Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55462
handles and symbolicate exception callstack thrown from backend.
Objective of this diff is to achieve improve error reporting when
exceptions are raised from lowered backend. We would effectively like to
get the same model level stack trace that you would get without having
lowered some module to backend.
For example:
```
class AA(nn.Module):
def forward(self, x, y):
return x + y
class A(nn.Module):
def __init__(...):
self.AA0 = AA()
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
class B(nn.Module):
def forward(self, x):
return x + 2
class C(nn.Module):
def __init__(...):
self.A0 = A()
self.B0 = B()
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
```
If the we then do C().forward(torch.rand((2,3)), torch.rand(14,2))) we
will likely see error stack like:
```
C++ exception with description "The following operation failed in the TorchScript interpreter.
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in forward
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in forward
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
```
We would like to see the same error stack if we lowered C.A0 to some
backend.
With this diff we get something like:
```
Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
Traceback of TorchScript (most recent call last):
File "<string>", line 3, in FunctionName_UNKNOWN
def forward(self, x, y):
return self.A0.forward(x, y) + self.B0.forward(x)
~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 5, in FunctionName_UNKNOWN
typed_inputs: List[Any] = [x, y, ]
if self.__backend.is_available() :
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
assert isinstance(_0, Tensor)
return _0
File "<string>", line 3, in FunctionName_UNKNOWN
def forward(self, x, y):
return self.AA0.forward(x, y) + 3
~~~~~~~~~~~~~~~~ <--- HERE
File "<string>", line 3, in FunctionName_UNKNOWN
def forward(self, x, y):
return x + y
~~~~~ <--- HERE
```
This is achieved in 3 parts:
Part 1:
A. BackendDebugInfoRecorder:
During backend lowering, in `to_backend`, before calling the preprocess
function corresponding to the backend. This will facilitate recording of
debug info (such as source range + inlined callstack) for the lowered module.
B. Instantiate WithBackendDebugInfoRecorder with BackendDebugInfoRecorder.
This initializes thread local pointer to BackendDebugInfoRecorder.
C. generate_debug_handles:
In preprocess function, the backend will call generate_debug_handles
for each method being lowered separately. generate_debug_handles
takes `Graph` of the method being lowered and returns a map
of Node*-to-debug_handles. Backend is responsible for storing debug
handles appropriately so as to raise exception (and later profiling)
using debug handles when the exception being raised corresponds to
particular Node that was lowered.
Inside generate_debug_handles, we will query the current
BackendDebugHandleInfoRecorder, that is issuing debug handles. This debug
handle manager will issue debug handles as well as record
debug_handles-to-<source range, inlined callstack> map.
D. Back in `to_backend`, once the preprocess function is has finished
lowering the module, we will call `stopRecord` on
BackendDebugInfoRecorder. This will return the debug info map. This
debug info is then stored inside the lowered module.
Part 2:
Serialization:
During serialization for bytecode (lite interpreter), we will do two
things:
1. Extract all the source ranges that are contained inside
debug_handles-to-<source range, inlined callstack> map for lowered
module. This will be source range corresponding to debug handles,
including what is there is inlined callstack. Since we replaced original
module with lowered module, we wont be serializing code for the original
module and thus no source range. That is why the source range will have
to be stored separately. We will lump all the source ranges for all the
lowered modules in one single debug_pkl file.
2. Then we will serialize debug_handles-to-<source range, inlined
callstack> map.
Now during deserialization we will be able to reconstruct
debug_handles-to-<source range, inlined callstack> map. Given all
debug_handles are unique we would not need any module information.
Test Plan:
Tests are added in test_backend.cpp
Tests are added in test_backend.cpp
Imported from OSS
Differential Revision:
D27621330
D27621330
Reviewed By: raziel
Pulled By: kimishpatel
fbshipit-source-id: 0650ec68cda0df0a945864658cab226a97ba1890
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54284
In order to bring mobile deployment, via lite interpreter, on feature
parity with JIT, with respect model level debug information we must make
model level debug information available to mobile runtime.
At the moment, model level debug information is stored in SourceRange
which associates node's of graph to where the come from in original
python source code.
This information is serialized as part of debug_pkl and deserialized
when JIT loads the model and reads the model code.
