**Summary**
Per the discussion in https://github.com/pytorch/pytorch/pull/123444, the `decomposed quant/dequant` patterns changed after https://github.com/pytorch/pytorch/pull/123445, we can move the optimization of `decomposed quant/dequant` from inductor decomposition into lowering phase to avoid the changes. In this way, we can:
- Avoid the pattern matcher failure introduced in https://github.com/pytorch/pytorch/pull/123445
- Make the quantization pattern clearer in the pattern matcher phase, since the `quant/dequant` nodes have not been decomposed.
**Changes in this PR**
- Move optimization of `decomposed quant/dequant` from inductor decomposition into lowering phase.
- Corresponding changes in the quantization pattern matcher to ensure no bc-breaking.
**TestPlan**
```
python -u -m pytest -s -v test/inductor/test_mkldnn_pattern_matcher.py -k test_q
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124041
Approved by: https://github.com/peterbell10, https://github.com/jgong5
**Summary**
Per the discussion in https://github.com/pytorch/pytorch/pull/123444, the `decomposed quant/dequant` patterns changed after https://github.com/pytorch/pytorch/pull/123445, we can move the optimization of `decomposed quant/dequant` from inductor decomposition into lowering phase to avoid the changes. In this way, we can:
- Avoid the pattern matcher failure introduced in https://github.com/pytorch/pytorch/pull/123445
- Make the quantization pattern clearer in the pattern matcher phase, since the `quant/dequant` nodes have not been decomposed.
**Changes in this PR**
- Move optimization of `decomposed quant/dequant` from inductor decomposition into lowering phase.
- Corresponding changes in the quantization pattern matcher to ensure no bc-breaking.
**TestPlan**
```
python -u -m pytest -s -v test/inductor/test_mkldnn_pattern_matcher.py -k test_q
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124041
Approved by: https://github.com/peterbell10, https://github.com/jgong5
Fixes [internal error](https://fb.workplace.com/groups/1075192433118967/permalink/1416709435633930/).
The issue is that the asserting nodes added in the `insert_deferred_runtime_assertion` pass do not contain metadata that the ExportedProgram requires the graph to have. One solution to fix this is to retrace the entire module, or another solution is to manually add back this metadata.
This diff implements the latter solution (manually add back the metadata) through hooking into fx.graph's `create_node` function, and adding export-specific metadata for every node that is created. The reason I did this is so that the `insert_deferred_runtime_assertion` does not have to know about what metadata export wants.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125414
Approved by: https://github.com/zhxchen17, https://github.com/BoyuanFeng
This allows `associative_scan` to take an arbitrary pytree of tensors,
which is flattened to their leaves before calling the `associative_scan`
higher order operator.
I also add support in inductor to generate code for scanning over sequences
of tensors.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122137
Approved by: https://github.com/lezcano, https://github.com/Chillee
ghstack dependencies: #119430
This PR completely removes the Inductor IR for legacy functional collectives:
- Removed the `CollectiveKernel` hiearchy and `Wait`, as well as the corresponding lowerings. These IRs are target (i.e. Python) specific and don't model node dependencies propoerly (e.g. they rely on `never_reuse_buffers` for correct behavior). They've been superceded by `ir._CollectiveKernel`.
- Removed `InPlaceHint` and the scheduler logic for handling it. `InPlaceHint` is a codegen-time buffer reuse mechanism controlled by the IR's codegen. It's a bit hacky and overlaps with the default buffer reuse mechanism. Removing it since it is only used by legacy functional collectives.
- Removed `OutputBuffer` and `MultiOutputNoSizeAssert` which are designed for and only used by legacy functional collectives.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124992
Approved by: https://github.com/Chillee, https://github.com/wanchaol
This provides utilities for creating and querying properties on
sympy.Symbol. I want to use this refactor to get a better handle on how
the 's' prefix is being used in Inductor. To start, I only do
symbolic_shapes code because that's what I'm familiar with.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/125395
Approved by: https://github.com/Skylion007
This completely subsumes https://github.com/pytorch/pytorch/pull/120816
This makes use of the unbacked binding machinery to teach Inductor how to generate deferred runtime asserts directly. There is some back story about why I did it this way, let me explain.
