Commit Graph

16 Commits

Author SHA1 Message Date
PyTorch MergeBot
d59a6864fb Revert "[BE]: Update ruff to 0.285 (#107519)"
This reverts commit 88ab3e4322.

Reverted https://github.com/pytorch/pytorch/pull/107519 on behalf of https://github.com/ZainRizvi due to Sorry, but this PR breaks internal tests. @ezyang, can you please hep them get unblocked? It seems like one of the strings was prob accidentally modified ([comment](https://github.com/pytorch/pytorch/pull/107519#issuecomment-1688833480))
2023-08-22 19:53:32 +00:00
Aaron Gokaslan
88ab3e4322 [BE]: Update ruff to 0.285 (#107519)
This updates ruff to 0.285 which is faster, better, and have fixes a bunch of false negatives with regards to fstrings.

I also enabled RUF017 which looks for accidental quadratic list summation. Luckily, seems like there are no instances of it in our codebase, so enabling it so that it stays like that. :)

Pull Request resolved: https://github.com/pytorch/pytorch/pull/107519
Approved by: https://github.com/ezyang
2023-08-20 01:36:18 +00:00
Justin Chu
79c5e33349 [BE] Enable ruff's UP rules and autoformat nn/ mps/ and torch/ (#105436)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105436
Approved by: https://github.com/malfet, https://github.com/albanD
2023-07-21 07:38:46 +00:00
Edward Z. Yang
ba962fefea Add parametrization version of weight_norm (#103001)
This done in the ordinary way, but also:

* Deprecation warning for the old API, and a migration guide
* Backwards compatibility for state_dict loading the old weight_norm
* Test for pickling and deepcopy, which was the motivating reason

weight_norm is still used by HuggingFace Wav2Vec2.

Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/103001
Approved by: https://github.com/albanD
2023-06-06 13:14:43 +00:00
Sergii Dymchenko
e17d9f2c64 Fix determenistic typos (#101631)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/101631
Approved by: https://github.com/lezcano, https://github.com/ZainRizvi
2023-05-17 16:12:28 +00:00
Kazuaki Ishizaki
a531a464fd Fix typos under torch/nn directory (#97594)
This PR fixes typos in comments of `.py` files under `torch/nn` directory

Pull Request resolved: https://github.com/pytorch/pytorch/pull/97594
Approved by: https://github.com/dagitses, https://github.com/kit1980
2023-04-10 22:07:15 +00:00
joncrall
b136f3f310 More doctest refinements. (#83317)
Follow up to #82797

Now that the doctests themselves are in a better state, we should be able to enable xdoctest on the CI so they stay that way.

@ezyang @vadimkantorov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/83317
Approved by: https://github.com/ezyang
2022-08-22 20:07:26 +00:00
joncrall
4618371da5 Integrate xdoctest - Rebased (#82797)
This is a new version of #15648 based on the latest master branch.

Unlike the previous PR where I fixed a lot of the doctests in addition to integrating xdoctest, I'm going to reduce the scope here. I'm simply going to integrate xdoctest, and then I'm going to mark all of the failing tests as "SKIP". This will let xdoctest run on the dashboards, provide some value, and still let the dashboards pass. I'll leave fixing the doctests themselves to another PR.

In my initial commit, I do the bare minimum to get something running with failing dashboards. The few tests that I marked as skip are causing segfaults. Running xdoctest results in 293 failed, 201 passed tests. The next commits will be to disable those tests. (unfortunately I don't have a tool that will insert the `#xdoctest: +SKIP` directive over every failing test, so I'm going to do this mostly manually.)

Fixes https://github.com/pytorch/pytorch/issues/71105

@ezyang
Pull Request resolved: https://github.com/pytorch/pytorch/pull/82797
Approved by: https://github.com/ezyang
2022-08-12 02:08:01 +00:00
anjali411
4bf076e964 Add __all__ to torch.distributed, futures, fx, nn, package, benchmark submodules (#80520)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/80520
Approved by: https://github.com/rohan-varma
2022-07-08 14:31:24 +00:00
The Jabberwock
0fa1920d45 Small typo fix in nn.utils.parametrizations (#79854)
Fixes #79735

Pull Request resolved: https://github.com/pytorch/pytorch/pull/79854
Approved by: https://github.com/Lezcano, https://github.com/albanD
2022-06-20 12:39:35 +00:00
lezcano
0974215c4d Prefer mT and mH over transpose(-2, -1) and transpose(-2, -1).conj() (#64181)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64181

This PR replaces all the calls to:
- `transpose(-2, -1)` or `transpose(-1, -2)` by `mT()` in C++ and `mT` in Python
- `conj().transpose(-2, -1)` or `transpose(-2, -1).conj()` or `conj().transpose(-1, -2)` or `transpose(-1, -2).conj()` by `mH()` in C++ and `mH` in Python.

It also simplifies two pieces of code, and fixes one bug where a pair
of parentheses were missing in the function `make_symmetric_matrices`.