On lite interpreter, we do not have access to all the functionality of
JIT and hence we cannot load model in the same way as JIT, by reading
code, constructing module hierarchy and graph corresponding module
methods etc. Instead in, lite interpreter, only bytecode corresonding to
the compiled graph, Code, is saved.
Thus in order to annotate OPs in the bytecode with equivalent
SourceRange information we do the following:
1. During model serialization, we create a unique tag for each source
range of the model.
2. Create a map of <SourceRange, tag>
3. During debug_pkl serialization we save tag along with SourceRange, on
top of byte offset.
4. During bytecode generation, the methods of the top module are
lowered. During this process methods are inlined. In the inlined graph,
when the node of a graph is lowered to bytecode, we query node's source
range and look it up against the map.
5. Resulting source range tag is serialized in module_debug_info.
6. During model deserialization, we read all the debug_pkl records in
the archieve and create a map of <tag, SourceRange>
7. This map can be used to find source code information.
During mobile runtime:
1. We read all the debug_pkl records and create <tag=debug_handle,
SourceRange> map.
1.1 This map, MobileDebugInfo, is a member of mobile Module.
2. Interpreter catches appropriate exceptions and sets the thread local
debug handle and rethrows the exception.
3. In Function's run method we catch exception and query current debug
handle where the exception happened.
4. Query MobileDebugInfo with debug handle to retrieve source range and
augment error with source range info.
This information is still incomplete as it does not contain entire
callstack.
In the following diffs we will serialize InlinedCallStack directly.
Note that compilation is gated by SYMBOLICATE_MOBILE_DEBUG_HANDLE macro,
so that mobile builds can avoid building MobileDebugInfo, source range
and source range pickler/unpickler. Later we will add path where, if
building without debug support stack trace will contain only debug
handles. They can be symbolicated later.
Test Plan:
Ported bunch of source range tests from test_jit.py. Added on more test
in test_lite_interpreter.py
Imported from OSS
Reviewed By: raziel
Differential Revision: D27174722
fbshipit-source-id: a7b7c6088ce16dec37e823c7fefa4f0b61047e12
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56807
If I understand correctly, there's no reason to create your own instance of these global singleton types.
ghstack-source-id: 127312270
Test Plan: CI
Reviewed By: SplitInfinity
Differential Revision: D27973447
fbshipit-source-id: f12df69d185f1baaa45f2ac6eac70570a7a65912
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os
def get_compiled_files_list():
import json
with open("build/compile_commands.json") as f:
data = json.load(f)
files = [os.path.relpath(node['file']) for node in data]
for idx, fname in enumerate(files):
if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
return files
def run_clang_tidy(fname):
check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
changes = check_output(["git", "ls-files", "-m"])
if len(changes) == 0:
return
check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])
def main():
git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
compiled_files = get_compiled_files_list()
for idx, fname in enumerate(git_files):
if fname not in compiled_files:
continue
if fname.startswith("caffe2/contrib/aten/"):
continue
print(f"[{idx}/{len(git_files)}] Processing {fname}")
run_clang_tidy(fname)
if __name__ == "__main__":
main()
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892
Reviewed By: H-Huang
Differential Revision: D27991944
Pulled By: malfet
fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54110
dictConstruct doesn't need to make its caller have a `shared_ptr<DictType>`. It also doesn't need to do extra `shared_ptr` copies into the `key_type` and `value_type` locals.
ghstack-source-id: 124150642
Test Plan: fitsships
Reviewed By: ezyang
Differential Revision: D27101782
fbshipit-source-id: 3c632ad9d8f1bd7bdf37f517a86aca27bd41548a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54076
If we don't constrain ourselves to use `torch::jit::pop`, we can avoid copying a string or moving IValues around.
ghstack-source-id: 124040891
Test Plan:
existing tests
spot-checked regular interpreter assembly; seems better
Reviewed By: dhruvbird, walterddr
Differential Revision: D27087204
fbshipit-source-id: 7cf355dbcec31409bdb37afa09d7df85cf2a7e4b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/53201
This resulted in [S22350](https://www.internalfb.com/intern/sevmanager/view/s/223540), which caused truoble on Android.
1. The Python has a call to `warnings.warn()`, which resulted in code generated to emit the `WARN` instruction on lite-interpreter.
