Commit Graph

46 Commits

Author SHA1 Message Date
Roy Li
d70c6f23f4 Pass ScalarType separately from Type in python constructors
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17786

Reviewed By: ezyang

Differential Revision: D14379075

fbshipit-source-id: 3abf066563b789a30cafe5b0c868a41326f5b833
2019-04-04 02:24:20 -07:00
Roy Li
c705d9eb1e Introduce DeprecatedTypeProperties class (#17991)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17991

changes:
-Breaks bc: Tensor::type() now returns DeprecatedTypeProperties& rather than Type&.
-Added DeprecatedTypeProperties, it serves as a temporary replacement for Type as the return value of Tensor::type(). This contributes to making Type just for dispatch purposes so that we can make it dtype agnostic.
-Tensor::dispatch_type() now returns Type& like Tensor::type() used to do.
-Changed callsites of Tensor::type() appropriately.

Reviewed By: ezyang

Differential Revision: D14443117

fbshipit-source-id: 239ccb7a09626279a71d1a37f8f82e7f57bf7d9e
2019-04-04 02:24:13 -07:00
Vitaly Fedyunin
c484cf43a0 Adding pin_memory kwarg to zeros, ones, empty, ... tensor constructors. (#18455)
Summary:
Make it possible to construct a pinned memory tensor without creating a storage first and without calling pin_memory() function. It is also faster, as copy operation is unnecessary.

Supported functions:
```python
torch.rand_like(t, pin_memory=True)
torch.randn_like(t, pin_memory=True)
torch.empty_like(t, pin_memory=True)
torch.full_like(t, 4, pin_memory=True)
torch.zeros_like(t, pin_memory=True)
torch.ones_like(t, pin_memory=True)
torch.tensor([10,11], pin_memory=True)
torch.randn(3, 5, pin_memory=True)
torch.rand(3, pin_memory=True)
torch.zeros(3, pin_memory=True)
torch.randperm(3, pin_memory=True)
torch.empty(6, pin_memory=True)
torch.ones(6, pin_memory=True)
torch.eye(6, pin_memory=True)
torch.arange(3, 5, pin_memory=True)
```

Part of the bigger: `Remove Storage` plan.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/18455

Reviewed By: ezyang

Differential Revision: D14672084

Pulled By: VitalyFedyunin

fbshipit-source-id: 9d0997ec00f59500ee018f8b851934d334012124
2019-04-02 08:48:19 -07:00
Roy Li
7aae51cded Replace tensor.type().scalarType() calls with tensor.scalar_type()
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/17515