Previously, our strategy for generating runtime asserts was that Dynamo would insert them into the FX graph after finishing tracing, and we would attempt to code generate them based on the FX graph. This is a good strategy for export, where we immediately export the graph. However, this strategy was afflicted by problems in eager, where we reuse the same ShapeEnv as before. In particular, on subsequent graph passes, we would immediately turn all of these assertions into noops, because when we evaluated their expressions, we would see that because we had a deferred runtime assert in the ShapeEnv, we know "oh, of course this expression is True" already. Oops!
So, with this PR, we take the attitude that as long as the ShapeEnv sticks around, the ShapeEnv's list of deferred runtime asserts is the source of truth, and we don't put anything in the graph. So we just need to decide when to actually generate asserts, and the place I picked was Inductor lowering, since we already have an AssertScalar buffer concept, and so I just need to insert them at this point. AssertScalar also uses raw sympy.Expr rather than SymInt/Bool, so it is easier to prevent unrestricted simplification at this point.
There are a few things jumbled together in this PR. I can split them if you want, but some of the changes are before I changed my strategy, but they're useful changes anyway.
**torch/_dynamo/output_graph.py** and **torch/_inductor/lowering.py** - Here, we stop putting deferred runtime asserts in the graph. I also have to make sure we don't DCE unused symbol arguments; we're going to get some goofy graph arguments this way, will be good to restore that optimization eventually. We also just disable codegen for `_assert_scalar` entirely; we assume that ShapeEnv will be good enough to capture all of these.
**torch/_inductor/codegen/wrapper.py** and **torch/_inductor/ir.py** - Add a way to codegen sizevars without forcing simplification
**torch/_inductor/graph.py** - The main logic. Our strategy is to interpose in the same place we are testing that unbacked SymInts are properly showing up in lowered code. The logic is directly analogous to the logic in the existing insert deferred runtime asserts FX pass, but it's simpler because sympy expressions can be directly stored on inductor IR nodes.
**torch/fx/experimental/symbolic_shapes.py** - For extra safety, we have a way of freezing runtime asserts, so that if you try to add more we error. This prevents us from adding runtime asserts after we've done lowering. There's a funny interaction with backwards which there's a comment for in graph.py
**torch/fx/passes/runtime_assert.py** - This is not really needed in this PR, but I rewrote the runtime assert logic to use unbacked_bindings rather than inferring it by looking for unbacked SymInts. Now, keypaths are translated into FX node acessors. Unfortunately, I couldn't delete the old inference code, because you still need it to find backed SymInts from arguments (as this pass may be used on graphs which don't explicitly bind all their shape variables as argments). There are some new tests exercising this.
TODO: I think we need to generate asserts for replacements too. This is a preexisting problem that the old FX pass had too.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124874
Approved by: https://github.com/jansel
ghstack dependencies: #124864
Previously, unbacked SymInts would gradually get larger and larger as we kept rebinding them. Now, we do the replacement to preserve the old symbol.
Actually doing this is a bit tricky. Here’s the order things happen when retracing data dependent:
1. Run fake tensor prop: allocate new unbacked SymInt
2. Run proxy tensor mode, calculate bindings and associate them with FX node
3. Run PropagateUnbackedSymInts, rename unbacked bindings to their old ones so they are consistent
So the problem is when we calculate bindings in step (2), we don't know
what the original names are yet, we only find out later at (3). But by
the time (3) runs, we've already stuffed some new bindings in
meta["unbacked_bindings"] and we don't know how to update them! To fix
this, I introduce resolve_unbacked_bindings which post facto applies any
of the renamings we discovered in (3).