2. The code for handling that instruction/op-code popped off the value in a call to the `TORCH_WARN()` *macro*.
3. This macro conditionally compiled out evaluation of the arguments if `STRIP_ERROR_MESSAGES` was defined, which resulted in the stack not getting popped, and the lite-interpreter returning the last pushed value on to the stack.
I've attempted to re-produce it using this python code: {P243842428}
ghstack-source-id: 122990001
(Note: this ignores all push blocking failures!)
Test Plan:
Created a new unit test to re-produce the failure in the test. Was able to do so locally using the following command:
```
buck test -c pt.strip_error_messages=1 //xplat/caffe2:test_s223540
```
However, since `pt.strip_error_messages=0` for dev and continuous builds, I have had to check in a separate contbuild config to try and trigger this failure on contbuild.
Reviewed By: iseeyuan
Differential Revision: D26765662
fbshipit-source-id: 63c3c96d84ce6a9e5471f13d80165aa3718be9a2
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/52870
Add the missing parts to support to_backend modules by lite interpreter.
1. Add ISINSTANCE instruction support, which is used in to_backend for output type check.
2. Bypass lite interpreter's type parser by checking the qualified name. If it starts with "torch.jit", use the same type resolver as nn module (starting with "__torch__").
Tests
Mobile module is serialized and loaded in ```BackendTest.TestCompiler```. The results are compared to those from original torchscript module.
Test Plan: Imported from OSS
Reviewed By: raziel
Differential Revision: D26715351
Pulled By: iseeyuan
fbshipit-source-id: ad9d74ee81c6aa692ab9e5dd7a9003bae5d4f01f
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/51432
ghstack-source-id: 120976584
torchbind is a convenient way to include custom class to both python and torchscript. CREATE_OBJECT is used to create an object of custom class.
CREATE_OBJECT was not supported by lite interpreter. The major reason was that for custom class directly defined in Python, there's no language parser in lite interpreter. It's still the case. However, for torchbind classes that are defined in C++, a python/torchscript parser is not needed.
This diff is to support the case of torchbind custom classes.
1. The class type can be resolved at import level.
2. If the class is not the supported torchbind class, an error message is provided at export stage. Workaround is also suggested.
3. Unit tests. C++: ```LiteInterpreterTest::BuiltinClass``` is added as an end-to-end test on supported class. Python: ```test_unsupported_createobject``` is changed to ```test_unsupported_classtype``` to test unsupported classes.
Test Plan: CI
Reviewed By: raziel
Differential Revision: D26168913
fbshipit-source-id: 74e8b6a12682ad8e9c39afdfd2b605c5f8e65427
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47457
This fixes two issues.
1. lite interpreter record_function is intended to be used only for root op
profiling. At the moment if RECORD_FUNCTION is enabled via Dispatcher then it
logs not just root ops but all ops.
2. Because interpreter sets op index that later gets picked up elsewhere
(decoupled design), op index that is set in lite interpreter ends up getting
used by all the record function calls not just root op. Thus we dont really get
correct per op profiling. This diff also fixes this issue.
Reviewed By: ilia-cher
Differential Revision: D24763689
fbshipit-source-id: 6c1f8bcaec9fb5ebacb2743a5dcf7090ceb176b9
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/47796
`ThreadLocalDebugInfo::get()` is a hot function. For example, it is called by `DefaultCPUAllocator::allocate()`. Most callers do not even bother to keep the returned `shared_ptr` around, proving that they have no lifetime issues currently. For the rest, it appears that the only way that the returned pointer could become invalid is if they then called a function that swapped out `ThreadLocalDebugInfo` using `ThreadLocalStateGuard`. There are very few such paths, and it doesn't look like any current callers of `ThreadLocalDebugInfo::get()` needed a `shared_ptr` at all.