Reviewed By: ezyang

Differential Revision: D14233250

fbshipit-source-id: 6c7af8d2291c0c2b148001b30cf03834f34366c0
2019-03-08 14:08:18 -08:00
Xiang Gao
2e5a8cee82 Customize the printing of namedtuple return (#17136)
Summary:
Fixes https://github.com/pytorch/pytorch/issues/17112
```python
print("good", torch.randn(5,5,5).max(1))
print("terrible", torch.randn(5,5,10).max(1))
print("not as good", torch.randn(5,5,500).max(1))
print ("old behaviour = gold standard")
print(tuple(torch.randn(5,5,5).max(1)))
print(tuple(torch.randn(5,5,10).max(1)))
print(tuple(torch.randn(5,5,500).max(1)))
```
now gives
```
>>> import torch
>>> print("good", torch.randn(5,5,5).max(1))
good torch.return_types.max(
values=tensor([[ 1.2821,  1.8063,  1.8075,  1.3082, -0.1267],
        [ 0.3437,  0.7353,  1.2619,  0.7557,  1.6662],
        [ 0.8583,  1.8906,  1.0246,  1.7598,  1.1184],
        [ 1.7821,  0.0230,  0.9452,  1.0318,  1.0823],
        [ 0.4116, -0.0379, -0.1843,  1.4129,  1.8796]]),
indices=tensor([[4, 4, 3, 2, 1],
        [1, 2, 4, 1, 1],
        [2, 4, 0, 2, 1],
        [0, 2, 0, 3, 1],
        [0, 4, 4, 4, 4]]))
>>> print("terrible", torch.randn(5,5,10).max(1))
terrible torch.return_types.max(
values=tensor([[ 2.1272,  1.3664,  2.2067,  1.3974, -0.0883,  1.2505,  1.0074,  1.1217,
          0.3849,  0.6936],
        [ 0.6288, -0.4560,  1.2748,  1.5482,  1.2777,  1.6874,  0.7151,  0.6041,
          1.3572,  1.6232],
        [ 1.6703,  1.0075,  1.6480,  2.2839,  1.3390,  0.4938,  1.6449,  1.7628,
          0.8141,  2.5714],
        [ 0.7079,  1.8677,  3.2478,  1.5591,  2.4870,  0.8635, -0.1450,  1.6923,
          1.4924,  1.6298],
        [ 2.4056,  0.8002,  0.9317,  0.7455,  0.7866,  2.1191,  0.3492,  1.2095,
          1.8637,  1.7470]]),
indices=tensor([[1, 1, 0, 0, 0, 0, 3, 4, 4, 4],
        [4, 2, 2, 1, 2, 2, 3, 1, 1, 3],
        [0, 3, 3, 0, 2, 1, 4, 1, 0, 1],
        [4, 1, 3, 0, 3, 2, 0, 1, 4, 3],
        [1, 0, 3, 2, 1, 0, 0, 1, 0, 1]]))
>>> print("not as good", torch.randn(5,5,500).max(1))
not as good torch.return_types.max(
values=tensor([[ 0.3877,  0.7873,  1.8701,  ...,  0.5971,  1.6103, -0.3435],
        [ 1.1300,  2.2418,  1.4239,  ...,  1.3943,  0.3872,  1.6475],
        [ 2.0656,  1.3136,  0.9896,  ...,  2.3918,  0.8226,  1.0517],
        [ 1.1054,  0.9945,  1.0561,  ...,  2.1039,  1.1524,  3.0304],
        [ 1.5041,  2.2809,  1.0883,  ...,  0.8504,  2.4774,  1.1041]]),
indices=tensor([[4, 3, 1,  ..., 1, 4, 0],
        [4, 4, 4,  ..., 3, 0, 3],
        [3, 0, 1,  ..., 2, 2, 4],
        [0, 1, 1,  ..., 4, 2, 2],
        [1, 0, 4,  ..., 2, 0, 2]]))
>>> print ("old behaviour = gold standard")
old behaviour = gold standard
>>> print(tuple(torch.randn(5,5,5).max(1)))
(tensor([[ 1.1908,  1.1807,  1.3151,  1.7184,  0.3556],
        [ 0.3798,  0.9213,  0.3001,  1.3087,  2.2419],
        [ 1.4233,  1.4814,  1.9900,  1.7744,  1.3059],
        [ 1.0026, -0.0330,  1.3061,  1.8730,  2.0685],
        [ 1.3041,  1.6458,  1.3449,  1.8948,  3.6206]]), tensor([[0, 4, 3, 4, 0],
        [1, 1, 4, 0, 4],
        [4, 1, 0, 3, 3],
        [1, 2, 1, 4, 0],
        [3, 3, 0, 3, 3]]))
>>> print(tuple(torch.randn(5,5,10).max(1)))
(tensor([[-0.1232,  0.8275,  0.6732,  1.1223,  0.8247,  1.2851,  1.6009,  1.9979,
          1.9109,  0.7313],
        [ 0.2260,  0.5922,  1.6928,  0.6024,  2.1158,  3.0619,  0.5653,  0.7426,
          0.8316,  0.6346],
        [ 0.4319,  0.2231,  0.5255,  1.7620,  1.1657,  0.8875,  0.5782,  0.6506,
          0.5032,  1.7097],
        [ 0.4137,  1.7265,  1.4260,  2.0301,  1.2244,  0.7128,  2.6345,  0.7230,
          1.3553,  1.6508],
        [ 1.0684,  1.7195,  1.4068,  0.7076, -0.0242,  0.8474,  0.8754,  1.7108,
          0.2188,  1.1584]]), tensor([[0, 1, 3, 4, 2, 3, 4, 2, 1, 0],
        [1, 4, 0, 0, 3, 2, 0, 0, 3, 3],
        [2, 3, 1, 1, 4, 0, 1, 4, 4, 4],
        [0, 4, 1, 3, 2, 0, 2, 0, 3, 1],
        [1, 0, 0, 0, 0, 3, 3, 3, 2, 0]]))
>>> print(tuple(torch.randn(5,5,500).max(1)))
(tensor([[0.9395, 1.5572, 1.8797,  ..., 2.0494, 0.8202, 0.9623],
        [1.7937, 0.7225, 1.8836,  ..., 0.7927, 1.4976, 1.1813],
        [0.8558, 1.6943, 1.4192,  ..., 0.8327, 1.9661, 0.4197],
        [1.2993, 1.4995, 0.9357,  ..., 0.7810, 1.3030, 2.6216],
        [1.4206, 1.8315, 1.0338,  ..., 1.4312, 1.3198, 1.5233]]), tensor([[0, 4, 3,  ..., 3, 0, 2],
        [0, 1, 0,  ..., 0, 4, 3],
        [3, 4, 3,  ..., 3, 0, 0],
        [3, 2, 3,  ..., 1, 2, 1],
        [1, 2, 4,  ..., 3, 1, 3]]))
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/17136

Differential Revision: D14250021

Pulled By: VitalyFedyunin

fbshipit-source-id: aae72f03b35980063b1ac1f07b8353eddb0c8b93
2019-02-28 13:07:26 -08:00
Edward Yang
4404762d7d Rename IntList to IntArrayRef. (#16751)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/16751

This was made more complicated by the fact that ivalue::IntList
is a thing.  So I had to fix all of the sites where we referring
to IValue post facto.

The following codemods were run, in this order:

