I'm looking for a make_fx(tracing_mode=real) that doesn't error out on
data-dependent operations. This PR adds a flag to do that. We use this
to help implement offline generation, but this is useful by itself:
sometimes we want to trace a function with real tensors and don't care
if we bake values in (because we just want to see what happened).
Test Plan:
- new test
Pull Request resolved: https://github.com/pytorch/pytorch/pull/114129
Approved by: https://github.com/ezyang
ghstack dependencies: #114128
This PR also contains a basket of fixes that were turned up by now testing more arguments with SymInt. I fixed as many of the easy ones as I could easily get earlier in this stack and a bunch here, but there are some more annoying ones I xfailed.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113452
Approved by: https://github.com/Chillee
ghstack dependencies: #113877, #113911
We want something like torch.empty(i0, 12).view(4, -1, 12) to work. Right now, it chokes on guards on data dependent accesses. It turns out we are very close to having it work based on experiments in https://github.com/pytorch/pytorch/issues/112347 if we do the replacement trick, setting i0 = i1 * 4 to explicitly encode in the divisibility; this is good enough for Sympy to be able to handle the rest.
There are two parts to this PR.
* First, we must discover that there is this divisibility constraint. The place where this happens on view is in `infer_size`; however, we are unable to discover the modulus test with `expect_true` because the condition is currently written with a Python boolean operator that forces guarding too early: `numel == newsize or (dim is not None and newsize > 0 and numel % newsize == 0)`. We rewrite this into an equivalent version which tests on dim being None or not first, before performing individual tests. The main nontrivial reasoning here is that I must show that my set of tests in the `dim is None` branch are sufficient when `numel == newsize`. However, if `numel == newsize`, then the modulus must pass. Thus this is equivalent.
* Given the modifications to `infer_size`, this suffices to produce a runtime assert `Eq(Mod(192*i0, 2304), 0)`. Now we must simply turn this into the replacement automatically. I wasn't really sure how to use Sympy to do this for me, so I just manually pattern matched for this particular expression form, and if it exists do the replacements.
Note that this is kind of only useful for export, because inductor chokes on views involving unbacked SymInts. That will be follow up.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/113165
Approved by: https://github.com/lezcano, https://github.com/aakhundov
To do this, there is a little detour to remove hint caching for unbacked
SymInts; now, we just always attempt to update the hint (using
maybe_evaluate_static; this is much better than the replace we were
doing before) if we don't think we know it.
With this change, we now can generally infer that i0 == 1 is false for
a size-like unbacked SymInt. So if we write the size match /
broadcasting test very carefully (see comment), we will eventually
end up expect_true(sizeA == sizeB), which is good enough to cause
refinement. Phew!
I think I still want to setup a replacement if you do i0 == s0, but I'm
going to do that in a follow up.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112155
Approved by: https://github.com/aakhundov, https://github.com/voznesenskym
This PR:
- Moves TrueDiv, LShift, RShift, IsNonOverlappingAndDenseIndicator to `_sympy.functions.py`
- Moves SymNode to `fx.experimental.sym_node`.
- This file does not have any SymPy dependencies at import time
- It installs the magic methods in Sym{Bool,Int,Float}.
- N.b. With this split, we may be able to move Sym{Bool,Int,Float} to this file, and remove quite a few of the hacks around these classes
- Imports `sym_node` in `torch/__init__.py` rather than the whole `symbolic_shapes.py`.
This breaks the import-time dependency between torch and SymPy
Pull Request resolved: https://github.com/pytorch/pytorch/pull/112037
Approved by: https://github.com/peterbell10
ghstack dependencies: #112035, #112036
This should be the last of the "it used to work with static shapes but
it doesn't work with dynamic shapes" hard errors. Now we will just
specialize if you hit it from C++.
The strategy here is a bit clever. We shunt the size() call to Python
binding if an error would have occurred. Importantly, we already have
logic to make sure the newly allocated ints stay live for the duration
of the ArrayRef access.
storage_offset is intentionally omitted because there are some problems
with it. I will fix them next.
