Fast path execution of a few binary ops in fake tensor, to speed up trace time. When testing `python benchmarks/dynamo/timm_models.py --accuracy --timing --backend aot_eager --dynamic-shapes --float32 --only hrnet_w18`, I get the following trace speedup.
Before:
```
cuda eval hrnet_w18 PASS
TIMING: entire_frame_compile:53.97591 backend_compile:33.60832
STATS: call_* op count: 1369 | FakeTensor.__torch_dispatch__:4995 | FakeTensorMode.__torch_dispatch__:89985 | ProxyTorchDispatchMode.__torch_dispatch__:3010
```
After:
```
cuda eval hrnet_w18 PASS
TIMING: entire_frame_compile:40.18931 backend_compile:25.28828
STATS: call_* op count: 1369 | FakeTensor.__torch_dispatch__:4995 | FakeTensorMode.__torch_dispatch__:69478 | attempt fast:4399 | fast is_contiguous:4399 | ProxyTorchDispatchMode.__torch_dispatch__:3010
```
My experiment notebook can be found at https://docs.google.com/document/d/1_dTIQUwjIVnEWmiFAavJQYVF8uzXqD9Dk6b9gGQLF_U/edit#
This is not the "most" optimized version of the code; compared with Horace/Voz roofline experiment:
```
diff --git a/torch/_subclasses/fake_tensor.py b/torch/_subclasses/fake_tensor.py
index e3bf545f3b8..395942c6ffe 100644
--- a/torch/_subclasses/fake_tensor.py
+++ b/torch/_subclasses/fake_tensor.py
@@ -774,6 +774,10 @@ class FakeTensorMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
kwargs = kwargs if kwargs else {}
+ with no_dispatch():
+ if func in {aten.mul.Tensor, aten.add.Tensor, aten.sub.Tensor, aten.relu.default}:
+ return FakeTensor(self, torch.empty(args[0].shape, device='meta'), device='cuda')
+
if func == torch.ops.prim.device.default:
assert len(args) == 1 and isinstance(args[0], FakeTensor)
if args[0].fake_mode.in_kernel_invocation:
```
I am still leaving about 5s of trace time improvement on the table (3s of which is attributable to not yet handling relu.)
The implementation here is based off of https://github.com/pytorch/pytorch/pull/93118/ but I modeled the short circuit logic off of TensorIterator's implementation, for ease of code review and correctness verification. However, there are some important divergences:
* Traditional fast setup in TensorIterator only short circuits if the shapes of all input elements are equal. On hrnet_w18, only 5% of fastpath'ed binary operators actually satisfy this. So instead, I compute the broadcasted shape, but then I only allow the fast path if (1) at least one input tensor has a shape that is exactly the output size, and (2) all the tensors are contiguous (or if all the tensors are channels last).
* I had to manually adjust the logic to handle wrapped numbers (which ordinarily are handled by wrapping into tensors). I think I got this right.