```
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntList IntArrayRef
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in IntArrayRef::create IntList::create
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in ivalue::IntArrayRef ivalue::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in Tag::IntArrayRef Tag::IntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in isIntArrayRef isIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in toIntArrayRef toIntList
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'Shared<IntArrayRef>' 'Shared<IntList>'
codemod -m -d . --extensions cc,cpp,cu,cuh,h,hpp,py,cwrap,yaml,in 'intrusive_ptr<IntArrayRef>' 'intrusive_ptr<IntList>'
```

Some manual fixups were done afterwards; they can be reviewed separately
at https://github.com/pytorch/pytorch/pull/16752

Reviewed By: dzhulgakov

Differential Revision: D13954363

fbshipit-source-id: b5c40aacba042402155a2f5a229fa6db7992ac64
2019-02-05 14:54:34 -08:00
Edward Yang
e35418b3be New implementations of DeviceGuard, StreamGuard and MultiStreamGuard (with CUDA specializations) (#13342)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/13342

This PR introduces a few new concepts:

- DeviceGuardImplInterface, and implementations for CPU and CUDA, which
  provide a generic interface for interfacing with device and stream state,
  without requiring a direct dependency on the code in question.
- InlineDeviceGuard, a general template for generating both specialized
  and dynamically dispatched device guard implementations.  Dynamic
  dispatch is done by specializing it on a VirtualGuardImpl.
- Provide a device-independent DeviceGuard class, which can be used even
  from CPU code. It uses the aforementioned dynamic dispatch.
- CUDA-specialized CUDAGuard class, which doesn't have a dynamic dispatch
  but can only be used from CUDA.
- StreamGuard, which is the same as above, but for streams rather than
  devices.
- Optional variants of all the aforementioned guards, which are a no-op if
  no device/stream is specified
- CUDAMultiStreamGuard, specifically for the case when we want to set
  a device on every guard.

There are some subtle semantic changes, which have been thoroughly documented
in the class definition.

BC-breaking changes:

- Move constructor/assignment have been removed from all device guard
  implementations.
- In some cases where you previously wrote 'set_device' (or 'set_stream'), you now must write
  'reset_device', because if you switch devices/device types, the stream/device on the
  previous device is unset.  This is different from previous behavior.
- CUDAGuard no longer handles streams, or multiple streams.  Use CUDAStreamGuard
  or CUDAMultiStreamGuard as appropriate for your use case.

Reviewed By: dzhulgakov

Differential Revision: D12849620

fbshipit-source-id: f61956256f0b12be754b3234fcc73c2abc1be04e
2018-11-11 12:11:10 -08:00
Richard Zou
efab8e8fdf Speed up tensor.get_device(), is_cuda(), is_sparse() by avoiding dispatches (#12841)
Summary:
`tensor.get_device()` went through two dispatches: once to the native
function
`get_device()`, and another when `get_device` calls `_th_get_device()`.
This PR avoids the dispatch by directly implementing the `get_device`
function
as a method on Tensor.

Future Work:
- Investigate caching Device on TensorImpl. This will probably bring the
  tensor.get_device down to 2ns, but I'm not sure it's worth it.

before:
```
------------------------------------------------------------------------
Benchmark                                 Time           CPU Iterations
------------------------------------------------------------------------
BM_TensorTypeId                           0 ns          0 ns 1000000000
BM_TensorType                             8 ns          8 ns   89407911
BM_TensorIsCuda                          24 ns         24 ns   29313017
BM_TensorIsSparse                        27 ns         27 ns   26083160
BM_TensorTypeIsCuda                      11 ns         11 ns   65128120
BM_TensorNumel                           11 ns         11 ns   68314492
BM_TensorGetDevice                       71 ns         71 ns    9633125
BM_DeviceGuardCtor                      173 ns        173 ns    4067173
BM_DeviceGuard                          232 ns        232 ns    3009690
```

after:
```
------------------------------------------------------------------------
Benchmark                                 Time           CPU Iterations
------------------------------------------------------------------------
BM_TensorTypeId                           0 ns          0 ns 1000000000
BM_TensorType                            10 ns         10 ns   69803872
BM_TensorIsCuda                           2 ns          2 ns  321626683
BM_TensorIsSparse                         6 ns          6 ns  177045382
BM_TensorNumel                           12 ns         12 ns   58770533
BM_TensorGetDevice                        4 ns          4 ns  128113396
BM_DeviceGuardCtor                       52 ns         52 ns   14997278
BM_DeviceGuard                          158 ns        158 ns    5767248

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/12841

Differential Revision: D10489353

Pulled By: zou3519

fbshipit-source-id: a596bc77352f21d5d35433c6de02c2f65aab5f9e
2018-10-25 19:57:52 -07:00
Edward Yang
72822ee6b2 Fix #11430 (CPU only builds raise opaque error message when calling .… (#11533)
Summary:
…cuda())

While I was at it, I audited all other ways I know how we might get a CUDA
type from PyTorch and fixed more constructors which don't work.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11533

Differential Revision: D9775786

Pulled By: ezyang

fbshipit-source-id: cd07cdd375fdf74945539ec475a48bf08cbc0c17
2018-09-14 09:10:08 -07:00
Adam Paszke
90e31f4896 Improve tracer warnings (#11545)
Summary:
Also, fix a performance bug in `ensureUnique`. Previously it formatted the warning string even though we weren't tracing, so all that work would *always* happen in the hot path and be for nothing.

A sample of how the new warnings look like:
```
tmp.py:4: TracerWarning: Converting a tensor to a Python integer might cause the trace to be incorrect. We can't record the data flow of Pytho
n values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!
  int(x)
tmp.py:5: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this fun
ction to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might caus
e the trace to be incorrect.
  torch.tensor([1.])
tmp.py:6: TracerWarning: There are 2 live references to the data region being modified when tracing in-place operator add_. This might cause t
he trace to be incorrect, because all other views that also reference this data will not not reflect this change in the trace! On the other ha
nd, if all other views use the same memory, but are disjoint (e.g. are outputs of torch.split), this might still be safe.
  torch.split(y, 2, dim=1)[0].add_(2)

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11545

Differential Revision: D9782975

Pulled By: apaszke

fbshipit-source-id: 5b3abd31366e59c69e0b7ff278042b5563deb5a9
2018-09-11 22:10:32 -07:00
Adam Paszke
3e665cc29b Improve support for tracing sizes, add more tracer warnings (#11288)
Summary:
Many constructors like `torch.zeros` or `torch.randn` didn't support
size tracing correctly which is fixed by this pass. Same issue has been
fixed in legacy tensor constructors.

Additionally, new tensor constructors, which do not participate in
tracing (most notably `torch.tensor`, `torch.as_tensor` and
`torch.from_numpy`) raise a warning when they are used.

Finally, entering a traceable operation disables the tracing in its body.
This is needed because

zdevito
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11288

Reviewed By: ezyang

Differential Revision: D9751183

Pulled By: apaszke

fbshipit-source-id: 51444a39d76a3e164adc396c432fd5ee3c8d5f7f
2018-09-10 15:22:48 -07:00
Tongzhou Wang
b9b9ae935b Make torch.randint have default dtype int64 (#11040)
Summary:
cc gchanan apaszke
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11040

Differential Revision: D9565728

Pulled By: SsnL

fbshipit-source-id: eb5be9609f30c88f52746fa7e13ad71e2856648e
2018-09-08 07:55:06 -07:00
Edward Yang
b02b125d16 Rename getMaybeVariableType back to getType. (#11250)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11250

