard (#120140)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120140
Approved by: https://github.com/jansel, https://github.com/yanboliang
ghstack dependencies: #120132
2024-02-17 16:03:36 +00:00
Animesh Jain
48d96c08f2 [dynamo][guards] Use EQUALS_MATCH for NAME_MATCH (#120132)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/120132
Approved by: https://github.com/jansel, https://github.com/yanboliang
2024-02-17 16:03:36 +00:00
Aaron Orenstein
2aad3f93f8 Fix guards for field access through properties (#119719)
When building guards which went through a property we were analyzing the property using getattr_static but the guard wasn't built using getattr_static so if the property was "unusual" it generated misbehaved code which referenced a non-existent `__closure__` field.

Fixes #118786

Note that after this change some of the referenced tests are still failing with a different error - but getting further.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119719
Approved by: https://github.com/oulgen
2024-02-14 20:42:55 +00:00
Guilherme Leobas
3319dbcd23 Update vmap guard to avoid recompilations (#119061)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119061
Approved by: https://github.com/zou3519
2024-02-13 20:50:23 +00:00
William Wen
ee1c2449f7 [dynamo] delete dynamo cache entry when guard function is invalidated [attempt 2] (#119107)
Attempt #2 for https://github.com/pytorch/pytorch/pull/117875 to fix https://github.com/pytorch/pytorch/issues/112090.

Summary of changes:
- ~Changed CacheEntry linked list into a doubly-linked list structure to support deletion.~ (done by C++ refactor)
- Added CacheEntry and ExtraState borrowed references to GuardFn so that GuardFn can tell ExtraState to delete CacheEntry when the GuardFn is invalidated.
- ~Added ExtraState raw reference to CacheEntry so that we can get ExtraState to correctly point to the first CacheEntry if it gets deleted.~ (done by C++ refactor)
- CacheEntry destructor needs to reset GuardFn refs to ExtraState/CacheEntry in order to prevent use-after-free.
- code_context values that are nn.GraphModules need to be weakrefs in order to prevent circular references.
- Added tests that check for memory leaks and cache deletion operations.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/119107
Approved by: https://github.com/jansel
2024-02-07 03:32:42 +00:00
Animesh Jain
0c3a1c893e [dynamo] Setup the globals for guard_fn without a reference to f_locals (#118447)
UPDATE - I changed the PR because from discussion with @jansel it was clear that someone else was holding on to a reference to f_locals. This PR now solves that problem first. I removed the eval_frame.c part because it was failing tests that use `exec` or `eval` with weird error like `no no locals found when storing 'math'`. I would debug that in a separate PR.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118447
Approved by: https://github.com/Skylion007, https://github.com/jansel
ghstack dependencies: #118975, #118420
2024-02-05 05:39:39 +00:00
lezcano
65efbf078c Optimize dict keys guard when all the keys are constant (#118855)
We also rename ODICT_KEYS and make it use a list rather than a string.

Split from https://github.com/pytorch/pytorch/pull/118630.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118855
Approved by: https://github.com/peterbell10
ghstack dependencies: #117982, #118098, #117983, #117625, #118194, #118003, #118208, #118199, #118535
2024-02-02 14:42:56 +00:00
lezcano
ecf7d0e8ac Make dict guards amenable to the CSE pass (#118194)
Supersedes https://github.com/pytorch/pytorch/pull/118096 as a much cleaner and simpler solution.

It is difficult to write a test for this one without exposing too much
of the internals. You can see empirically that it works by running
```
TORCHDYNAMO_PRINT_GUARDS=1 TORCH_LOGS=+guards  python test/test_optim.py -k test_can_load_older_state_dict_ASGD_cpu_float32
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118194
Approved by: https://github.com/jansel, https://github.com/peterbell10
ghstack dependencies: #117982, #118098, #117983, #117625
2024-02-02 14:38:48 +00:00
lezcano
eb2bdfae88 Make variables in dict LazyTrackers (not lazily guarded yet) and avoid using DICT_KEYS guard (#117625)
Make variables in dict lazy and remove DICT_KEYS guard.

We build the keys of a dict depth-first and we rely on the guards of
each element in the dict to create the correct guards. This allows us to
remove the rather buggy DICT_KEYS guard and make the guard lazy.
The guards are not completely lazy yet, as we instantiate them in
`_HashableTracker._eq_impl` but it should be possible to make them
truly lazy.

Also, adding new types to the supported types within keys should be less
error prone.

This is marginally less efficient when we graph break, but in turn we
should graph break much less. It also  makes the dicts code easier to maintain
(removes `is_hashable_python_var`).

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117625
Approved by: https://github.com/jansel, https://github.com/peterbell10, https://github.com/anijain2305
ghstack dependencies: #117982, #118098, #117983
2024-02-02 14:38:08 +00:00
lezcano
0f3e20a1b6 Print the malformed guard when there's a guard error. (#117982)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/117982
Approved by: https://github.com/jansel, https://github.com/anijain2305
2024-02-02 14:37:05 +00:00
lezcano
91690983ff [easy] Faster empty LIST_LENGTH guard (#118542)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/118542
Approved by: https://github.com/peterbell10, https://github.com/jansel
2024-01-30 13:02:18 +00:00
Edward Z. Yang
96d94f574e Fix several bugs related to unbacked SymInt codegen in inductor (#117862)
Let me tell you, this was a *journey.*

* When we repropagate through FX interpreter in AOTAutograd, this will reallocate unbacked SymInts. We can eliminate all of these fresh allocations by appropriately asserting equalities on them setting up replacements. See also https://github.com/pytorch/pytorch/issues/111950
* The `inner_fn` of Loops can contain references to unbacked SymInts. We must collect them to prevent DCE.
* Export naughtily accessed `_expr` when it should have accessed `expr` on SymNode. Fixed two sites of this.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117862
Approved by: https://github.com/bdhirsh
2024-01-26 18:08:03 +00:00
Jason Ansel
c5702a0891 [dynamo] Optimize BACKEND_MATCH guard (#118065)
As measured by `benchmarks/dynamo/microbenchmarks/overheads.py`:
- Before `22.5us`
- After `18.1us`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/118065
Approved by: https://github.com/ydwu4
2024-01-24 07:47:52 +00:00
Yanbo Liang
c0732c8d5e [Dynamo] Add complex to literal constant (#117819)
Fixes #ISSUE_NUMBER

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117819
Approved by: https://github.com/zou3519
2024-01-23 23:46:46 +00:00
Guilherme Leobas
80cf0ce153 Enhance torch.vmap support from inside torch.compile (#116050)
This work rewrites vmap support in torch.compile by inlining most of
the frames into the existing FX graph. It also unlocks to PyTorch to
support features that were previously missing, such as keyword args.

Fixes: https://github.com/pytorch/pytorch/issues/114306

Pull Request resolved: https://github.com/pytorch/pytorch/pull/116050
Approved by: https://github.com/zou3519
2024-01-22 17:53:45 +00:00
lezcano
0d1e7053ac [easy] Log guard failure (#117639)
Facilitates greatly debugging guard creation

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117639
Approved by: https://github.com/Skylion007, https://github.com/jansel
ghstack dependencies: #112252, #117630, #110524, #108420
2024-01-18 09:37:33 +00:00