This should let us get rid of the aotautograd_static test configuration.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111935
Approved by: https://github.com/zou3519
Fixes https://github.com/pytorch/pytorch/issues/93468
There's a few extra tests that are sort of unrelated, but I ended up writing them while working on the fix and decided to keep them. The big idea here is to split the `_check` so that `expect_true` works; I could have probably also improved the symbolic reasoning but I'm lazy. One small logging fix too.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110979
Approved by: https://github.com/Skylion007
This fixes numerous tests which were xfailing. For instance, the
`_segment_reduce.lengths` OpInfo test, which was previously relying on
the fallback kernel to determine the shape of the meta tensor. The
fallback kernel would fail with
segment_reduce(): Expected all rows of lengths along axis to sum to data.size(lengths.dim()-1) when !unsafe.
as it was trying to read the values of a meta tensor.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109359
Approved by: https://github.com/ezyang
- Update cross-ref FakeMode test to use ShapeEnv. Dynamic ops can now
return an unbacked SymInt. We always accept this as equal to whatever
the real value was.
- Relax test so it works on all classes, not just unittest.TestCase
- Properly wrap the original method, so things like
pytree.mark.parametrize are carried over
- Support dynamic shapes by default for make_fx `tracing_mode="fake"` without symbolifying everything else
Fixes https://github.com/pytorch/pytorch/issues/108927
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108929
Approved by: https://github.com/zou3519
Fixes https://github.com/pytorch/pytorch/issues/101939
Several fixes bundled together:
1. When we valueToTensor, we only handled non-symbolic inputs and not symbolic inputs. We support symbolic Scalar, so also handle symbolic values.
2. In the symbolic case, we MUST NOT lift_fresh, as you're not going to inline a constant into the graph, it's going to be from a `scalar_tensor` call (so no need to clone it to avoid mutations)
3. In indexing scalarToTensor, must not do the static, directly read out the scalar contents logic with the scalar is symbolic
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108873
Approved by: https://github.com/jansel
This pattern shows up in torchrec KeyedJaggedTensor. Most
of the change in this PR is mechanical: whenever we failed
an unbacked symint test due to just error checking, replace the
conditional with something that calls expect_true (e.g.,
torch._check or TORCH_SYM_CHECK).
Some of the changes are a bit more nuanced, I've commented on the PR
accordingly.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106788
Approved by: https://github.com/lezcano
ghstack dependencies: #106720
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
Some notable changes:
1. `constrain_as_size` allows min value to be less than 2 as it will unconditionally assume min >= 2 for compiler purposes. Instead, we add additional check to make sure max value is always greater than 2.
2. Previously, we used to runtime assert on the unbacked symint's val range which would be always between [2, max]. I modified this logic to assert on [0, max] unless user explicitly specifies the min range.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106591
Approved by: https://github.com/gmagogsfm, https://github.com/ezyang
1. add a python meta registration, to fix an issue with the forward pass. The problem was that previously, the C++ meta registration calls [numel()](7b14a14e27/aten/src/ATen/native/TensorAdvancedIndexing.cpp (L329)) which fails (LMK if it's better to fix the C++ implementation to not do this check)
2. Modify the backward to fix an issue in the backward. The backward is not a custom op - it's a custom manual backward implementation. In particular, there's some situations that don't support double backward; the check for whether double backward is allowed requires a .item() call. To fix the meta/fake tensor case, this PR will avoid setting the double backward error only if `GradMode::is_enabled()` - which shouldn't be turned on in PT2.
3. Update skips.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106429
Approved by: https://github.com/zou3519
Currently there are FFT operators which raise `UnsupportedOperatorException`
because their meta implementations sometimes give incorrect strides. This works
around the problem for static shapes by falling back to eager. Though we still
don't support calls with dynamic shapes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106319
Approved by: https://github.com/ezyang
Previously, x.size(0) could return a SymInt, even when the internal
sympy expression was actually already constant (e.g., due to an
introduced guard.) We now allow to query the Python object with
maybe_as_int which allows us to transmute these objects back to
int when possible.
It is still possible to end up with a constant SymInt even after this
change, e.g., if you get out a SymInt and while holding onto it
specialize it, but casual users are more likely to get ints when they
want to.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104828
Approved by: https://github.com/Skylion007
Previously, x.size(0) could return a SymInt, even when the internal
sympy expression was actually already constant (e.g., due to an
introduced guard.) We now allow to query the Python object with
maybe_as_int which allows us to transmute these objects back to
int when possible.