```
codemod -d . --extensions cc,cpp,cu,cuh,h getMaybeVariableType getType
```

Reviewed By: gchanan

Differential Revision: D9648830

fbshipit-source-id: 6b2ac2b1c265ae47722390e6e7f106653077d851
2018-09-07 08:11:50 -07:00
Edward Yang
2c5ae8c4bf Get rid of type() method on TensorOptions; use at::getType instead (#11023)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11023

I'd like TensorOptions to not know anything about Context, so I can
move it to ATen/core without pulling in Context.  To do this, the
type() method has to go, since it consults the context to get a Type.

Reviewed By: cpuhrsch

Differential Revision: D9562467

fbshipit-source-id: 61a18a76eb042a5e70b64b963501e9d68c25d4f0
2018-08-31 14:27:05 -07:00
Edward Yang
750ede7215 Rename getType to getVariableTypeFromBaseType / getVariableType (#11095)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/11095

We used getType to mean a lot of things.

- getVariableTypeFromBaseType: given a base Type (non-Variable type)
  compute the Variable Type which corresponds to it.

- getVariableType: like at::getType, but return the Variable type
  rather than the plain type.

This rename makes it clearer at the use-site what things are what,
and will make a subsequent rename of at::getType easier.

Reviewed By: gchanan, cpuhrsch

Differential Revision: D9583630

fbshipit-source-id: 2667ec98e7607bc466920c7415a8c651fd56dfca
2018-08-30 20:11:25 -07:00
Edward Yang
f7b02b3a68 Change Tensor/TensorImpl to use c10::intrusive_ptr (#10824)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/10824

API additions:
- Tensor(c10::intrusive_ptr<TensorImpl,UndefinedTensor>&&)
- Tensor(const c10::intrusive_ptr<TensorImpl,UndefinedTensor>&)
- Tensor::operator=(Tensor&&) && (for completeness sake)
- TensorBase::unsafeGetTensorImpl()
- TensorBase::unsafeReleaseTensorImpl()
- TensorBase::getIntrusivePtr()
- TensorImpl::type_id()
- Tensor::set_data()
- Tensor::is_same(Tensor)
- Tensor::use_count()
- Tensor::type_id()
- Tensor::scalar_type()
- WeakTensor::is_same(WeakTensor)
- intrusive_ptr::weak_use_count()
- weak_intrusive_ptr::weak_use_count()
- c10::raw::intrusive_ptr::{incref,decref,make_weak}
- c10::raw::weak_intrusive_ptr::{incref,decref,lock}

API changes:
- Tensor::pImpl is no longer public (and now named tensor_impl_)
    - Most methods accessed this way are now accessible on Tensor
      maybe_zero_dim() and set_wrapped_number() being prominent exceptions
      (they are now accessed through unsafeGetTensorImpl())
- Type is no longer friend of Tensor
- TensorBase::reset(TensorImpl*) is deleted
- TensorBase::reset(TensorImpl*, bool should_retain) is deleted
- TensorBase::swap(TensorBaseImpl&) is deleted; use std::swap instead
- TensorBase::get() is deleted; use unsafeGetTensorImpl() instead
- TensorBase::detach() is deleted; use unsafeReleaseTensorImpl() instead
- TensorBase::retain() is deleted; use _raw_incref() instead
- TensorBase::release() is deleted; use _raw_decref() instead
- WeakTensor lost most of its methods (it no longer inherits from
  TensorBase)
- TensorImpl::storage() is now a const method
- Tensor(TensorBase) constructor removed, instead
  we go through getIntrusivePtr().  I'm not sure about
  this change; I happened to have accidentally removed the
  TensorBase constructor and decided to fix call sites,
  but I could go the other way.
- detail::set_data() is deleted; use Tensor::set_data() instead
- c10::raw_intrusive_ptr_target removed; use the functions in c10::raw instead.
  (The reason for this change, is that it is invalid to cast an intrusive_ptr_target*
  to a raw_intrusive_ptr_target* to take advantage of the methods. But there is
  no reason the incref/decref methods shouldn't also work on intrusive_ptr_target;
  it is primarily an API consideration. We can be more standards compliant by
  keeping them as functions, which are universally applicable.)
- intrusive_ptr::reclaim() and weak_intrusive_ptr::reclaim() now work on
  pointers of the NullType. (This counts as a bug fix, because the documentation
  specified that pointers produced by release() are valid to reclaim(), and
  a release() on a null intrusive_ptr produces the NullType::singleton())

Bug fixes:
- Dispatch code for mutable references incorrectly returned
  a reference to a value argument (which would immediately
  go out of scope).  They now correctly return a tensor by
  value.
- intrusive_ptr copy/move assignment did not work correctly when
  an object was assigned to itself. We now check for this case and
  no-op if so. (This bug manifested itself as a Tensor mysteriously
  becoming an UndefinedTensor after lines of code like
  'x = x.mul_(y)')

Other changes:
- The checked cast functions in Utils.h have now been
  renamed and detemplatized into checked unwrap functions.
- Added type_id() and scalar_type() methods to Tensor
- pImpl is no longer public
- Documented what the && overloads are doing
- All occurrences of 'new TensorImpl' (and similar spellings, like 'new THTensor')
  have been expunged. This is NO LONGER a valid way to create a new
  tensor, and if you do this, upon your first incref, you will catch an ASSERT
  failure saying that only tensors created by intrusive_ptr::release() are valid
  to reclaim(). Use c10::make_intrusive instead in this situation.
- IValue is adjusted to use intrusive_ptr instead of Retainable, and all
  other sub-classes of Retainable were modified to use intrusive_ptr.
  When doing this, I had to make the constructors of sub-classes like
  ConstantList public, so that c10::make_intrusive could invoke them.  Fortunately,
  if you incorrectly stack allocate a ConstantList, and then try to get an
  intrusive_ptr to it, it will fail, as stack allocated ConstantLists have refcount 0.
- IValue very narrowly sidesteps the problem of handling NullType, as it
  considers intrusive_ptr<TensorImpl> identical to intrusive_ptr<TensorImpl, UndefinedTensor>
  which is not always true. This was always the case, but there's now a comment
  explaining what's going on.

Some MSVC bugs were uncovered during the preparation of this patch.
They are documented as comments in the code.

Reviewed By: gchanan

Differential Revision: D9481140

fbshipit-source-id: 14a8ea0c231ed88b5715fb86d92730926f9f92fc
2018-08-27 16:11:01 -07:00
Gregory Chanan
c3271b53e4 Remove ability of Scalars to hold Tensors.
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/10889

Differential Revision: D9512589

Pulled By: gchanan

fbshipit-source-id: 8b2b26c9f3a4da31a46f684793ab237e9ef9a323
2018-08-27 07:26:14 -07:00
Wanchao Liang
47c1badf90 Fix the clamp special case and gradient problem on None, add None to JIT (#9596)
Summary:
Supersedes #8925

This PR fixes #8502, it fixes the gradients problem for clamp when passing None to the function, and add support for the NoneLiteral and NoneType in script to enable clamp tests. Now we could have corner cases like:

```python
torch.jit.script
def func():
    x = torch.randn(3, 3, requires_grad=True)
    y = torch.clamp(x, None, 0) # max = 0
    y = torch.clamp(x, min=None, max=0)
```

In both JIT and Aten, we use Scalar(NAN) as a sentinel value when passing None type to function clamp, this is the current way we used to support None type in JIT and to solve the gradient problem when user explicitly passing None into clamp.

In JIT side, we create a tensor(NAN) and undefinedTensor if we encounter None when matching the function schema, and later in the interpreter, it will translate to Scalar(NAN) if needed.

Ideally we don't need clamp_min and clamp_max in ATenNative/Autograd and could only support clamp after this change, but since bunch of other operators (e.g. Activation.cpp, Loss.cpp) is using clamp_min in several places, we will still have the functions available, but all python invocations will only call clamp instead of clamp_min/max (with calling underlying th_max/th_min in clamp).

zdevito jamesr66a
Pull Request resolved: https://github.com/pytorch/pytorch/pull/9596

Reviewed By: zdevito

Differential Revision: D8940839

Pulled By: wanchaol

fbshipit-source-id: c543a867b82e0ab8c99384773b173fdde2605d28
2018-07-27 22:54:33 -07:00
Peter Goldsborough
372d1d6735
Create ATen tensors via TensorOptions (#7869)
* Created TensorOptions

Storing the type in TensorOptions to solve the Variable problem

Created convenience creation functions for TensorOptions and added tests

Converted zeros to TensorOptions

Converted rand to TensorOptions

Fix codegen for TensorOptions and multiple arguments

Put TensorOptions convenience functions into torch namespace too

All factory functions except *_like support TensorOptions

Integrated with recent JIT changes

Support *_like functions

Fix in place modification

Some cleanups and fixes

Support sparse_coo_tensor

Fix bug in Type.cpp

Fix .empty calls in C++ API

Fix bug in Type.cpp

Trying to fix device placement

Make AutoGPU CPU compatible

Remove some auto_gpu.h uses

Fixing some headers

Fix some remaining CUDA/AutoGPU issues

Fix some AutoGPU uses

Fixes to dispatch_tensor_conversion

Reset version of new variables to zero

Implemented parsing device strings

Random fixes to tests

Self review cleanups

flake8

Undo changes to variable.{h,cpp} because they fail on gcc7.2

Add [cuda] tag to tensor_options_cuda.cpp

Move AutoGPU::set_index_from into .cpp file because Windows is stupid and sucks

Fix linker error in AutoGPU.cpp

Fix bad merge conflict in native_functions.yaml

Fixed caffe2/contrib/aten

Fix new window functions added to TensorFactories.cpp

* Removed torch::TensorOptions

Added code to generate wrapper functions for factory methods

Add implicit constructor from Backend to TensorOptions

Remove Var() from C++ API and use torch:: functions

Use torch:: functions more subtly in C++ API

Make AutoGPU::set_device more exception safe

Check status directly in DynamicCUDAHooksInterface

Rename AutoGPU to DeviceGuard

Removed set_requires_grad from python_variables.h and warn appropriately in Variable::set_requires_grad

remove python_default_init: self.type()

Add back original factory functions, but with deprecation warnings

Disable DeviceGuard for a couple functions in ATen

Remove print statement

Fix DeviceGuard construction from undefined tensor

Fixing CUDA device compiler issues

Moved as many methods as possible into header files

Dont generate python functions for deprecated factories

Remove merge conflict artefact

Fix tensor_options_cuda.cpp

Fix set_requires_grad not being checked

Fix tensor_new.h

TEMPORARILY put some methods in .cpp files to see if it solves issues on windows and mac

Fix bug in DeviceGuard.h

Missing includes

TEMPORARILY moving a few more methods into .cpp to see if it fixes windows

Fixing linker errors

* Fix up SummaryOps to use new factories

Undo device agnostic behavior of DeviceGuard

Use -1 instead of optional for default device index

Also move DeviceGuard methods into header

Fixes around device index after optional -> int32_t switch

Fix use of DeviceGuard in new_with_tensor_copy

Fix tensor_options.cpp

* Fix Type::copy(

* Remove test_non_float_params from ONNX tests

* Set requires_grad=False in ONNX tests that use ints

* Put layout/dtype/device on Tensor

* Post merge fixes

* Change behavior of DeviceGuard to match AutoGPU

* Fix C++ API integration tests

* Fix flip functions
2018-06-16 00:40:35 -07:00
gchanan
7abdc303c6
Don't allow requires_grad to be set on integer Tensor constructors in… (#7185)
* Don't allow requires_grad to be set on integer Tensor constructors in tensor_new.

* Fix autograd test.

* Fix test_distributions.

* Fix test_jit.

* Fix NN tests.
2018-05-18 19:45:10 +02:00
gchanan
681baa9254
Restore warning to torch.range. (#7194)
Also, get rid of warning specification in Declarations.cwrap, which currently has no effect.
