Did some easy fixes from enabling TRY200. Most of these seem like oversights instead of intentional. The proper way to silence intentional errors is with `from None` to note that you thought about whether it should contain the cause and decided against it.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/111496
Approved by: https://github.com/malfet
We want to get to a point where most UserErrors link to exportdb examples. This PR makes passing case names non-optional to make this intent clearer and encourage developers who raise UserErrors to make or point to examples that make fixing such errors more obvious for users.
In addition, sometimes there are multiple examples that are relevant to an error. Thus this PR also enables passing multiple case names.
Retry of #110733 which was reverted due to a landrace.
Differential Revision: [D50087148](https://our.internmc.facebook.com/intern/diff/D50087148/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110878
Approved by: https://github.com/gmagogsfm, https://github.com/tugsbayasgalan
We want to get to a point where most `UserError`s link to `exportdb` examples. This PR makes passing case names non-optional to make this intent clearer and encourage developers who raise `UserError`s to make or point to examples that make fixing such errors more obvious for users.
In addition, sometimes there are multiple examples that are relevant to an error. Thus this PR also enables passing multiple case names.
Differential Revision: [D50020465](https://our.internmc.facebook.com/intern/diff/D50020465/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110733
Approved by: https://github.com/zhxchen17
Ideally all `_dynamo.exc.UserError`s should have "case names", i.e., link to examples in `exportdb`.
This PR adds case names to several instances of `_dynamo.exc.UserError`. In particular, looking at coverage based on `UserErrorType`:
* `DYNAMIC_CONTROL_FLOW`, `ANTI_PATTERN`, and `STANDARD_LIBRARY` are fully covered.
* `CONSTRAINT_VIOLATION` and `DYNAMIC_DIM` have no coverage. We don't seem to have any dedicated examples of specifying dynamic shapes in `exportdb` (although they are used in some other examples without explanation, to avoid some specialization that would make such examples moot).
* `INVALID_INPUT` is only partly covered. Frankly this is tedious to cover via examples.
Differential Revision: [D49928518](https://our.internmc.facebook.com/intern/diff/D49928518/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110555
Approved by: https://github.com/angelayi, https://github.com/ydwu4
Triplet Margin Loss takes in a Callable `distance_function` parameter which is not supported as an argument on the fx graph. See previous error:
> File "/scratch/eellison/work/pytorch/torch/_dynamo/symbolic_convert.py", line 562, in call_function
self.push(fn.call_function(self, args, kwargs))
File "/scratch/eellison/work/pytorch/torch/_dynamo/variables/torch.py", line 723, in call_function
*proxy_args_kwargs(args, kwargs),
File "/scratch/eellison/work/pytorch/torch/_dynamo/utils.py", line 504, in proxy_args_kwargs
f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}"
File "/scratch/eellison/work/pytorch/torch/_dynamo/exc.py", line 143, in unimplemented
raise Unsupported(msg)
torch._dynamo.exc.Unsupported: call_function args: TensorVariable() TensorVariable() TensorVariable() ConstantVariable(float) NNModuleVariable()
This is fixable by just inlining into `triplet_margin_loss` and continuing to compile it. This required support for `has_torch_function_variadic`.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/110302
Approved by: https://github.com/mlazos
This PR fix the `is_typing` function: checks whether a value is an instance of a class
from the `typing` package.
This reverts commit b09c09f7bb3adb6a5b8a107a5b96757b569daa8d.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109201
Approved by: https://github.com/ezyang
This PR introduces binary search for finding smaller validation errors, when they occur.
We do that by bisecting the sequence of `torch._assert` FX nodes recorded as the source
expression of the translation validator (TV) by `ShapeEnv.evaluate_expr` calls. Then, we
raise the error caused by the earliest node.