It is still possible to end up with a constant SymInt even after this
change, e.g., if you get out a SymInt and while holding onto it
specialize it, but casual users are more likely to get ints when they
want to.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104828
Approved by: https://github.com/Skylion007
Previously, x.size(0) could return a SymInt, even when the internal
sympy expression was actually already constant (e.g., due to an
introduced guard.) We now allow to query the Python object with
maybe_as_int which allows us to transmute these objects back to
int when possible.
It is still possible to end up with a constant SymInt even after this
change, e.g., if you get out a SymInt and while holding onto it
specialize it, but casual users are more likely to get ints when they
want to.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104828
Approved by: https://github.com/Skylion007
This PR introduces value range refinement of shape symbols by symbolically evaluating the
value range of the involved guards. This should help `_maybe_evaluate_static` to eliminate
more guards.
This is a stack of PRs created from the discussion on: #96616.
In summary, this PR:
- simplifies `FloorDiv` nodes on the left-hand side of an expression so as to isolate a
symbol in the numerator
- tries to match the expression against the form: `<symbol> <relop> <expr>`
- uses the matched expression for refining the value range of `<symbol>` using the range
of `<expr>`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97963
Approved by: https://github.com/ezyang
This PR turns translation validation on by default for tests and accuracy benchmark
runs. It also installs Z3 on CI.
The main changes are:
- Add `--no-translation-validation` as an option in _test/run_tests.py_
- Set `PYTORCH_TEST_WITH_TV` environment variable
- Add `TEST_WITH_TV` variable in _torch/testing/_internal/common_utils.py_
- Turn translation validation on for accuracy benchmarks in _benchmarks/dynamo/common.py_
- Add Z3 installation on CI scripts
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103611
Approved by: https://github.com/ezyang
This PR adds support for `enable_grad`/`no_grad`/`autocast` context managers getting properly traced in `pre_dispatch` tracing. The stuff in this PR includes:
- I added a torch function mode that runs during make_fx pre_dispatch tracing, `ProxyTorchFunctionMode`. It directly intercepts the torch ops that run during the above context managers, and adds them to the current graph instead of executing them
- `enable_grad` and `no_grad` currently desugar into `torch._C.set_grad_enabled(bool)`, but this API isn't currently overrideable by torch function so I added the ability to interpose there
- the `torch.amp` context managers don't currently have a nice equivalent, like `set_autocast_enabled(state)`, so I ended up adding two new API's: `torch.amp._set_autocast_enabled` and `torch.amp._set_autocast_disabled`. If you look at how the context manager is implemented, it ends up calling several different state-changing functions, some of which depend on the backend - so I figured that it would be cleaner just to add a new API (that should probably only be used by tracing) - but open to feedback
- I added a new dynamo backend, `compile(backend="pre_dispatch_eager")`. When pre_dispatch tracing becomes always-on in inductor, it will be another potential surface for bugs. I also added a test file for it (`test/dynamo/test_pre_dispatch.py`).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103024
Approved by: https://github.com/ezyang
This is in preparation for the custom_op_compile_check utility, which
will call the newly refactored function.
This PR:
- splits off code into helper functions
- adds clearer error messages
- stops updating the inputs destructively (leading to slightly slower
tests)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103196
Approved by: https://github.com/bdhirsh, https://github.com/soulitzer
We discussed in a composability meeting a few weeks ago that `pre_autograd` should probably be renamed to `pre_dispatch`.
One question in this PR was: should I re-use a dispatch key? Or should I create a new dispatch key (that yet again corresponds to "top of the dispatcher")?