2018-05-02 21:53:00 -04:00
gchanan
8031da5479
Implement torch.as_tensor, similar to numpy.asarray. (#7109)
* Implement torch.as_tensor, similar to numpy.asarray.
torch.as_tensor behaves like torch.tensor except it avoids copies if possible; so also somewhat like tensor.new but without the size overloads.
I didn't add a requires_grad field, because we haven't decided on the semantics such as as_param.

* Remove requires_grad for doc.
2018-05-01 12:54:43 -04:00
Thomas Viehmann
8fbab83c2a only Tensors of floating point dtype can require gradients (see #7021) (#7034) 2018-04-30 10:20:00 +02:00
gchanan
a6bfa16c17
torch.arange: add numpy-style type inference. (#7016)
* torch.arange: add numpy-style type inference.

This is a backwards-compatibility breaking change.

* Fix flake8.

* Use at::optional.

* Remove unneeded header files.

* Use reference wrapper.

* Update arange for test.

* Address review comments.
2018-04-27 15:11:45 -04:00
gchanan
3d907ef78e
Consistently check 'out' variants against specified dtype/layout/device parameters. (#6973)
We were previously doing this in the most common cases, but not consistently.
2018-04-25 22:46:42 -04:00
gchanan
749d51414a
Separate cuda-ness from dtype. (#6470)
* Separate cuda-ness from dtype.

There are no longer torch.cuda.int64, etc; only torch.int64 that correspond to at::ScalarType.
At the python arg parser level, the corresponding ATen type is selected from the combination of (ScalarType, Layout, Device).

There is also currently unused code in here for support ScalarType in native_functions; this will be used for specifying aggregate types
on reduction functions.

* Fix test_autograd.

* Add defaults to randint_like.

* Track is_cuda in py tensor types.

* Fix test_sparse.

* Fix multiprocessing.

* Fix rnn.

* Fix test_nn.

* Fix flake8.
2018-04-12 14:05:44 -04:00
Zhou Chang
d0f395f744 [pytorch] Fix clamp is missing kwarg out (#6028) (#6418)
torch.clamp is out from template code, add it manually, same with auto
generated code.
2018-04-09 13:39:31 -04:00
gchanan
4c81282c33
Introduce torch.layout and split layout from dtypes. (#6145)
* Introduce torch.layout and split layout from dtypes.

Tensors (and tensor types) now have a 'layout' attribute that returns either 'torch.strided' or 'torch.sparse_coo'.

Previously, dtypes were 1-to-1 with ATen types/PyTensorTypes; the impetus behind this decision was to make things easy in the common case
(i.e. specifying a type in a factory function).  But this doesn't really follow for sparity, which isn't a common case.

It also doesn't properly represent the concept or a dtype, which in numpy are proper scalar types (i.e. roughly the type returned from indexing the
last dimension of an n-d array).  But this should be the same whether or not the tensor is represented via strides, sparsity, etc.

This is accomplished by:
1) having the dtype of tensor return the (device-type, scalar-type) combination, i.e. torch.cuda.float32, so both
   torch.cuda.FloatTensor and torch.cuda.sparse.FloatTensor have the same dtype
2) Adding a layout parameter to python functions, where the combination of (dtype, layout) maps to an ATen type that is used for dispatch.

* Formatting, make init throw python_error.

* Fix cuda not enabled error message.

* Fix test.
2018-04-02 14:07:50 -04:00
Peter Goldsborough
d42fcdbc96 Add source location information to error messages (#6059) 2018-03-29 22:57:18 +02:00
gchanan
db53389761
Add numpy.array-like type inference to torch.tensor. (#5997)
* Add numpy.array-like type inference to torch.tensor.

* Temporary fix for int/double types.

* Treat python floats as the default (scalar) dtype.

* Also make 0-length sequences the default scalar type and add more tests.

* Add type inference to sparse_coo_tensor.

* Fix sparse test.

* Remove allow_variables.

* Check numpy platform bits.

* Address review comments.

* Make suggested changes to constraints.

* More checking windows builds.

* Fix test for windows.
2018-03-27 15:27:23 -04:00
gchanan
c474136ee1
[REDO] Add torch.sparse_coo_tensor factory. (#5781)
* Add torch.sparse_coo_tensor factory.

Notes:
1) I didn't add Tensor.new_sparse_coo_tensor; it didn't seem particularly useful, but it's easy to add
2) This doesn't do the type inference, i.e. torch.sparse_coo_tensor(indices=LongTensor, values=IntTensor)
will return a sparse tensor corresponding to the default type rather than a sparse IntTensor.  We can add
type inference later when we add it to other factories.

* Fix merge.

* Use type_conversion function from python_variable_methods.
2018-03-16 13:58:02 -04:00
gchanan
6f5e869259
Add promoteTypes to ATen and torch._promote_types to python. (#5795)
This isn't hooked up to anything yet, but is necessary for both scalar binary ops in ATen and tensor constructor type inference in PyTorch.
2018-03-15 11:02:28 -04:00