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124782
Approved by: https://github.com/lezcano
ghstack dependencies: #124310, #124314, #124316, #124394, #124739
This PR has a lot of "draw the rest of the fucking owl" energy. Here's how to break it down.
1. **torch/_inductor/graph.py** - We start by tightening unbacked symbol invariants. Specifically, as we lower FX nodes, we check whether or not every unbacked_binding recorded on the FX node meta, actually ends up getting bound (according to get_unbacked_symbol_defs) in all the buffers generated by the lowering. Hopefully this invariant is self evident. This leads to a lot of failures.
2. **torch/_inductor/ir.py** - Problem 1: There is softness in how Inductor computes defs of unbacked symbols in IR node. Previously, we tried to infer it by looking at the output sizes/strides/etc and see if new unbacked symbols popped up that we hadn't seen in the inputs. I don't know exactly what was buggy about the old code, but sometimes we would fail to notice an unbacked symbol had been bound, or rebind an unbacked symbol multiple times. Fortunately, thanks to the earlier PRs in our stack, we now have a nice list of unbacked symbol bindings from FX, so we now just store it directly on ExternKernel and use it directly to report defs. This has to be done twice: once for FallbackKernel (e.g., nonzero) and once for DynamicScalar (e.g., item) (see also **torch/_inductor/lowering.py**, **torch/_inductor/codegen/wrapper.py** and **torch/_inductor/codegen/cpp_wrapper_cpu.py** for the lowering and codegen changes for item)
* **process_kernel** - Sidequest! It turns out that Inductor lowering can reallocate unbacked symbols. This happens specifically when we repropagate fake tensors through the operator in `process_kernel`. This repropagation process is necessary because Inductor may have changed the strides of input tensors, and it must now recompute the strides so that it can continue to appropriately plan the rest of the lowering process. This is fine: we just make sure we do the rebind unbacked + compute_unbacked_bindings dance we've been doing previously in the PR stack. But instead of putting unbacked_bindings on a new FX node, they go straight into our unbacked_bindings on the Inductor IR node.
* **codegen_unbacked_symbol_defs** - Sidequest! FallbackKernel lowering is done in two steps. First, you emit the FallbackKernel buffer. Then, you emit MultiOutput buffers which actually give access to the individual outputs of FallbackKernel, which may have been multi-output. There is a design decision here: does the FallbackKernel bind the unbacked symbols, or the MultiOutput buffer? Historically, we put the binding on MultiOutput buffer, because it's more convenient: the FallbackKernel buffer is fake, in fact, it doesn't even get a name in C++ codegen. But it's kind of inconsistent with the keypath model that we've been tracking unbacked bindings with: if you have a multi-output node, you'd expect a keypath like `[0].size()[0]` representing the first output's first dimension size. That suggests that it's the FallbackKernel that should define the things. So that was my first implementation. Unfortunately, the C++ codegen is too cursed and I could not understand how to make it work in that case. So now we just unsoundly assume you cannot have multi-output data dependent output, and do the codegen in MultiOutput. There are some comments explaining exactly what we are improperly assuming.
3. **_rename_unbacked_to** in **torch/fx/experimental/symbolic_shapes.py** - Previously, when we renamed unbacked symbols, we clobbered any facts we previously knew about them. So for example, if we had a replacement `u0 -> s0` but then we renamed u0 to u1, we would now setup the replacement `u0 -> u1`, clobbering the old replacement. This apparently didn't matter in earlier PRs in the stack, but with Inductor now on the ball, there were some tests that indicated this was a problem. The solution is easy: if u0 had a preexisting replacement, reapply it to u1. However...
* **torch/_functorch/_aot_autograd/collect_metadata_analysis.py** - When we run forward analysis, this triggers fake tensor repropagation and fresh allocations. Previously, we just cleared out the pending symbols when finished the analysis. But with the change above, this would also migrate replacements to the new symbols... which are now dead. So now we explicitly suppress generation of these symbols with `ignore_fresh_unbacked_symbols` so that no rebinding happens at all.