In summary, the changes are:
- Call `bisect` on `ValidationError` @ _torch/_dynamo/convert_frame.py_
- Implement the binary search @ _torch/fx/experimental/symbolic_shapes.py_
Edit: moved `ShapeEnv` replay-recording to #107989
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107493
Approved by: https://github.com/ezyang
ghstack dependencies: #107989
Summary:
Original commit changeset: e11cddf1fecc
Original Phabricator Diff: D49064185
Test Plan:
Comparing PT1 and PT2 performance on the IG Feed Model with this diff backed out: N4274204
Comparing the PT1 and PT2 performance on IG Feed with this diff committed: N4271093
Reviewed By: zou3519
Differential Revision: D49230047
Pull Request resolved: https://github.com/pytorch/pytorch/pull/109199
Approved by: https://github.com/zou3519, https://github.com/xw285cornell
Fixes#106893
There are two main changes:
- Before this PR, the function returned by once_differentiable was
included in skipfiles (because its .co_code is
torch/autograd/function.py). This PR adds a mechanism to tell Dynamo
to inline a function, no matter if it is included in skipfiles.
- A bugfix: when we are introspecting the backward, we need to turn the
grad mode off. This is to accurately model the eager-mode semantics:
In eager-mode PyTorch, if second-order gradients were not requested, then
the grad mode is off. torch.compile does not work with higher-order
gradients and just assumes we do first-order gradients, so this is OK.
Test Plan:
- new test
Differential Revision: [D49064185](https://our.internmc.facebook.com/intern/diff/D49064185)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108686
Approved by: https://github.com/voznesenskym
Fixes inference accuracy for `doctr_reco_predictor` and `pyhpc_turbulent_kinetic_energy`.
For the `same(float, float)` comparison we weren't going through the more rigorous tensor comparison path which takes into account the fp64 base results.
Also return True when fp64 base result are not well formed (nan).
I debugged these models and the source of divergence were innocuous:
`doctr_reco_predictor` - can be fixed by turning off layout optimization, decomp for batch norm
`pyhpc_turbulent_kinetic_energy` - divergence caused because fused kernel keeps precision in fp32 instead of casting back and forth from/to fp32/bf16. Fused kernel is better precision, anyway.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/108202
Approved by: https://github.com/jansel
There is already some support for plumbing `__torch_dispatch__` tensor subclasses through dynamo, but this PR beefs it up a bit and adds a test. In particular:
(1) Fakeifying tensor subclasses didn't properly set autograd metadata (requires_grad, is_leaf) on the newly fakeified wrapper subclass. I don't actually have a test for this in this PR, but it's tested pretty heavily later in my aot autograd tests
(2) Fakeifying tensor subclasses didn't properly track source information for dynamic shapes on the inner tensors. I added a new `WrapperSubclassFieldSource` subclass, that represents a source coming from a tensor field on a wrapper subclass, which I use in the fakeifying logic, and again in symbolic_shapes.py to generate proper guards.
(3) `_make_wrapper_subclass()` marginally updated this code to work better with dynamic shapes. One thing that's a bit weird about `_make_wrapper_subclass`: it has two overloads, and the first explicitly does not support dynamic shapes (and the second.. does not support kwargs). I think that later we probably want to consolidate / at least make the first overload work with dynamic shapes, but I didn't want to handle that in this PR (so these smaller changes seemed like a strict improvement).
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107415
Approved by: https://github.com/ezyang
This adds some utilities for conveniently working with fast combined CapturedTraceback from Python. The main goal of these utilities is to make it easier for people to use CapturedTraceback as a drop-in replacement for `traceback.extract_stack`, which is 20x slower than CapturedTraceback.
I port symbolic shapes to use the new CapturedTraceback code, to validate that the APIs work and are useful.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107358
Approved by: https://github.com/zdevito, https://github.com/albanD
ghstack dependencies: #107438
Adds API to mark tensor as a static input -
To make this trigger recompiles properly, I'll need to update tensor match checks to also check for this new attribute
Additional concern is memory - the tensors will be kept alive, but this is the current behavior for nn modules and parameters.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/107154
Approved by: https://github.com/eellison
RFC: https://github.com/pytorch/rfcs/pull/54
First commit is the contents of https://github.com/Quansight-Labs/numpy_pytorch_interop/
We have already been using this in core for the last few months as a external dependency. This PR pulls all these into core.
In the next commits, I do a number of things in this order
- Fix a few small issues
- Make the tests that this PR adds pass
- Bend backwards until lintrunner passes
- Remove the optional dependency on `torch_np` and simply rely on the upstreamed code
- Fix a number dynamo tests that were passing before (they were not tasting anything I think) and are not passing now.