Soumith Chintala
e40425fd9b
Revert "Add torch.sparse_coo_tensor factory. (#5745)" (#5780)
This reverts commit 361baa5a48.
2018-03-14 13:30:52 -04:00
gchanan
361baa5a48
Add torch.sparse_coo_tensor factory. (#5745)
Notes:
1) I didn't add Tensor.new_sparse_coo_tensor; it didn't seem particularly useful, but it's easy to add
2) This doesn't do the type inference, i.e. torch.sparse_coo_tensor(indices=LongTensor, values=IntTensor)
will return a sparse tensor corresponding to the default type rather than a sparse IntTensor.  We can add
type inference later when we add it to other factories.
2018-03-14 12:10:07 -04:00
gchanan
a3442f62bc
Support native namespace functions with type dispatch. (#5576)
* Support native namespace functions with type dispatch.

Use 'ones' as an example.  Note this is a "halfway" solution; i.e. the call chain is:
at::ones(shape, dtype) -> dtype.ones(shape, dtype) -> CPUFloatType.ones(shape, dtype) -> at::native::ones(shape, dtype)

The "nicer" solution would probably be something like:
at::ones(shape, dtype) -> dtype.ones(shape) -> CPUFloatType.ones(shape) -> at::native::ones(shape, this)

* Fix type inference.

* Fix test install.

* Fix extensions.

* Put dtype argument at the beginning.

* Fix extension.cpp.

* Fix rnn.

* Move zeros in the same manner.

* Fix cuda.

* Change randn.

* Change rand.

* Change randperm.

* Fix aten contrib.

* Resize in randperm_out.

* Implement eye.

* Fix sparse zeros.

* linspace, logspace.

* arange.

* range.

* Remove type dispatch from gen_python_functions.

* Properly generate maybe_init_cuda for type dispatch functions not named type.

* Don't duplicate dtype, this parameters for native type dispatched functions.

* Call VariableType factory methods from the base type so it gets version number 0.

* Address review comments.
2018-03-09 10:52:53 -05:00
Edward Z. Yang
f064c5aa33
Expunge all occurrences of torch._C._VariableFunctions (#5525)
Some of the call-sites now look a little hokey with this
removed, saving that for another patch.

Signed-off-by: Edward Z. Yang <ezyang@fb.com>
2018-03-02 12:19:44 -05:00
Sam Gross
ebd32f7bcd
Check that parsed_args contains enough space for all parameters (#5467) 2018-02-28 14:34:04 -05:00
Sam Gross
48a3349c29
Delete dead Tensor code paths (#5417)
This deletes most of the dead Tensor code paths, including the TensorMethods cwrap and generic/Tensor.cpp.

This also moves the THNN.cwrap/.cpp generation to generate_code which can use ninja if installed.
2018-02-27 17:58:09 -05:00
gchanan
611c771fc8
Introduce torch.tensor (was torch.autograd.variable). (#5419)
* Introduce torch.tensor (was torch.autograd.variable).

* Get rid of torch.variable usages.

* Use more precise name.
2018-02-26 19:10:29 -05:00
Sam Gross
30ec06c140
Merge Variable and Tensor classes (#5225)
This replaces the torch.Tensor constructors with factories that produce
Variables. Similarly, functions on the torch module (e.g. torch.randn)
now return Variables.

To keep the PR to a reasonable size, I've left most of the unused tensor
code. Subsequent PRs will remove the dead code, clean-up calls to
torch.autograd.Variable, and rename Variable to Tensor everywhere.

There are some breaking changes because Variable and Tensors had
slightly different semantics. There's a list of those changes here:

 https://github.com/pytorch/pytorch/wiki/Breaking-Changes-from-Variable-and-Tensor-merge
2018-02-23 18:03:31 -05:00
gchanan
5edf6b2037
Add numpy-style dtypes to Variable factories. (#5245)
* Add numpy-style dtypes to Variable factories.

1) Add numpy-style dtypes corresponding to torch tensor types.  These are:
torch.float16, torch.float32, torch.float64, torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64
as well as torch.cuda, torch.sparse, and torch.cuda.sparse equivalents.

2) Adds "legacy" names for the above dtypes that correspond more closely to existing tensor names.  These are:
torch.half, torch.float, torch.double, torch.short, torch.int, torch.long.
torch.byte and torch.char don't exist because they either don't match numpy semantics or differ on different architectures.

3) Adds a "dtype" parameter to Variable factories (e.g. zeros, ones) that allows the user to specify the type without changing the default tensor type.

4) Adds a "dtype" getter to Variables that return the canonical dtype from 1)

This PR is missing the following useful features that should be added in the future:
A) We only add the "dtype" parameter to auto-generated factories; hand-written factories like in tensor_new.cpp don't support this yet.

B) We don't allow type conversions to use dtypes; that should be added to type(param) or a new function.

C) We don't yet have a "device" parameter for these factories; right now, they will only create Variables on the default device.

* backend_to_string can be private.

* Define python binding argument indexes in a more simple way.