Some evidence that this heuristic is correct is here in: https://gist.github.com/ezyang/b22fa7b72b7349137211d8dc7041f758 I exhaustively test all dim=3 tensors with sizes [1, 2] and show that we get the same significant strides between PrimTorch and the new algorithm. In fact, there ARE differences between this algorithm and PrimTorch, but in fact this algorithm agrees with TensorIterator where PrimTorch is wrong (sample case: size=(1, 1, 2), stride=(1, 1, 1), stride=(1, 1, 1))
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94047
Approved by: https://github.com/eellison
Before:
```
(/home/ezyang/local/a/pytorch-env) [ezyang@devgpu020.ftw1 ~/local/a/pytorch (ab0e3db0)]$ python benchmarks/dynamo/timm_models.py --accuracy --timing --backend aot_eager --dynamic-shapes --float32 --only hrnet_w18
cuda eval hrnet_w18 PASS
TIMING: entire_frame_compile:54.19504 backend_compile:33.86702
STATS: call_* op count: 1369 | FakeTensor.__torch_dispatch__:72549 | FakeTensorMode.__torch_dispatch__:115542 | ProxyTorchDispatchMode.__torch_dispatch__:3103
```
After
```
(/home/ezyang/local/a/pytorch-env) [ezyang@devgpu020.ftw1 ~/local/a/pytorch (ab0e3db0)]$ python benchmarks/dynamo/timm_models.py --accuracy --timing --backend aot_eager --dynamic-shapes --float32 --only hrnet_w18
cuda eval hrnet_w18 PASS
TIMING: entire_frame_compile:53.97591 backend_compile:33.60832
STATS: call_* op count: 1369 | FakeTensor.__torch_dispatch__:4995 | FakeTensorMode.__torch_dispatch__:89985 | ProxyTorchDispatchMode.__torch_dispatch__:3010
```
It doesn't really help end-to-end wall time all that much, but it does cut the number of calls to FakeTensor.__torch_dispatch__ by an order of magnitude, which hopefully has other positive effects.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93946
Approved by: https://github.com/eellison, https://github.com/albanD
Two small changes that I'm bundling together because one of them needs to touch fbcode and I'm not sure how to do stacked diffs + internal changes + land before release cut.
Remove allow_meta from ctor, and allow by default: we should be able to trace through meta with fake tensors, so in some senses it's a bit weird to expose to user to disallow this. However, it's still useful debug wise to error from time to time, so I've added an option to the config that will get back previous behavior.
Remove `throw_on_data_dependent_ops=True`: this was intended as a temporary behavior as we were smoothing things turning on the erroring. There are no uses anywhere of `throw_on_data_dependent_ops=False` I could find.
These are technically backward-incompatble, but fake tensor is new since the last release / in a private namespace, and I don't want to release it with baggage that would be hard to remove later.
Fix for https://github.com/pytorch/pytorch/issues/92877.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93993
Approved by: https://github.com/bdhirsh, https://github.com/ezyang
I'm going to need this in the follow up PR. Instead of storing only Source.name() in Symbol, I now store a full on Source. Lots of replumbing reoccurs. In particular:
- Move Source to torch._guards to break cycles
- I have to add TensorPropertySource and NegateSource to handle x.size()[0] and -x codegen that I was doing with string manipulation previously
- I tighten up invariants so that I never pass source=None; instead I pass ConstantSource (these are constant sources right) and test for that rather than source being missing. I think this is more parsimonious
- Some mypy wobbles from new imports
I didn't move LocalSource and friends to torch._guards, but I ended up needing to access them in a few places. The main annoyance with moving these is that then I also need to move the bytecode codegen stuff, and that's not so easy to move without bringing in the kitchen sink.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91057
Approved by: https://github.com/albanD, https://github.com/voznesenskym, https://github.com/zou3519
Use Prims to implement group_norm, group_norm_backward and mean_var
Use `torch._ops.ops` instead of `torch.ops` in numerous subpackages in
order to be able to make them importable from `torch/backend/mps/__init__.py` as this alias is defined in
15af4b1cee/torch/__init__.py (L1095)
is executed last during init process.
Add `__all__` to `torch/backends/mps/__init__.py` as well as alias all imports as private
Add `TestNNMPS.test_group_norm_backward` that validates no NaNs are generated during the backward pass
Fixes https://github.com/pytorch/pytorch/issues/88331
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91190
Approved by: https://github.com/albanD
I'm going to need this in the follow up PR. Instead of storing only Source.name() in Symbol, I now store a full on Source. Lots of replumbing reoccurs. In particular:
- Move Source to torch._guards to break cycles
- I have to add TensorPropertySource and NegateSource to handle x.size()[0] and -x codegen that I was doing with string manipulation previously
- I tighten up invariants so that I never pass source=None; instead I pass ConstantSource (these are constant sources right) and test for that rather than source being missing. I think this is more parsimonious
- Some mypy wobbles from new imports
I didn't move LocalSource and friends to torch._guards, but I ended up needing to access them in a few places. The main annoyance with moving these is that then I also need to move the bytecode codegen stuff, and that's not so easy to move without bringing in the kitchen sink.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91057
Approved by: https://github.com/albanD, https://github.com/voznesenskym
In the prior patch, I just YOLOed a mutable mapping implementation.