* **torch/_dynamo/eval_frame.py** - same deal; I just searched for all sites we called clear() on pending
4. The last step is fixing the long tail of extra problems that show up, now that unbacked_bindings are load bearing into Inductor
* **torch/_dynamo/eval_frame.py** - Some of the exports are making copies of nodes without repropagating fake tensors, so in this case, it is important to also copy the `unbacked_bindings` (apparently this didn't matter before without the Inductor changes)
* **torch/_export/pass_base.py** - I discover that this is doing fake tensor repropagation via a test suite failure. Do the same playbook as AOTAutograd: PropagateUnbackedSymInts too! Actually, they also have implemented their own tracer as well, so do the same playbook as proxy_tensor: record unbacked_bindings on the newly traced nodes. UGH code duplication.
* **torch/_subclasses/fake_tensor.py**, **torch/_subclasses/fake_impls.py** (with call site updates at **torch/_functorch/_aot_autograd/traced_function_transforms.py** and **torch/fx/passes/fake_tensor_prop.py**) - What's this new epoch thing? I noticed that sometimes I would be retracing, call nonzero() on a fake tensor, and not allocate a new unbacked symbol. This is actually bad, because if I don't get a new unbacked symbol, I don't know there's a binding site, and `unbacked_bindings` is now missing a binding. The reason for this is memoization: if I reuse the exact same fake tensor on my retrace, it will already have an unbacked symint memoized on it and we will short circuit allocation. Well, that's no good. So I associate the memos with a fake tensor epoch, and every time you start a new fake tensor propagation from scratch, you bump the epoch so that I clear all the memos.
* **torch/_inductor/scheduler.py** - I notice in unit tests that V.current_node is not always set when we call process_kernel. So I save it into the IR node and restore it when we are running `get_estimated_runtime`.
* **torch/fx/experimental/symbolic_shapes.py** - A few things
* **rebind_unbacked** (re **_tensor_version**). Ordinarily, when you have an unbacked SymInt, you persistently hvae it all the way to the end of the program. `_tensor_version` violates this: this generates an unbacked SymInt (for reasons I don't quite understand?) and then gets rid of it later. This triggered an assert violation. I think this op is kind of misusing unbacked SymInt, but I didn't know how to refactor it, so it gets a special case.
* **rebind_unbacked** (re **Simplify SymBool binding**). Ugh, SymBool, what a pain in the butt. I have an assert that you can only rebind unbacked symbol to another unbacked symbol. This assert fails when a boolean is involved, because the result of running keypath on the result is not `u1`, it's `sympy.Piecewise(... sympy.Eq(u1, 1) ...)`. This is actually just `u1`, but Sympy doesn't know it because it doesn't know that `u1` value range is `[0, 1]`. So we manually implement the simplification needed to get the assert to pass.
* **compute_unbacked_bindings** (re **This is pretty fragile**). There is a really funny disaster involving memoization and Inductor process kernel. Ordinarily when I retrace, if there was a memo hit in the old trace, there will be a memo hit in the new trace. However, Inductor process kernel breaks this, because it recreates fake tensor inputs to the operator call from scratch (since they might have different strides), and obviously these tensor inputs don't have the memo from the old one. I tried a little bit to try to manually transplant the memo to the new fake tensor but it seemed hopeless, so I just let the fresh symbol ride, allocating a new unbacked symbol. However, in one of our tests, we rely on knowing that the first nonzero call is equal to the second (memoized) nonzero call. The equality test looked pretty easy to discharge, so I just went ahead and added a deferred runtime assert to this effect and it worked.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124394
Approved by: https://github.com/jansel
ghstack dependencies: #124310, #124314, #124316
Fix for https://github.com/pytorch/pytorch/issues/124289.