ghstack-source-id: 116979577
Test Plan:
1) reviewers to double-check audit of safety
2) run framework overhead benchmarks
Reviewed By: dzhulgakov
Differential Revision: D24902978
fbshipit-source-id: d684737cc2568534cac7cd3fb8d623b971c2fd28
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39607
add overload name for strcmp macro to prevent duplicated op names in lite interpreter
also reformatted some other files
Test Plan:
verified these op schema are changed
```
-aten::eq(str a, str b) -> (bool)
+aten::eq.str(str a, str b) -> (bool)
-aten::ne(str a, str b) -> (bool)
+aten::ne.str(str a, str b) -> (bool)
-aten::lt(str a, str b) -> (bool)
+aten::lt.str(str a, str b) -> (bool)
-aten::gt(str a, str b) -> (bool)
+aten::gt.str(str a, str b) -> (bool)
-aten::le(str a, str b) -> (bool)
+aten::le.str(str a, str b) -> (bool)
-aten::ge(str a, str b) -> (bool)
+aten::ge.str(str a, str b) -> (bool)
```
Reviewed By: iseeyuan
Differential Revision: D21913049
fbshipit-source-id: 518db068c8c5b0efd19223f0bd94fc3351335dc4
Summary: Fix operator perf observer index issue.
Test Plan:
make sure that the operator index is populated correctly, ran benchmarking for pytext_mobile_inference, see result:
https://www.internalfb.com/intern/aibench/details/598900068317693
Reviewed By: linbinyu
Differential Revision: D21779222
fbshipit-source-id: 0fc3561d83d10cfabd73e1e6b6ee240ce0bafd80
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38489
Remove module and operator observer macros.
ghstack-source-id: 104290763
Test Plan:
a. Verify that QPL is being sent while testing FB4A BI Cloaking:
{F236982877}
b. Verify that AI Benchmark is working on both module and operator level:
https://our.intern.facebook.com/intern/aibench/details/808056762618979
c. Verify that macosx segmentation effect by running buck run xplat/arfx/tracking/segmentation/tools:person_segmentation_demoAppleMac#macosx-x86_64:
{F236982853}
Reviewed By: ljk53
Differential Revision: D21540838
fbshipit-source-id: 516f84ef5673d4ceed38ae152440a5cbacc6ddaa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37962
Temporarily re-enable RecordFunction in lite interpreter when profiler key is not set,
this allows the profiler to work without profiled wrappers in the build
Test Plan: CI
Reviewed By: smessmer, linbinyu
Differential Revision: D21409120
fbshipit-source-id: 6f0311c8eb55537a03b8bdac69def18a496ec672
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37548
Moving RecordFunction from torch::autograd::profiler into at namespace
Test Plan:
CI
Imported from OSS
Differential Revision: D21315852
fbshipit-source-id: 4a4dbabf116c162f9aef0da8606590ec3f3847aa
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37472
Our convention is for `findX` to return an optional version and `getX`
to assert that the X is there. Fix up `getMethod` to be consistent with
this convention.
Test Plan: Imported from OSS
Differential Revision: D21297543
Pulled By: suo
fbshipit-source-id: b40f56231cc8183e61bbb01fe5c0c113bcb6464d
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36296
When there's no overload name, the operator name string should be "name", instead of "name.".
Test Plan: Imported from OSS
Differential Revision: D20966759
Pulled By: iseeyuan
fbshipit-source-id: b4b31923c7ec5cdca8ac919bd6a84ba51afb6cd1
Summary: This diff fixes the issues with current handling of debug information passed along the execution of the model. (For example, it is possible that multiple calls to the debug guard may override each other)
Test Plan: CI test/cpp/jit
Reviewed By: dzhulgakov
Differential Revision: D20602775
fbshipit-source-id: 4683957954028af81a1a0f1f12b243650230c9bb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35115
This commit runs the newly added tools/clang_format.py on the JIT
codebase and includes all of the formatting changes thus produced.
Testing:
Ran the script, CI.
Test Plan: Imported from OSS
Reviewed By: eellison
Differential Revision: D20568523
Pulled By: SplitInfinity
fbshipit-source-id: e09bdb982ccf090eecfb7c7b461b8d0681eef82b
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/34623
The bandaid of "AT_WARN" keeps introducing new warnings. Let's get rid
of it entirely.
Close#34502
Test Plan: Imported from OSS
Differential Revision: D20420112
Pulled By: albanD
fbshipit-source-id: 7160c113cb4deb2d2f50a375356f423fe5e86f50
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33717
Because of the special treatment of operator names for lite interpreter, all the operators used in lite interpreter are still prepended by "_". Add the necessary registrations for MNIST model. All the ops with autograd capability are included in torch_mobile_train. After rebase the selective build from D19649074 can be utilized to strip the unused ops.