Test Plan: Imported from OSS

Reviewed By: H-Huang

Differential Revision: D31692896

Pulled By: anjali411

fbshipit-source-id: e9112c42343663d442dc5bd53ff2b492094b434a
2021-10-18 13:02:25 -07:00
lezcano
f3e329cbec Implements the orthogonal parametrization (#62089)
Summary:
Implements an orthogonal / unitary parametrisation.

It does passes the tests and I have trained a couple models with this implementation, so I believe it should be somewhat correct. Now, the implementation is very subtle. I'm tagging nikitaved  and IvanYashchuk as reviewers in case they have comments / they see some room for optimisation of the code, in particular of the `forward` function.

Fixes https://github.com/pytorch/pytorch/issues/42243

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62089

Reviewed By: ezyang

Differential Revision: D30639063

Pulled By: albanD

fbshipit-source-id: 988664f333ac7a75ce71ba44c8d77b986dff2fe6
2021-08-30 13:12:07 -07:00
soulitzer
5be17ec1fc Do not modify saved variables in-place for spectral norm during power iteration (#62293)
Summary:
Interestingly enough, the original code did have a mechanism that aims to prevent this very issue:
but it performs a clone AFTER modifying u and v in-place.
This wouldn't work though because we can later use the cloned u and v in operations that save for backward, and the next time we execute forward, we modify the same cloned u and v in-place.
So if the idea is that we want to avoid modifying saved variable in-place we should clone it BEFORE the in-place operation.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/62293

Reviewed By: bdhirsh

Differential Revision: D30489750

Pulled By: soulitzer

fbshipit-source-id: cbe8dea885aef97adda8481f7a822e5bd91f7889
2021-08-24 13:08:59 -07:00
Philip Meier
d5988c5eca remove unused type: ignore directives (#60006)
Summary:
During development it is common practice to put `type: ignore` comments on lines that are correct, but `mypy` doesn't recognize this. This often stems from the fact, that the used `mypy` version wasn't able to handle the used pattern.

With every new release `mypy` gets better at handling complex code. In addition to fix all the previously accepted but now failing patterns, we should also revisit all `type: ignore` comments to see if they are still needed or not. Fortunately, we don't need to do it manually: by adding `warn_unused_ignores = True` to the configuration, `mypy` will error out in case it encounters an `type: ignore` that is no longer needed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/60006

Reviewed By: jbschlosser, malfet

Differential Revision: D29133237

Pulled By: albanD

fbshipit-source-id: 41e82edc5cd5affa7ccedad044b59b94dad4425a
2021-06-18 07:23:31 -07:00
lezcano
1f6e39336f Simplify parametrizations.SpectralNorm and improve its initialization (#59564)
Summary:
Implements a number of changes discussed with soulitzer offline.
In particular:
- Initialise `u`, `v` in `__init__` rather than in `_update_vectors`
- Initialise `u`, `v` to some reasonable vectors by doing 15 power iterations at the start
- Simplify the code of `_reshape_weight_to_matrix` (and make it faster) by using `flatten`

Pull Request resolved: https://github.com/pytorch/pytorch/pull/59564

Reviewed By: ailzhang

Differential Revision: D29066238

Pulled By: soulitzer

fbshipit-source-id: 6a58e39ddc7f2bf989ff44fb387ab408d4a1ce3d
2021-06-11 19:52:44 -07:00
Jeffrey Wan
e1bb9d2d99 Reimplement spectral_norm using new parametrization functionality (#57784)
Summary:
Adds a new file under `torch/nn/utils/parametrizations.py` which should contain all the parametrization implementations

For spectral_norm we add the `SpectralNorm` module which can be registered using `torch.nn.utils.parametrize.register_parametrization` or using a wrapper: `spectral_norm`, the same API the old implementation provided.

Most of the logic is borrowed from the old implementation:
 - Just like the old implementation, there should be cases when retrieving the weight should perform another power iteration (thus updating the weight) and cases where it shouldn't. For example in eval mode `self.training=True`, we do not perform power iteration.

There are also some differences/difficulties with the new implementation:
 - Using new parametrization functionality as-is there doesn't seem to be a good way to tell whether a 'forward' call was the result of parametrizations are unregistered (and leave_parametrizations=True) or when the injected property's getter was invoked. The issue is that we want perform power iteration in the latter case but not the former, but we don't have this control as-is. So, in this PR I modified the parametrization functionality to change the module to eval mode before triggering their forward call
 - Updates the vectors based on weight on initialization to fix https://github.com/pytorch/pytorch/issues/51800 (this avoids silently update weights in eval mode). This also means that we perform twice any many power iterations by the first forward.
 - right_inverse is just the identity for now, but maybe it should assert that the passed value already satisfies the constraints
 - So far, all the old spectral_norm tests have been cloned, but maybe we don't need so much testing now that the core functionality is already well tested

Pull Request resolved: https://github.com/pytorch/pytorch/pull/57784

Reviewed By: ejguan

Differential Revision: D28413201

Pulled By: soulitzer

fbshipit-source-id: e8f1140f7924ca43ae4244c98b152c3c554668f2
2021-05-13 14:16:13 -07:00