There was a tensor which had a single, expanded element. inductor generated the strides as all 0, while sdpa expects a dense last dimension `t.stride(-1) == 1`. While these are equivalent, we still hit an error in the kernel. We could make fixes in sdpa, but matching the insignificant strides in inductor also works and I am less aware of the downstream sdpa kernel details.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/124859
Approved by: https://github.com/drisspg
ghstack dependencies: #124751
Automatic fixes that replaces certain list comprehensions with generator ones where appropriate so that they are immediately consumed. This is preview functionality in ruff for rule C419 and it was automatically applied.
Co-authored-by: Nikita Shulga <2453524+malfet@users.noreply.github.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123960
Approved by: https://github.com/malfet
Given the following code/dynamo graph:
```
class GraphModule(torch.nn.Module):
def forward(self, L_x_ : torch.Tensor):
l_x_ = L_x_
_print = torch.ops.aten._print('moo')
res = l_x_ + l_x_; l_x_ = None
_print_1 = torch.ops.aten._print('moo')
return (res,)
```
AOTAutograd will trace the following program, threading tokens from the inputs, through the effectful operator calls (torch.ops.aten._print), and as an output:
```
class <lambda>(torch.nn.Module):
def forward(self, arg0_1: "f32[0]", arg1_1: "f32[2, 3]"):
with_effects = torch._higher_order_ops.effects.with_effects(arg0_1, torch.ops.aten._print.default, 'moo'); arg0_1 = None
getitem: "f32[0]" = with_effects[0]; with_effects = None
add: "f32[2, 3]" = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
with_effects_1 = torch._higher_order_ops.effects.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
getitem_2: "f32[0]" = with_effects_1[0]; with_effects_1 = None
return (getitem_2, add)
```
However when we get to inductor, since we want the inductor generated code to not have any token inputs/outputs for better readability, we want to modify the aten graph by removing the tokens from inputs, and creating them through `torch.ops.aten._make_dep_token`, and sinking them through the `torch.ops.aten._sink_tokens` operators.
This has to be done *after* the partitioner, otherwise the partitioner will add the make_token/sink_token operators to the backwards graph.
```
class <lambda>(torch.nn.Module):
def forward(self, arg1_1: "f32[2, 3]"):
_make_dep_token_default: "f32[0]" = torch.ops.aten._make_dep_token.default()
with_effects = torch._higher_order_ops.effects.with_effects(_make_dep_token_default, torch.ops.aten._print.default, 'moo'); _make_dep_token_default = None
getitem: "f32[0]" = with_effects[0]; with_effects = None
add: "f32[2, 3]" = torch.ops.aten.add.Tensor(arg1_1, arg1_1); arg1_1 = None
with_effects_1 = torch._higher_order_ops.effects.with_effects(getitem, torch.ops.aten._print.default, 'moo'); getitem = None
getitem_2: "f32[0]" = with_effects_1[0]; with_effects_1 = None
_sink_tokens_default = torch.ops.aten._sink_tokens.default((getitem_2,)); getitem_2 = None
return (add,)
```
When doing inductor lowering, we convert `with_effects` calls to an `EffectfulKernel`, which just a `FallbackKernel` but with a pointer to previous effectful operator's call. During scheduling, we will create a `StarDep` between the EffectfulKernel and its previous EffectfulKernel so that they don't get reordered. The inductor generated python code looks like:
```
def call(args):
arg1_1, = args
args.clear()
assert_size_stride(arg1_1, (2, 3), (3, 1))
# Source Nodes: [_print], Original ATen: []
buf2 = aten._print.default('moo')
# Source Nodes: [_print_1], Original ATen: []
buf3 = aten._print.default('moo')
buf4 = empty_strided_cpu((2, 3), (3, 1), torch.float32)
cpp_fused_add_0(arg1_1, buf4)
del arg1_1
return (buf4, )
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122347
Approved by: https://github.com/bdhirsh
As the design in RFC https://github.com/pytorch/pytorch/issues/114856, this PR implemented Intel GPU Inductor backend by:
- Reuse WrapperCodegen and TritonScheduling for python wrapper and kernel code generation. And implenented device-specific code generation in XPUDeviceOpOverrides
- Reuse fx_pass, lowering, codecache, triton kernel auto-tuning, and compilation.