Missing from this PR (but not blocking):
- Have a flag that deactivates tracing NumPy functions and simply breaks. There used to be one but after the merge stopped working and I removed it. @lezcano to investigate.
- https://github.com/pytorch/pytorch/pull/106431#issuecomment-1667079543. @voznesenskym to submit a fix after we merge.
All the tests in `tests/torch_np` take about 75s to run.
This was a work by @ev-br, @rgommers @honno and I. I did not create this PR via ghstack (which would have been convenient) as this is a collaboration, and ghstack doesn't allow for shared contributions.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/106211
Approved by: https://github.com/ezyang
This PR adds a new configuration that enables shapes of torch.nn.Parameter to be treated as dynamic in order to avoid extensive recompilation when Paramters are used instead of Tensor.
This features addresses part of issue #105279
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105855
Approved by: https://github.com/ezyang
Since Python 3.11 bytecode contains endline and column information, for each bytecode, we attribute the source code corresponding to the bytecode in a more accurate way. For example, we can highlight a function call in a series of nested function calls, or highlight a function call spanning multiple lines.
Sample:
```python
import torch
import torch._dynamo
from functorch.experimental.control_flow import cond
def h(x):
return x * 5
def true_fn(x):
return x * 2
def false_fn(x):
return x * 3
def f(pred, x):
x = h(
h(h(x))
)
x = x[1:][:2]
torch._dynamo.graph_break()
x = cond(pred, true_fn, false_fn, [x])
opt_f = torch.compile(f, backend="eager")
opt_f(torch.tensor(True), torch.randn(3, 3, 3, 3))
```
Output:
```
$ TORCH_LOGS="trace_call" python playground9.py
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:16
h(h(x))
~^^^
TRACE FX call mul from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:16
h(h(x))
~^^^^^^
TRACE FX call mul_1 from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE inlined call h from f /scratch/williamwen/work/pytorch/playground9.py:15
x = h(
~^
h(h(x))
^^^^^^^
)
^
TRACE FX call mul_2 from h /scratch/williamwen/work/pytorch/playground9.py:6 (inline depth: 1)
return x * 5
~~^~~
TRACE FX call getitem from f /scratch/williamwen/work/pytorch/playground9.py:18
x = x[1:][:2]
~^^^^
TRACE FX call getitem_1 from f /scratch/williamwen/work/pytorch/playground9.py:18
x = x[1:][:2]
~~~~~^^^^
TRACE inlined call true_fn from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TRACE FX call mul from true_fn /scratch/williamwen/work/pytorch/playground9.py:9 (inline depth: 1)
return x * 2
~~^~~
TRACE inlined call false_fn from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
TRACE FX call mul from false_fn /scratch/williamwen/work/pytorch/playground9.py:12 (inline depth: 1)
return x * 3
~~^~~
TRACE FX call cond from <resume in f> /scratch/williamwen/work/pytorch/playground9.py:20
x = cond(pred, true_fn, false_fn, [x])
~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104676
Approved by: https://github.com/ezyang
This PR adds necessary plumbing through torchdynamo to allow tensor
subclasses with certain contract (i.e. with `__tensor_flatten__` and
`__tensor_unflatten__`) to goes through the dynamo fakification pass by
fakifying the tensor subclass internal components.
Some of the tensor subclass contract logic mostly borrowed from
https://github.com/pytorch/pytorch/pull/97540
Added some tests to verify simply passing through a tensor subclass
(i.e. DTensor) through dynamo eager works as expected.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/105308
Approved by: https://github.com/ezyang
Add similar semantics for creating a buffer object similar to creating a parameter. This is done by introducing a new `Buffer` class that can be used for type disambiguation. The underlying functionality of registering a buffer remains the same as the `register_buffer` method has not been changed. The `persistent` parameter in the `Buffer` type is to indicate whether a buffer object should be persistent or not. Other non-test changes have to do with getting the new `Buffer` type recognized by inductor and dynamo. Remaining changes are test changes to make sure that the `Buffer` type can be used as a drop in replacement for `register_buffer` as it just leads to `register_buffer` being called. The addition of this new functionality still allows for normal tensors to be used as buffers so these changes are intended to be backwards compatible.