~~For now, I ended up sticking our proxy mode on the mode stack corresponding to `PythonTLSSnapshot`, because it was simple and it works. It looks like one of the functorch dispatch keys has higher priority though, so it's possible that functorch will end up running first. Open to options, but we can consider adding a new dispatch key later if that becomes a problem~~
Update: I added a dedicated dispatch key, `PreDispatch`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101818
Approved by: https://github.com/ezyang, https://github.com/Neilblaze, https://github.com/albanD, https://github.com/zou3519
When investigating failures in https://github.com/pytorch/pytorch/pull/100017 I realized that we were reentering FakeTensorMode even though there was already one on the stack. Although we have attempted assert for these cases in the past, e.g., as in https://github.com/pytorch/pytorch/pull/97186 it seems that the existing protections were insufficient.
In this particular case, the reapplication of FakeTensorMode was due to an interaction with NotImplemented multiple dispatch handling. If proxy tensor mode detects an unrecognized tensor type (this includes FakeTensor, if it is not tracked with a proxy), it will return NotImplemented to give this tensor a chance to unpack itself into proxyable operation. However, this is never the right thing for FakeTensor, where no unpacking is possible. However, today, FakeTensor attempts to reapply the FakeTensorMode, resulting in FakeTensorMode being twice on the stack.
This PR does a number of things:
* It adds an assert in `FakeTensorMode.__torch_dispatch__` that you must not already have this mode on the stack, this is ALWAYS an error
* It modifies `FakeTensor.__torch_dispatch__` to return `NotImplemented` if the mode is already active. This prevents us from readding the mode on the stack
* It adds a new logging artifact `not_implemented` which you can use to get debug logs about all of the times a `__torch_dispatch__` handler returned NotImplemented and why it did so. Your subclass has to manually opt into this logging, but I inserted the necessary logs for ProxyTensorMode and FakeTensor(Mode)
* `with fake_mode` now no-ops if the fake mode is already on the stack, which is what users want anyway
* I am BREAKING pre-autograd tracing, because it is currently doing something weird with the original C++ mode stack. Brian is going to follow up with a fix next week.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102091
Approved by: https://github.com/thiagocrepaldi, https://github.com/eellison, https://github.com/wanchaol, https://github.com/bdhirsh
The bug was that: if you want to move a mode to the autograd key, we need to use the "functionality" key for it (AutogradFunctionality). But when we do that, we need to clear any PythonDispatcher caches for every op for **every** autograd key (since you could run autograd ops with both cpu and cuda tensors underneath the mode, which both may have been cached).
I didn't add a test, since this ends up getting indirectly tests by export in the PR. If someone would prefer a direct test I can add one.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98030
Approved by: https://github.com/ezyang
This PR improves the list/tuple handling by merging the logic into
`wrap_with_proxy` directly, and set_meta when we find the current
proxy is a fx.Proxy. This also solves the problem that even `fused_adam`
have `val`, some corresponding `getitem` calls followed after `fused_adam` don't have val
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99897
Approved by: https://github.com/ezyang
This PR introduces CustomOp, a wrapper around a dispatcher operator that allows
users to define custom operators. It adds the skeleton for CustomOp and
some very simple behavior: as of this PR:
- one can create a CustomOp for an operator that does not have inplace or aliasing
- give it CPU/CUDA and Meta implementations
- and trace it into a graph via make_fx.
The design follows
https://docs.google.com/document/d/19Uc5OUCA187q9BZggJb70RT2ZoSTDoG5QQkJkZwd25M/edit
Concretely, we implement the following things mentioned in the doc in this PR:
- Entrypoint 1 (CustomOp.define, creating a new custom operator)
- impl (to define device-specific code) and impl_meta (to define meta
formulas)
The goal for the short term is to get the code to a state where it can be trialed
by the export folks. On top of this PR, the blockers are:
- adding Entrypoint 3 (CustomOp.from_existing)
- adding a way to do data-dependent shape formulas
These will come in future PRs since this one is getting long.
Things that will come in the longer-near-term (before 2.1):
- adding the other entrypoints mentioned in the doc (2 & 3)
- more safety checks and better error messages
- support for views and mutation
- support for defining autograd formulas
- support for functionalization
- making this API public (it's private right now).
Test Plan:
- added a new test case, TestCustomOp. It mostly tests a bunch of error
cases.
- added OpInfos for custom operators and hooked these up to
test_proxy_tensor to test that they work with make_fx. These custom
operators were based off of the ones in the autograd_function_db.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98440
Approved by: https://github.com/ezyang