For the test case, this PR provided test/inductor/test_xpu_basic.py for basic inductor backend functionality testing.
We'll reuse all the existing Inductor test case in the next PR.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/121895
Approved by: https://github.com/EikanWang, https://github.com/jansel, https://github.com/desertfire
We add an additional_inputs arguments to the HOP while_loop and rename the operands to carried_inputs based on offline discussion with @zou3519 . This allows us to support closures, parameters and buffers.
The alternative is to pass the lifted inputs directly to outputs of body_fn. But since we want the body_fn's output to not aliasing input. We'll need to copy the inputs and remove the copies later. This is a bit more work to do.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/123018
Approved by: https://github.com/aakhundov
ghstack dependencies: #123217
Currently scan has an `init` argument which must be the identity of the
combine function. This isn't strictly necessary if we are more careful about
keeping track of the first element and avoid combining it with anything.
This does additionally require that there are no active load masks, since we can't
do the `where_cond` any more. However, this shouldn't be possible anyway since
scans are always realized and only fused via the scheduler.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/119727
Approved by: https://github.com/lezcano
Summary:
Original commit changeset: ebda663a196b
Original Phabricator Diff: D55271788
Test Plan: Some models are failing torch compile with this, retrying the tests
Reviewed By: colinchan15
Differential Revision: D55374457
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122709
Approved by: https://github.com/huydhn
This issue popped up when enabling predispatch IR on the benchmarks (https://github.com/pytorch/pytorch/pull/122225)
On the following model:
```
class M(torch.nn.Module):
def __init__(self, device):
super().__init__()
self.device = device
def forward(self, x):
t = torch.tensor(x.size(-1), device=self.device, dtype=torch.float)
t = torch.sqrt(t * 3)
return x * t
```
We get the following error:
```
======================================================================
ERROR: test_constant_abi_compatible_cuda (__main__.AOTInductorTestABICompatibleCuda)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/data/users/angelayi/pytorch/torch/testing/_internal/common_utils.py", line 2741, in wrapper
method(*args, **kwargs)
File "/data/users/angelayi/pytorch/test/inductor/test_torchinductor.py", line 9232, in new_test
return value(self)
File "/home/angelayi/.conda/envs/pytorch10/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/data/users/angelayi/pytorch/test/inductor/test_aot_inductor.py", line 922, in test_constant
self.check_model(M(self.device), (torch.randn(5, 5, device=self.device),))
File "/data/users/angelayi/pytorch/test/inductor/test_aot_inductor.py", line 91, in check_model
actual = AOTIRunnerUtil.run(
File "/data/users/angelayi/pytorch/test/inductor/test_aot_inductor_utils.py", line 102, in run
so_path = AOTIRunnerUtil.compile(
File "/data/users/angelayi/pytorch/test/inductor/test_aot_inductor_utils.py", line 40, in compile
so_path = torch._inductor.aot_compile_ep(
File "/data/users/angelayi/pytorch/torch/_inductor/__init__.py", line 150, in aot_compile_ep
return compile_fx_aot(
File "/data/users/angelayi/pytorch/torch/_inductor/compile_fx.py", line 1005, in compile_fx_aot
compiled_lib_path = compile_fx(
File "/home/angelayi/.conda/envs/pytorch10/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/data/users/angelayi/pytorch/torch/_inductor/compile_fx.py", line 1111, in compile_fx
return compile_fx(
File "/home/angelayi/.conda/envs/pytorch10/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/data/users/angelayi/pytorch/torch/_inductor/compile_fx.py", line 1145, in compile_fx
return compile_fx(