Fixes#35735
Pull Request resolved: https://github.com/pytorch/pytorch/pull/104069
Approved by: https://github.com/mikaylagawarecki
Fixes#95900
Using the following repro as guide:
```python
import torch
import torch._dynamo
from torch._subclasses import fake_tensor
from torch.fx.experimental.symbolic_shapes import ShapeEnv
from torch._dynamo.output_graph import config
class Model(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear = torch.nn.Linear(2, 2)
self.linear2 = torch.nn.Linear(2, 2)
def forward(self, x):
out = self.linear(x)
out = self.linear2(out)
return out
fake_mode = fake_tensor.FakeTensorMode(allow_non_fake_inputs=False,
allow_fallback_kernels=True,
shape_env=ShapeEnv(
allow_scalar_outputs=config.capture_scalar_outputs,
allow_dynamic_output_shape_ops=config.capture_dynamic_output_shape_ops,
frame_id=0
),
)
# Fakefying input/model before calling torch._dynamo.export
with fake_mode:
fake_x = torch.rand(5, 2, 2)
model = Model()
# Calling torch._dynamo.export without active fake mode
graph_module, guards = torch._dynamo.export(
model,
fake_x,
aten_graph=True,
fake_mode=fake_mode
)
graph_module.print_readable()
graph_module.graph.print_tabular()
```
Summary of changes:
* Plumb fake_mode through torch.export API. When specified, it
replaces the creation of a new FaketendorMode at InstructionTranslator on behalf of OutputGraph
Hacks FakeTensor.__new__ to prevent a
torch.tensor._make_subclass call for inputs that are already fakefied by
user. This probably need to be fixed in a nicer way. Any idea?
* Removed a few asserts that didn't want faked tensors coming
from user script
* Added torch._subclasses.fake_tensor.FakeTensor to type list on a few
asserts check to allow fake inputs
The changes above allowed symbolic tracing with both static and dynamic shapes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100017
Approved by: https://github.com/ezyang
These are the numbers with this PR

There are 3 main followups
* A naive partitioner gives better memory footprint than min-cut partitioner here. Currently, we are using min-cut partitioner. Waiting for @Chillee to discuss this further to either modify min-cut or add a naive partitioner.
* aot_eager is < 1x memory footprint. This is true even for non AC models. This could hide some inefficiency somewhere.
* inductor is giving very different memory numbers between AOT-traced-AC (duplicate early) vs this implementation. This leads to some inefficiency in inductor that we need to resolve.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102935
Approved by: https://github.com/jansel
This PR adds universal support for ndarray methods. After #100839 each `NumpyNdarrayVariable` should wrap a `torch.Tensor`. This PR adds a `numpy_method_wrapper` which converts the `torch.Tensor` to `torch_np.ndarray` and then call the numpy ndarray method. Then we also try to return a `torch.Tensor` (return as-is if the value is not ndarray-like)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97537
Approved by: https://github.com/ezyang
On calls to `_init_group` rather than tracing through it, extract python values from the arguments, and call the initialization. This avoids having to trace this function which is very slow with large parameters, and also avoids graph breaking on it. This is sound in this case because the state is only initialized once in the eager case. Guards on the state and params are generated explicitly rather than via tracing the initialization.
Caveats:
`_init_group` also gathers various state tensors into lists via mutating list arguments to pass to the functional optimizer implementation. These state tensors exist on the optimizer itself, but we don't know exactly how the gathering is done and which tensors correspond to which attributes of the optimizer module (each optimizer has different states). To rectify this, we keep weak_ptrs to all of the tensors collected in the lists in globals (similar to how parameter keys are stored for dictionaries). These pointers are guaranteed to be alive as long as the optimizer object is alive if the internal state is not interfered with and they are guarded with weakref guards
Pull Request resolved: https://github.com/pytorch/pytorch/pull/102640
Approved by: https://github.com/jansel
Issue: #93684
In previous PRs #95849#99560 we redirect `numpy.*`, `<tensor>.numpy()` calls to `torch_np.*` methods and attributes, by creating `NumpyNdarrayVariable` for those calls.