Many edge cases were not handled correctly. In this PR, I just
copy paste the WeakKeyDictionary from CPython and the hacked it up
to use WeakIdRef instead of weakref.ref. You can see each line
I changed with the comment CHANGED; there aren't many.
Being exactly API compatible with WeakKeyDictionary means I can also
rob all of the tests from CPython, which I also did for
test/test_weak.py
How to review? You could either try taking the delta from CPython
(recommended), or review everything from scratch (not recommended).
Can post diff representing delta on request.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90825
Approved by: https://github.com/albanD
Previously, we planned to lift the parameters and weights while exporting and implement our own transformer to "unlift" the lifted weights and params back to the graph as attributes. But this is bit challenging because:
- We need to maintain correct ordering for weights and parameters that are passed as inputs so that we know how to map them back.
- Some weights are unused in the graph, so our transformer needs to be aware of which weights and parameters are not used in the graph. And we need to distinguish which are real user input and which are parameters.
- There can be more edge cases we haven't seen in other models yet.
I am aware that @Chillee and @bdhirsh mentioned that functionalization won't work with fake-tensor attributes but this is fine for the short term as we don't expect users to be modifying weights and params in inference mode. In fact, we explicitly disable attribute mutation in torchdynamo export mode right now.
Given above condition, it might be ok to just fakify params when we need. I use a flag to guard against this change.
Differential Revision: [D41891201](https://our.internmc.facebook.com/intern/diff/D41891201)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90417
Approved by: https://github.com/eellison
The big idea is to add `create_unbacked_symfloat` and `create_unbacked_symint` to ShapeEnv, allowing you to allocate symbolic floats/ints corresponding to data you don't know about at compile time. Then, instead of immediately erroring out when you try to call local_scalar_dense on a FakeTensor, we instead create a fresh symint/symfloat and return that.
There a bunch of odds and ends that need to be handled:
* A number of `numel` calls converted to `sym_numel`
* When we finally return from item(), we need to ensure we actually produce a SymInt/SymFloat when appropriate. The previous binding code assumed that you would have to get a normal Python item. I add a pybind11 binding for Scalar (to PyObject only) and refactor the code to use that. There is some trickiness where you are NOT allowed to go through c10::SymInt if there isn't actually any SymInt involved. See comment.
* One of our unit tests tripped an implicit data dependent access which occurs when you pass a Tensor as an argument to a sizes parameter. This is also converted to support symbolic shapes
* We now support tracking bare SymInt/SymFloat returns in proxy tensor mode (this was already in symbolic-shapes branch)
* Whenever we allocate an unbacked symint, we record the stack trace it was allocated at. These get printed when you attempt data dependent access on the symint (e.g., you try to guard on it)
* Subtlety: unbacked symints are not necessarily > 1. I added a test for this.
These unbacked symints are not very useful right now as you will almost always immediately raise an error later when you try to guard on them. The next logical step is adding an assertion refinement system that lets ShapeEnv learn facts about unbacked symints so it can do a better job eliding guards that are unnecessary.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90624
Approved by: https://github.com/Skylion007, https://github.com/voznesenskym
Wow, I had to sweat so much to get this PR out lol.
This PR enforces the invariant that whenever we allocate SymInts as part of fakeification, the SymInt is associated with a Source, and in fact we store the string source name on SymbolWithSourceName. We use 'sname' as the shorthand for source name, as 'name' is already used by sympy to name symbols.
