Commit Graph

3 Commits

Author SHA1 Message Date
Kimish Patel
d6d726f781 [Pytorch Backend delegation] Add api for backend lowering to query debug (#55462)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/55462

handles and symbolicate exception callstack thrown from backend.

Objective of this diff is to achieve improve error reporting when
exceptions are raised from lowered backend. We would effectively like to
get the same model level stack trace that you would get without having
lowered some module to backend.

For example:
```
class AA(nn.Module):
  def forward(self, x, y):
    return x + y

class A(nn.Module):
  def __init__(...):
    self.AA0 = AA()
  def forward(self, x, y):
    return self.AA0.forward(x, y) + 3

class B(nn.Module):
  def forward(self, x):
    return x + 2

class C(nn.Module):
  def __init__(...):
    self.A0 = A()
    self.B0 = B()
  def forward(self, x, y):
    return self.A0.forward(x, y) + self.B0.forward(x)
```
If the we then do C().forward(torch.rand((2,3)), torch.rand(14,2))) we
will likely see error stack like:
```
C++ exception with description "The following operation failed in the TorchScript interpreter.
Traceback of TorchScript (most recent call last):
  File "<string>", line 3, in forward

    def forward(self, x, y):
      return self.A0.forward(x, y) + self.B0.forward(x)
             ~~~~~~~~~~~~~~~ <--- HERE

  File "<string>", line 3, in forward

    def forward(self, x, y):
      return self.AA0.forward(x, y) + 3
             ~~~~~~~~~~~~~~~~ <--- HERE

  File "<string>", line 3, in forward

    def forward(self, x, y):
      return x + y
             ~~~~~ <--- HERE
```

We would like to see the same error stack if we lowered C.A0 to some
backend.

With this diff we get something like:
```
  Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
Traceback of TorchScript (most recent call last):
  File "<string>", line 3, in FunctionName_UNKNOWN

    def forward(self, x, y):
      return self.A0.forward(x, y) + self.B0.forward(x)
             ~~~~~~~~~~~~~~~ <--- HERE

  File "<string>", line 5, in FunctionName_UNKNOWN
                typed_inputs: List[Any] = [x, y, ]
                if self.__backend.is_available() :
                  _0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
                        ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
                  assert isinstance(_0, Tensor)
                  return _0
  File "<string>", line 3, in FunctionName_UNKNOWN

    def forward(self, x, y):
      return self.AA0.forward(x, y) + 3
             ~~~~~~~~~~~~~~~~ <--- HERE

  File "<string>", line 3, in FunctionName_UNKNOWN

    def forward(self, x, y):
      return x + y
             ~~~~~ <--- HERE
```
This is achieved in 3 parts:
Part 1:
A. BackendDebugInfoRecorder:
   During backend lowering, in `to_backend`, before calling the preprocess
   function corresponding to the backend. This will facilitate recording of
   debug info (such as source range + inlined callstack) for the lowered module.
B. Instantiate WithBackendDebugInfoRecorder with BackendDebugInfoRecorder.
   This initializes thread local pointer to BackendDebugInfoRecorder.
C. generate_debug_handles:
   In preprocess function, the backend will call generate_debug_handles
   for each method being lowered separately. generate_debug_handles
   takes `Graph` of the method being lowered and returns a map
   of Node*-to-debug_handles. Backend is responsible for storing debug
   handles appropriately so as to raise exception (and later profiling)
   using debug handles when the exception being raised corresponds to
   particular Node that was lowered.
   Inside generate_debug_handles, we will query the current
   BackendDebugHandleInfoRecorder, that is issuing debug handles. This debug
   handle manager will issue debug handles as well as record
   debug_handles-to-<source range, inlined callstack> map.
D. Back in `to_backend`, once the preprocess function is has finished
   lowering the module, we will call `stopRecord` on
   BackendDebugInfoRecorder. This will return the debug info map. This
   debug info is then stored inside the lowered module.

Part 2:
Serialization:
During serialization for bytecode (lite interpreter), we will do two
things:
1. Extract all the source ranges that are contained inside
debug_handles-to-<source range, inlined callstack> map for lowered
module. This will be source range corresponding to debug handles,
including what is there is inlined callstack. Since we replaced original
module with lowered module, we wont be serializing code for the original
module and thus no source range. That is why the source range will have
to be stored separately. We will lump all the source ranges for all the
lowered modules in one single debug_pkl file.
2. Then we will serialize debug_handles-to-<source range, inlined
callstack> map.

Now during deserialization we will be able to reconstruct
debug_handles-to-<source range, inlined callstack> map. Given all
debug_handles are unique we would not need any module information.

Test Plan:
Tests are added in test_backend.cpp

Tests are added in test_backend.cpp

Imported from OSS

Differential Revision:
D27621330
D27621330

Reviewed By: raziel

Pulled By: kimishpatel

fbshipit-source-id: 0650ec68cda0df0a945864658cab226a97ba1890
2021-05-22 08:33:07 -07:00
Nikita Shulga
4cb534f92e Make PyTorch code-base clang-tidy compliant (#56892)
Summary:
This is an automatic change generated by the following script:
```
#!/usr/bin/env python3
from subprocess import check_output, check_call
import os

def get_compiled_files_list():
    import json
    with open("build/compile_commands.json") as f:
        data = json.load(f)
    files = [os.path.relpath(node['file']) for node in data]
    for idx, fname in enumerate(files):
        if fname.startswith('build/') and fname.endswith('.DEFAULT.cpp'):
            files[idx] = fname[len('build/'):-len('.DEFAULT.cpp')]
    return files

def run_clang_tidy(fname):
    check_call(["python3", "tools/clang_tidy.py", "-c", "build", "-x", fname,"-s"])
    changes = check_output(["git", "ls-files", "-m"])
    if len(changes) == 0:
        return
    check_call(["git", "commit","--all", "-m", f"NOLINT stubs for {fname}"])

def main():
    git_files = check_output(["git", "ls-files"]).decode("ascii").split("\n")
    compiled_files = get_compiled_files_list()
    for idx, fname in enumerate(git_files):
        if fname not in compiled_files:
            continue
        if fname.startswith("caffe2/contrib/aten/"):
            continue
        print(f"[{idx}/{len(git_files)}] Processing {fname}")
        run_clang_tidy(fname)

if __name__ == "__main__":
    main()
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/56892

Reviewed By: H-Huang

Differential Revision: D27991944

Pulled By: malfet

fbshipit-source-id: 5415e1eb2c1b34319a4f03024bfaa087007d7179
2021-04-28 14:10:25 -07:00
Martin Yuan
3551bd31be [PyTorch] Lite interpreter with a backend delegate (#54462)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/54462

Unclean files during sync - Sat Mar 20 04:00:02 PDT 2021

Unclean files during sync - Sun Mar 21 04:00:01 PDT 2021
ghstack-source-id: 124585992

Test Plan:
```
buck run xplat/caffe2/fb/test/delegate:interpreter_test -- --model_file_path=/path/to/mobile_model.ptl
```

Reviewed By: raziel

Differential Revision: D27232309

fbshipit-source-id: 8504a3185339d73bfa6e924485c4745acf269cec
2021-04-06 00:55:26 -07:00