We need to handle `NumpyNdarrayVariable` when graph break happens.
This PR did 2 things:
1. In `codegen.py` we made sure we can reconstruct the value wrapped by `NumpyNdarrayVariable`, to be `torch_np.ndarray` in the stack whenerver we recompiles the subgraph.
2. In `builder.py` we can wrap the value to be `NumpyNdarrayVariable` and save it as graph input.
-----
Starting from commit 6:
## A new design for supporting numpy in dynamo
In short the core concept doesn't change: we still convert `numpy` API calls to `torch_np` API calls. However, instead of wrapping a `torch_np.ndarray` in `NumpyNdarrayVariable`, the new design wraps a `torch.Tensor`.
The reason for doing this change is because we need to keep `torch.Tensor` everywhere in the captured graph, so that it works well with the backend of dynamo. See discussions in https://github.com/Quansight-Labs/numpy_pytorch_interop/issues/142 for details.
### Flow
This is an example showing how do we think about dynamo working on a simple function:
```python
def f(x: torch.Tensor, y: torch.Tensor):
a, b = x.numpy(), y.numpy()
c = np.add(x, y)
return torch.from_numpy(c)
```
```
+------------+ +------------+
torch.Tensor | |numpy.ndarray| |
-------------- .numpy() --------------| |
| | | | +------------------+
+------------+ | numpy.add |numpy.ndarray| |torch.Tensor
+------------+ | --------------| torch.from_numpy --------------
torch.Tensor | |numpy.ndarray| | | |
-------------- .numpy() --------------| | +------------------+
| | | |
+------------+ +------------+
+------------+ +----------------+
torch.Tensor | |torch.Tensor | |
-------------- .detach() --------------| |
| | | | +----------------+ +------------+
+------------+ | |torch_np.ndarray| |torch.Tensor| |torch.Tensor
| torch_np.add -----------------| util.to_tensor -------------| .detach() --------------
+------------+ | | | | | |
torch.Tensor | |torch.Tensor | | +----------------+ +------------+
-------------- .detach() --------------| |
| | | |
+------------+ | +----------------+ |
| wrapper on torch_np.add |
+--------------------------------------------------------+
```
### Approach
`torch_np` APIs can take both `torch_np.ndarray` as well as `torch.Tensor`. What we need to do is to have a wrapper for these APIs to convert the return value back to `torch.Tensor`. This way only the wrapper is showing up in the captured graph, with `torch.Tensor`s as input and `torch.Tensor` as output.
If we have a graph break or we've traced to the end of the program, we need to inspect all the `NumpyNdarrayVariable` in the stack and convert them back to `numpy.ndarray`, to make sure the compiled version is still behaving the same as the eager version.
### Examples
Here's an example of the graph generated:
```python
def fn(x: np.ndarray, y: np.ndarray):
a = x.real
b = y.real
torch._dynamo.graph_break()
return np.add(a, 1), np.add(b, 1)
```
Graph generated:
```
[2023-05-16 10:31:48,737] torch._dynamo.output_graph.__graph: [DEBUG] TRACED GRAPH
__compiled_fn_0 <eval_with_key>.0 opcode name target args kwargs
------------- -------------- ---------------------------------------------------------- ---------------------- --------
placeholder l_x_ L_x_ () {}
placeholder l_y_ L_y_ () {}
call_function from_numpy <built-in method from_numpy of type object at 0x12b1fdc80> (l_x_,) {}
call_function from_numpy_1 <built-in method from_numpy of type object at 0x12b1fdc80> (l_y_,) {}
call_function attr_wrapper <function attr_wrapper at 0x12e8693a0> (from_numpy, 'real') {}
call_function attr_wrapper_1 <function attr_wrapper at 0x12e8693a0> (from_numpy_1, 'real') {}
output output output ((),) {}
[2023-05-16 10:31:48,908] torch._dynamo.output_graph.__graph: [DEBUG] TRACED GRAPH
__compiled_fn_2 <eval_with_key>.1 opcode name target args kwargs
------------- ------------- ---------------------------------------------------------- ------------------------------- --------
placeholder l_a_ L_a_ () {}
placeholder l_b_ L_b_ () {}
call_function from_numpy <built-in method from_numpy of type object at 0x12b1fdc80> (l_a_,) {}
call_function from_numpy_1 <built-in method from_numpy of type object at 0x12b1fdc80> (l_b_,) {}
call_function wrapped_add <Wrapped function <original add>> (from_numpy, 1) {}
call_function wrapped_add_1 <Wrapped function <original add>> (from_numpy_1, 1) {}
output output output ((wrapped_add, wrapped_add_1),) {}
```
### Changes
* `codegen.py`: reconstruct `numpy.ndarray` from `NumpyNdarrayVariable` by adding bytecode to call `utils.to_numpy_helper()`.