In order to store source names, we have to plumb source names from Dynamo to PyTorch. This made doing this PR a bit bone crushing, because there are many points in the Dynamo codebase where we are improperly converting intermediate tensors into fake tensors, where there is no source (and there cannot be, because it's a frickin' intermediate tensor). I've fixed all of the really awful cases in earlier PRs in the stack. This PR is just plumbing in source names from places where we do have it.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90295
Approved by: https://github.com/voznesenskym
The old code didn't actually fakeify traceable tensor subclasses at the
time they are added as a GraphArg to the module; now we do, by ignoring
the subclass during fakeification and relying on Dynamo to simulate
the subclass on top. See comments for more details.
BTW, this codepath is super broken, see filed issues linked on the
inside.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/90009
Approved by: https://github.com/wconstab, https://github.com/voznesenskym
See comment in meta_utils.py for the whole story.
This doesn't have a substantive impact yet, but will in the next
PR on the stack.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89569
Approved by: https://github.com/albanD
When we create fake tensors, we may call operators that introduce
guards, to accurately reconstruct views. But these guards are spurious:
if a user is able to present a tensor that "looks the same", they have
implicitly fulfilled the contract that the view is creatable.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89349
Approved by: https://github.com/voznesenskym
Fake tensor behaves pretty differently depending on if you have
symbolic shapes or not. This leads to bugs; for example, we
weren't getting correct convolution_backward strides because we
bypassed the correct stride logic in fake tensor on symbolic
shapes.
This PR attempts to unify the two codepaths. I don't manage to
unify everything, but I get most of it. The algorithm is delicate
and I'm still hosing down test failures.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/89038
Approved by: https://github.com/anjali411
Along the way, I undid making sparse/dense dim symint (they're
dimensions, so they should be static.)
Also symintify set_indices_and_values_unsafe
There is a little bit of a nontrivial infra change here: previously, we didn't populate the strides field on sparse tensors. It is now populated with "empty" strides, and this meant that sparse tensors were falsely reporting they were non-overlapping dense/contiguous. I added in a hack to work around this case.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/88573
Approved by: https://github.com/anjali411
Meta tensor does a lot of work to make sure tensors "look" similar
to the original parts; e.g., if the original was a non-leaf, meta
converter ensures the meta tensor is a non-leaf too. Fake tensor
destroyed some of these properties when it wraps it in a FakeTensor.
This patch pushes the FakeTensor constructor into the meta converter
itself, so that we first create a fake tensor, and then we do various
convertibility bits to it to make it look right.
The two tricky bits:
- We need to have no_dispatch enabled when we allocate the initial meta
tensor, or fake tensor gets mad at us for making a meta fake tensor.
This necessitates the double-callback structure of the callback
arguments: the meta construction happens *inside* the function so
it is covered by no_dispatch
- I can't store tensors for the storages anymore, as that will result
in a leak. But we have untyped storage now, so I just store untyped
storages instead.
Signed-off-by: Edward Z. Yang <ezyang@fb.com>
cc @jansel @mlazos @soumith @voznesenskym @yanboliang @penguinwu @anijain2305 @EikanWang @jgong5 @Guobing-Chen @chunyuan-w @XiaobingSuper @zhuhaozhe @blzheng @Xia-Weiwen @wenzhe-nrv @jiayisunx
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87943
Approved by: https://github.com/eellison, https://github.com/albanD
The logic for determine conv backend and therefore output striding is very complex. It depends on build settings, input striding/contiguity, sizes, etc. Eventually we should port that logic to the meta impl for dynamic shapes but that will require a lot more work and keeping the implementations in sync. See https://github.com/pytorch/torchdynamo/issues/1701
This is a prerequisite to removing the inductor conv stride propagation and more general fake tensor for inductor propagation. In that PR, the meta impls for cpu conv give incorrect striding which led to test failures (https://github.com/pytorch/pytorch/pull/87083).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/87305
Approved by: https://github.com/ezyang