* add all_declared_types, still need to hook it up to THPDType.

* Fix all_declared_types for missing types (it's Sparse + Half).

* Ensure cuda dtypes are created even if compiled with NO_CUDA=1.

* Fix case where dtype is provided but dispatch is via namespace.

This happens in ones_like, empty_like, randn_like.

There is some question if we should do:
1) at::ones_like(tensor).toType(dtype)
2) at::ones_like(tensor.toType(dtype))

I did the former because this matches with the numpy documentation, i.e.:
"Overrides the data type of the result." and it's easier to implement.

Note that the above causes an extra copy, either of the input or output.
Here's a better implementation:
1) Make zeros_like, ones_like native functions that take an optional type (named dtype?).
2) Match the type argument with the dtype, so we don't have two different parameters.
3) Call at::zeros_like(input, type) -> at::native::zeros_like(input, type) -> type.zeros(input.sizes())

* Don't return from maybe_initialize_cuda.

* Don't leak DType name.

* Address cpp review comments.

* Share code between sparse and non-sparse test_dtypes.

* Rewrite _like functions as native function with explicit type parameter.

* Use type 'Type' instead of 'dtype' for consistency.

* Address review comments.

* Handle arg_idx when there is requires_grad but no dtype in python_binding_arguments.
2018-02-20 11:04:14 -05:00
Peter Goldsborough
2d5fbe6e0d Improve Variable interface (#5127)
* Improve Variable interface

* Address comments from @apaszke and @colesbury

* string ::operator= is not noexcept

* Remove ir.h from tracer_state.h to improve build times

* Make Variable a struct and pack SavedVariable fields

* Implement as_variable_ref

* grad_fn_ptr() -> grad_fn_unsafe()

* Reduce hackiness of set_type hack

* Include variable.h and edge.h in tracer_state.h because it uses them

* class Variable -> struct Variable because Windows cant even

* Make Variable::output_nr uint32_t instead of int

* Add comment about tracing state

* Replaced more static_cast<Variable&> and improve docs

* Remove SavedVariable destructor and construct members in init list

* Clarify docs for Variable

* Variable::set_version -> set_version_counter
2018-02-12 23:26:26 -05:00
gchanan
6a9b7132ec
Add a new_tensor instance method to Variable that takes only data. (#5144)
* Add a new_tensor instance method to Variable that takes only data.

This is to work around the legacy problems of new, where e.g.
new(5) will give you an unfilled tensor rather than a scalar.

* Remove double return.

* Fix cuda scalar code path.

* Work around lack of WITH_SCALARS.
2018-02-09 10:59:15 -05:00
gchanan
c49f0279a6
Add kwarg-only 'requires_grad' parameter to Variable factories. (#4748)
* Add kwarg-only 'requires_grad' parameter to Variable factories.

Functions that create variables, e.g. torch.ones_like currently always return Variables with requires_grad=False;
this is less convenient than the existing Variable constructor that has a requires_grad parameter.  This commit
adds the parameter at the python binding level.

* Fix flake8.

* Address review comments.

* Match set_requires_grad implementation with tensor_new version.
2018-01-22 19:15:11 -05:00
gchanan
9390f7d3d6
Implement a (data-only) Variable factory (#4753)
* Implement a (data-only) Variable factory.

Implements a function, torch.autograd.variable that is modeled after np.array.  The main difference between it and new() and
the tensor constructors is it inteprets a python number as data, i.e. as a 0-dimensional tensor (we currently don't expose
that at the pytorchl level, so it will temporarily end up as a 1-dimensional tensor), rather than a size.

The main difference currently between torch.autograd.variable and np.array is that np.autograd.variable is stricter, e.g.
passing a PyFloat when an integral type is the default tensor type will result in an array; np.array basically lets anything
through (floating-point / integral mismatch, overflow, etc).  This is to keep it consistent with Variable.new when called with
a sequence, although we can loosen the checks later.

This will be renamed to torch.tensor once we merge Variable and tensor.

* Address review comments.
2018-01-22 18:14:22 -05:00
Sam Gross
57549b7e44
Bind functions with out= arguments in VariableType (#4565)
This adds overrides in VariableType for the xxx_out ATen functions and
implements Python bindings. There is no support for automatic
differentiation. If any of the inputs (or outputs) requires grad, then the
function will throw an exception unless it's running in "no-grad" mode.

The bindings for calling torch.xxx functions on Variables are moved to a
different object. Previously, they were static method on VariableBase.
This change prevents users from accidentally calling static methods as if
they were instance methods.
2018-01-17 18:27:42 -05:00