* `output_graph.py`: getting rid of legacy code that does exactly what `codegen.py` does, which only handling return case but not graph break case.
* `utils.py`: added helpers to convert `numpy.ndarray` to `torch.Tensor` and vice versa. Also adding a wrapper class that takes in a function. In `__call__` it calls the function and converts its out to `torch.Tensor` (or a list of it).
* `builder.py`: add method to wrap `numpy.ndarray` graph inputs into `NumpyNdarrayVariable`, by calling `torch.numpy` in the proxy.
* `misc.py`: `numpy` API calls goes into `NumpyVariable` and we find the function with the same name in `torch_np` module, then wrap it with the wrapper defined in `utils.py`.
* `tensor.py`, `torch.py`: proxy `tensor.numpy()` to be `torch.detach()` but wrap it with `NumpyNdarrayVariable`. Similarly, `torch.from_numpy()` -> `torch.detach()` but wrap it with `TensorVariable`. In `NumpyNdarrayVariable`, do the similar `torch_np.ndarray` to `torch.Tensor` wrapping for attributes.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100839
Approved by: https://github.com/ezyang
Summary:
This PR adds support for folding bn weights into conv for QAT flow, this is equivalent
to the QAT branch of `from_float` in eager mode quantized conv module: https://github.com/pytorch/pytorch/blob/main/torch/ao/nn/quantized/modules/conv.py#L223
Items that needs followup:
* there are some workaround I did because quantize_per_tensor is using float/int args and dynamo does not support these args, need to fix after we change the quantized model representation and also change these args to Tensor
Test Plan: buck2 test @//mode/opt //caffe2/test:quantization_pt2e -- --exact 'caffe2/test:quantization_pt2e - test_convert_qat_conv_bn_fusion (quantization.pt2e.test_quantize_pt2e.TestQuantizePT2E)'
Reviewed By: andrewor14
Differential Revision: D45344281
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100442
Approved by: https://github.com/kimishpatel
This adds a new operator debugprims::load_storage which does the unusual thing of loading a tensor from disk (via ContentStoreReader). This will be used in a later PR to implement delta debugging in the minifier, even when the repro is too big to fit into memory. The way it works is that you specify a name of the tensor you want to load, as well as enough metadata to reconstruct the tensor, if the store isn't available. If there is an active content store, we read and return the tensor from that store; otherwise we use `rand_strided` to create it.
I needed some infra improvements to do this:
* `custom_op` now supports factory functions. Factory functions have to be registered specially via `impl_factory`
* I modified `clone_input` to also support dtype conversion, which I use to change the dtype of a loaded tensor if necessary.
* ContentStore needs to work with a device argument, so we torch.load directly to the correct device. This is for fake tensor support.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100519
Approved by: https://github.com/zou3519, https://github.com/anijain2305
The changes:
* Add config knob `same_two_models_use_fp64` for toggling whether or not to use fp64
* Add a test showing that RMSE is superior to atol/rtol
* Add `--strict-accuracy` options, which allows for testing against integral/boolean accuracy. Regular accuracy by default now ONLY. There's a test which exercises this, it's a little delicate but I had trouble thinking of a good test otherwise.
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100447
Approved by: https://github.com/voznesenskym
This PR splits OutputGraph into two classes:
- SubgraphTracer (handles FX-tracing)
- OutputGraph (handles Dynamo-specific output graph logic, like
tracking graph inputs, compiling the graph, and executing it).
The motivation behind this is in the next PR up in the stack.
TL;DR is: in order to do higher-order operators, we need nested
SubgraphTracer, one for each level of nesting of the higher-order
operators.