Note that this diff is for feasibility test. The training accuracy are not covered in the test.
ghstack-source-id: 97780066
Test Plan:
```
buck run xplat/caffe2/fb/lite_trainer:lite_trainer -c pt.disable_gen_tracing=1 -c pt.static_dispatch=0 -- --model=/path/MnistModel.bc
```
{F227898221}
Reviewed By: dreiss
Differential Revision: D19743201
fbshipit-source-id: cacadd76f3729faa0018d147a69466bbf54312fd
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33294
1. Serialize bytecode of __setstate__ and run it when loading the model.
2. One use case is quantization. To test this use case a few operators are registered temporarily for lite interpreter. The "_" prefix registration will be removed when the operators are all migrated to mobile.
Test Plan: Imported from OSS
Differential Revision: D20162898
Pulled By: iseeyuan
fbshipit-source-id: 7a3180807bf38fbce594d86993896861f12bb58c
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33667
Pass shared_ptr properly according to C++ guidances. Thank kimishpatel for pointing it out.
Test Plan: Imported from OSS
Differential Revision: D20111001
Pulled By: iseeyuan
fbshipit-source-id: 213a0f950a7f3b9199d789dc0155911f6102d77a
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/33555
A quick fix for the PyText model (in internal production) on the new bytecode format.
Test Plan: Imported from OSS
Differential Revision: D20008266
Pulled By: iseeyuan
fbshipit-source-id: 1916bd0bf41093898713c567c7f6fa546b9ea440
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/32889
Common primitive ops that have special inputs make it very hard to
serialize the bytecode for mobile because information about how the
op behaves is hidden in the Node*. This changes how we handle the following
ops so that they are encoded as their own interpreter bytecodes.
```
USES NODE: prim::TupleUnpack(...) -> (...)
USES NODE: prim::TupleSlice(...) -> (...)
USES NODE: prim::TupleConstruct(...) -> (...)
USES NODE: prim::ListUnpack(...) -> (...)
USES NODE: prim::ListConstruct(...) -> (...)
USES NODE: prim::DictConstruct(...) -> (...)
USES NODE: prim::Constant() -> (...)
USES NODE: prim::isinstance(...) -> (...)
USES NODE: prim::CreateObject(...) -> (...)
USES NODE: prim::fork(...) -> (...)
USES NODE: aten::warn(str message, *, int stacklevel=2) -> () # need stack level information, so ideally in interpreter so it can look at the stack
```
This leaves a state where the _only_ remaining Node*-consuming builtins
are things that are only introduced during JIT optimization and will
not appear in mobile code.
Serialization of bytecode can now be made to directly write the CodeImpl
object without modification.
Test Plan: Imported from OSS
Differential Revision: D19673157
Pulled By: zdevito
fbshipit-source-id: 7b8c633d38a4c783b250fbdb222705e71a83ad26
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/30734
What are specialized lists?
The IValues that hold List[int], List[Tensor], and List[AnythingElse] are different C++ types.
e.g. List[int] has a std::vector<int> while List[AnythingElse] holds a std::vector<IValue>.
Why do we have specialized lists?
When we first created the JIT we needed to bind the ATen C++ API which has std::vector<int>,
std::vector<Tensor> as inputs. The easiest way to match this API was to make our IValues contain
these same types. Conversion was just unwrapping the IValue, very easy and cheap.
What is the problem with specialized lists?
We end up with significant special cases through the compiler. Other types like Dict are not
specialized. So in the Pickler, for instance, there is a single piece of logic to handle
their serialization. For Lists, we end up with multiple cases. Furthermore, it doesn't
match Python, leading to problems along translation boundaries. Our pickle serialization
is slightly different than python, so it is harder to load objects from our IValue serialization
as Python values.
They also make it harder to provide an easy-to-use user API. We'd like to match pybind11 for C++
bindings to TorchScript. This would entail having a single torch::List class (untemplated)
that can be used to construct inputs. This is made much harder if the underlying ivalue needs
to be different depending on the type inside the list. The ideal case would be to have a constructor like
```
template<typename T>
List(std::vector<T> foo);
```
It would then set up the type tags correctly based on type T, without the need for passing tags.