File "/home/angelayi/.conda/envs/pytorch10/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/data/users/angelayi/pytorch/torch/_inductor/compile_fx.py", line 1336, in compile_fx
return inference_compiler(unlifted_gm, example_inputs_)
File "/data/users/angelayi/pytorch/torch/_dynamo/utils.py", line 265, in time_wrapper
r = func(*args, **kwargs)
File "/data/users/angelayi/pytorch/torch/_inductor/compile_fx.py", line 1266, in fw_compiler_base
return inner_compile(
File "/home/angelayi/.conda/envs/pytorch10/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/data/users/angelayi/pytorch/torch/_dynamo/repro/after_aot.py", line 83, in debug_wrapper
inner_compiled_fn = compiler_fn(gm, example_inputs)
File "/data/users/angelayi/pytorch/torch/_inductor/debug.py", line 304, in inner
return fn(*args, **kwargs)
File "/home/angelayi/.conda/envs/pytorch10/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/home/angelayi/.conda/envs/pytorch10/lib/python3.10/contextlib.py", line 79, in inner
return func(*args, **kwds)
File "/data/users/angelayi/pytorch/torch/_dynamo/utils.py", line 265, in time_wrapper
r = func(*args, **kwargs)
File "/data/users/angelayi/pytorch/torch/_inductor/compile_fx.py", line 447, in compile_fx_inner
compiled_graph = fx_codegen_and_compile(
File "/data/users/angelayi/pytorch/torch/_inductor/compile_fx.py", line 707, in fx_codegen_and_compile
graph.run(*example_inputs)
File "/data/users/angelayi/pytorch/torch/_dynamo/utils.py", line 265, in time_wrapper
r = func(*args, **kwargs)
File "/data/users/angelayi/pytorch/torch/_inductor/graph.py", line 612, in run
return super().run(*args)
File "/data/users/angelayi/pytorch/torch/fx/interpreter.py", line 145, in run
self.env[node] = self.run_node(node)
File "/data/users/angelayi/pytorch/torch/_inductor/graph.py", line 957, in run_node
result = super().run_node(n)
File "/data/users/angelayi/pytorch/torch/fx/interpreter.py", line 202, in run_node
return getattr(self, n.op)(n.target, args, kwargs)
File "/data/users/angelayi/pytorch/torch/_inductor/graph.py", line 819, in call_function
raise LoweringException(e, target, args, kwargs).with_traceback(
File "/data/users/angelayi/pytorch/torch/_inductor/graph.py", line 816, in call_function
out = lowerings[target](*args, **kwargs)
File "/data/users/angelayi/pytorch/torch/_inductor/lowering.py", line 298, in wrapped
out = decomp_fn(*args, **kwargs)
File "/data/users/angelayi/pytorch/torch/_inductor/lowering.py", line 5340, in mul
return make_pointwise(fn)(a, b)
File "/data/users/angelayi/pytorch/torch/_inductor/lowering.py", line 409, in inner
inputs = promote_constants(inputs, override_return_dtype)
File "/data/users/angelayi/pytorch/torch/_inductor/lowering.py", line 373, in promote_constants
ex = next(x for x in inputs if isinstance(x, (TensorBox, ExpandView)))
torch._inductor.exc.LoweringException: StopIteration:
target: aten.mul.Tensor
args[0]: Constant(value=5.0, dtype=torch.float32, device=device(type='cuda', index=0))
args[1]: 3
```
So I added an additional casing in `promote_constants` to handle the ir.Constants and now it works! Although please let me know if this is the wrong approach. Here's a paste of the full run with the inductor logs: P1198927007
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122419
Approved by: https://github.com/eellison, https://github.com/desertfire, https://github.com/chenyang78
Summary: `torch.while_loop` HOP support is added to JIT Inductor. The test coverage is limited due to the functionality constraints of the upstream `torch.while_loop` op in Dynamo / Export. When those are lifted, we'll add more tests (see TODO-s in the test file).
AOT Inductor support will be added in a follow-up PR.
Test Plan:
```
$ python test/inductor/test_control_flow.py
...
----------------------------------------------------------------------
Ran 38 tests in 159.387s
OK
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/122069
Approved by: https://github.com/jansel, https://github.com/eellison