I'm happy to flatten the stack into a single PR, but this separate made
it easier for me to test. Lmk if you want the stack flattened.
Test Plan:
- existing tests
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99987
Approved by: https://github.com/anijain2305, https://github.com/voznesenskym
This is a two part PR; I can split it if you really want me to.
The first part is a refactor of the after aot repro/minifier scripts to come with a command line interface. I maintain exact BC with the previous interface (so, e.g., you still get a repro.py and a run_minifier.py that do the same thing as before), but each of these scripts also take command line arguments now which you can use to customize what actually happens. Check `run_repro` for full documentation on the arguments.
The second part of this is an implementation of `analyze` subcommand on the new CLI for any repro.
<img width="1277" alt="image" src="https://user-images.githubusercontent.com/13564/235045677-8545aab7-5e83-4813-bbec-47783dc60122.png">
This facility is oriented towards accuracy debugging. It does several things:
1. It will run your model twice and check for nondeterminism in inductor/float64, *even* on intermediate inputs (our benchmarking nondeterminism test only checks for nondeterminism on the final output). This makes localizing which operator is nondeterministic easy.
2. It will run your compiled model side-by-side with eager and float64 variants, and then report when things diverge too far from RMSE delta from float64.
Importantly, it does all this without requiring every intermediate to be held in memory (which will cause an OOM on large repros, such as the one I tested this on.)
Some other minor improvements:
* MinifierTestBase now has an easy to comment out spot that you can use to retain the temporary directory; good for debugging
* We print "running minifier" and "running repro" in MinifierTestBase to make it easier to orient where logs are coming from
* same takes a `log_error` optional argument which you can use to reroute the error logs when things mismatch
* counters["inductor"]["intermediate_hooks"] tracks the number of intermediate hooks we've codegen'ed; good for populate the tqdm interface
* torch.fx.interpreter gets an official `boxed_run` interface which uses the boxed arguments calling convention and doesn't retain inputs unnecessarily long
* torch.utils._content_store gets compute_tensor_metadata/read_tensor_metadata helper functions for computing tensor information without serializing it
Signed-off-by: Edward Z. Yang <ezyang@meta.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/100226
Approved by: https://github.com/bertmaher, https://github.com/bdhirsh, https://github.com/anijain2305
On top of #95849 this PR is trying to handle the special case when dealing with numpy.
Consider the following example:
```
def f(x: torch.Tensor) -> np.ndarray:
a = x.numpy()
return a.T
```
In previous PR this will error out because we translate `a.T` to be a method call on `torch_np.ndarray.T` which is also a `torch_np.ndarray`.
This PR handles this case, by conditionally converting a `torch_np.ndarray` to `np.ndarray` before returning, to match the original behavior.
The compiled version will be:
```
def f(x):
___tmp_0 = __compiled_fn_0(x)
if isinstance(___tmp_0, torch_np.ndarray):
return ___tmp_0.tensor.numpy()
else:
return ___tmp_0
```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99560
Approved by: https://github.com/jansel, https://github.com/yanboliang
Issue: #93684
# Problem
Reduce graph breaks when dynamo compiles python functions containing numpy functions and ndarray operations.
# Design (as I know it)
* Use torch_np.ndarray(a wrapper of tensor) to back a `VariableTracker`: `NumpyTensorVariable`.
* Translate all attributes and methods calls, on ndarray, to torch_np.ndarray equivalent.
This PR adds `NumpyTensorVariable` and supports:
1. tensor to ndarray, ndarray to tensor
2. numpy functions such as numpy.meshgrid()
3. ndarray attributes such as `itemsize`, `stride`
Next PR will handle returning `np.ndarray` and add support for ndarray methods
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95849
Approved by: https://github.com/ezyang
Before this PR, if users call ```Conv2d(x)```, dynamo handles it well(no graph break) and puts a ```call_module``` op in the FX graph. However, if users explicitly call ```Conv2d.forward(x)``` in another ```forward``` function, the inlining would be failed(caused graph break). This PR fixed this issue by translating the explicit ```Conv2d.forward(x)``` to ```Conv2d(x)```.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99015
Approved by: https://github.com/jansel, https://github.com/wconstab