Do specialized lists improve perf?
Not in a way we have been able to measure. Our major concern initially was having to translate
a std::vector<IValue> to std::vector<int> to call ATen functions. This was especially a concern
for aten::_convolution which takes a number of mostly-constant lists of integers. However,
when we measure the effect of actually having to do this conversion for an aten::_convolution,
it does not take measurable time (benchmark results below).
This is true even if you use a trivial convolution (e.g. 1x1x1), and comment out the actual convolution code.
What are the issues removing them?
This PR removes list specialization but keeps the serialization format, and IValue APIs almost exactly
the same. The only visible change is that toTensorListRef and family have turned into toTensorVector
because they now return by value a copy of the list as a vector.
Further PRs can then clean up the complexity issues that arose from speclization. This will likely
involve removing the isTensorList/isIntList functions, and refactoring the code that used them to
work generically. At some point we will also change serialization to no longer write specialized
lists in the pickle binary. This is forward incompatible, so will go in its own PR.
Benchmark:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
class MnistNet(nn.Module):
def __init__(self):
super(MnistNet, self).__init__()
self.conv1 = nn.Conv2d(1, 1, kernel_size=1)
self.conv2 = nn.Conv2d(1, 1, kernel_size=1)
def forward(self, x):
for i in range(10):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
return x
model = MnistNet()
x = torch.rand(1, 1, 1, 1)
r = torch.jit.trace(model, x )
r(x)
r(x)
r(x)
r(x)
print(torch.jit.last_executed_optimized_graph())
while True:
b = time.time()
for i in range(100):
r(x)
e = time.time()
print(e - b)
```
Results (no observable difference):
```
Before (actual conv)
0.13251137733459473
0.13260436058044434
0.13276338577270508
0.1327497959136963
0.13250041007995605
0.13270330429077148
0.13290190696716309
0.13265132904052734
0.13274288177490234
0.1326758861541748
0.13253355026245117
0.13254785537719727
0.13260746002197266
0.13285017013549805
0.13264012336730957
0.132490873336792
0.13280034065246582
0.13243484497070312
0.1325232982635498
0.1326127052307129
0.13264131546020508
0.13274383544921875
0.13298296928405762
0.1326909065246582
-------------------
After (actual conv)
0.13127517700195312
0.13150334358215332
0.13092470169067383
0.13102364540100098
0.13134360313415527
0.13155555725097656
0.13314104080200195
0.13151955604553223
0.13160037994384766
0.1315293312072754
0.13137340545654297
0.13148093223571777
0.131455659866333
0.1327371597290039
0.13134026527404785
0.13152337074279785
0.13151192665100098
0.13165974617004395
0.13403725624084473
0.13251852989196777
0.13135504722595215
0.1315624713897705
0.1317615509033203
0.1314380168914795
0.13157200813293457
--------------------
The following replace the convolution operator with a no-op, to show
that even if the conv op was made faster, then we still would not see
a difference:
Before (fake conv)
0.0069539546966552734
0.0069522857666015625
0.007120847702026367
0.007344722747802734
0.007689952850341797
0.007932662963867188
0.00761723518371582
0.007501363754272461
0.007532835006713867
0.007141828536987305
0.007174253463745117
0.007114410400390625
0.007071495056152344
------------------
After (fake conv)
0.007458209991455078
0.007337093353271484
0.007268190383911133
0.007313251495361328
0.007306575775146484
0.007468700408935547
0.0073091983795166016
0.007308483123779297
0.007538318634033203
0.007356882095336914
0.007464170455932617
0.007372140884399414
```
Test Plan: Imported from OSS
Differential Revision: D18814702
Pulled By: zdevito
fbshipit-source-id: 0371c73b63068fdc12f24b801371ea90f23531a6
Summary: Add mobile operator observer to measure performance of each operator run, the result will also log into QPL event: [MOBILE_OPERATOR_STATS ](https://fburl.com/quicklog/8773a00a).
Test Plan:
Run pytext model through BI cloaking flow on lite-interpreter and verify logs are sent:
1. buck install -r fb4a
2. Go to internal setting and find MobileConfig, search for android_bi_infra_cloaking_iab_models and set the following params:
a. sample_rate: 1.0
b. enabled: true
c. use_bytedoc_pytorch_model: true
d. use_bytedoc_caffe2_model: false
e. use_full_jit: false
3. Go back to new feed and scroll down until find an ads which will direct you to offsite webpage;
4. Click on the ads, wait for the offsite ads loads;
5. Click back to news feed;
6. Go to scuba table: https://fburl.com/scuba/er7t4g9u and see all the operator runs have been logged:
{F223250762}
Reviewed By: ljk53
Differential Revision: D18131224
fbshipit-source-id: 23e2f6e2a9851c04b29511b45dc53f3cce03e8a0
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/29960
Overload name is required in mobile operators with the same name but different schema. Since it's not used in JIT, it's safe to add overload names for JIT operators.
Test Plan: Imported from OSS
Differential Revision: D18555484
fbshipit-source-id: b451379af24e255d8b0c61b964ae32fd1a64ed34
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27546
Add files in csrc/jit/mobile folder to torch_core, as a first step to have light interpreter built in BUCK. Next the files will be independent of torch_core (T54912812)
ghstack-source-id: 91523987
Test Plan:
buck build -c pytorch.enable_rtti=1 -c project.ignore= -c ndk.app_platform=android-23 -c user.libcxx_cflags=-DFOLLY_USE_LIBCPP=1 -c user.libcxx_cxxflags=-DFOLLY_USE_LIBCPP=1 -c ndk.cxx_runtime=libcxx -c user.ndk_cxxflags=-g0 //xplat/experimental/pytorch/mobile:lite_predictorAndroid#android-armv7 && adb push buck-out/gen/xplat/experimental/pytorch/mobile/lite_predictorAndroid#android-armv7 /data/local/tmp/
In adb shell:
data/local/tmp/lite_predictorAndroid\#android-armv7 add_it.bc
buck build -c project.ignore= @//fbcode/mode/dev-asan //xplat/experimental/pytorch/mobile:lite_predictor
Reviewed By: ljk53
Differential Revision: D17717547
fbshipit-source-id: 4c00a35eb231968d05d0d7b56bcfd5dc0258d4bb
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/27104
* The use case here is to replace prim::ListConstruct, which requires Node, but Node is not available in mobile lite interpreter.
* (OPN, X, N), X is the index to the vararg operator-name and operator tables. N is number of inputs. For ListConstruct example, operator name can be "aten::listconstruct" and the overloaded name is the output type ("int", "float", "bool", "tensor" and "generic").
* A vararg operator table is built with void(int input_size, Stack& stack) functions.
## Unit test
LiteInterpreterConv covers OPN instruction and conv operator.
Test Plan: Imported from OSS
Differential Revision: D17762853
fbshipit-source-id: 475aa0c6678e3760cec805862a78510913a89c83
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/25187
The bytecode export flow: dump the bytecode format for the light weighted interpreter.
* The bytecode is generated without input spec optimization. It would be more generic (input independent) with no obvious performance degradation (to be tested).
* Main API: torch::jit::script::Module::save(filename, extra_files, bool *bytecode_format* = false).
* Both bytecode and module object are exported in pickle format.
* The module object (in data.pkl) is the same as the original JIT model.
* The serializer is dependent on pickle only (no protobuf or Json).
* The major functionality is forked in ScriptModuleSerializer2::serialize().
* The test loader is test_bc_export.cpp.
* Simple APIs are added in Code and its implementation to get necessary information (instructions, operators and constants).
* Since there's no dependency on graph/node, GetAttr is promoted from an operator to first-class instruction (https://github.com/pytorch/pytorch/pull/25151) .
* Some definitions (instructions, writeArchive, etc) that are shared by full JIT and bytecode are pulled out of the local namespace (https://github.com/pytorch/pytorch/pull/25148).
The output layout looks like:
* folders of methods.
* In each method folder (for example, forward/):
* bytecode.pkl: instructions and operators
* constants{.pkl,/}: constant list in constants.pkl. If there are tensors in constants, the binary tensor files in constants/ folder.
* data{.pkl,/}: the module object, with binary tensor files in data/ folder. The same as in torchscript.
Test Plan: Imported from OSS
Differential Revision: D17076411
fbshipit-source-id: 46eb298e7320d1e585b0101effc0fcfd09219046