PyTorch MergeBot
d578197747
Revert "Fix embedding jvp support by making embedding_renorm ignore forward mode AD ( #78560 )"
...
This reverts commit ce7c7bb2a9 .
Reverted https://github.com/pytorch/pytorch/pull/78560 on behalf of https://github.com/malfet due to broke XLA (on CI and trunk), see ce7c7bb2a9
2022-06-02 17:40:34 +00:00
samdow
ce7c7bb2a9
Fix embedding jvp support by making embedding_renorm ignore forward mode AD ( #78560 )
...
On functorch, we started seeing [embedding forward mode fail](https://github.com/pytorch/functorch/pull/816 ). From looking at it, we figured out that recently [embedding got forward mode support enabled](369d9f4137 ) and then doing forward mode with embedding and [max_norm doesn't work with gradcheck](https://github.com/pytorch/pytorch/blob/master/torch/testing/_internal/common_methods_invocations.py#L8877-L8881 ), so it's not checked.
What was happening is that `embedding_renorm` was setting `torch.no_grad()` which only turns off the backwards mode AD so functorch's jvp tests were still using forward mode AD during the `embedding_renorm` call. This makes it so that we don't use forward mode during the embedding_renorm call
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78560
Approved by: https://github.com/soulitzer , https://github.com/albanD
2022-06-02 13:40:21 +00:00
Kshiteej K
4e1f41f66a
[docs][nn] conv: complex support note ( #78351 )
...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/78351
Approved by: https://github.com/anjali411 , https://github.com/jbschlosser
2022-05-26 20:33:36 +00:00
Natalia Gimelshein
362525724b
type promote clamp ( #77035 )
...
Fixes #76630
When clamp(Tensor, Tensor) is structured, big parts of this PR won't be needed, but for now let's fix type promotion to make behavior more regular.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/77035
Approved by: https://github.com/mruberry
2022-05-09 05:54:17 +00:00
vitrioil
f92cddd890
Removed direct doc formatting
...
Fixes #76034
This does not make python remove all `__doc__` because in some places `__doc__` is assigned to a string.
Example:
04b3313379/torch/nn/modules/conv.py (L174-L233)
Since there are quite a few of these, I will add all of them together in this PR later. (Basically still a lot of docstring will persist even with `-OO` enabled.)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76619
Approved by: https://github.com/albanD
2022-05-02 14:14:33 +00:00
Yuge Zhang
3ac27e78ca
Fix typehint of multi_head_attention_forward
...
Fixes #76169
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76170
Approved by: https://github.com/jbschlosser
2022-04-27 13:47:43 +00:00
Peter Bell
cb37e7a080
Remove F.pad python implementation
...
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73433
Approved by: https://github.com/albanD , https://github.com/jbschlosser
2022-04-23 00:13:20 +00:00
vitrioil
29b004be7a
Corrected documentation for supported padding
...
Fixes #72521
Pull Request resolved: https://github.com/pytorch/pytorch/pull/76117
Approved by: https://github.com/jbschlosser
2022-04-20 17:36:01 +00:00
Mike Ruberry
b09769992f
Improves the OpInfo out= tests
...
Edit: OpInfos separated into their own PRs to debug an ASAN failure that doesn't identify the failing test properly. This PR now just updates the out tests.
Adds OpInfos for:
- nn.functional.smooth_l1_loss
- nn.functional.l1_loss
- nn.functional.pdist
- nn.functional.binary_cross_entropy
- nn.functional.triplet_margin_loss
- nn.functional.triplet_margin_with_distance_loss
- nn.functional.max_unpool{1, 2, 3}D
- nn.functional.alpha_dropout
- nn.functional.soft_margin_loss
- nn.functional.multilabel_soft_margin_loss
- nn.functional.multilabel_margin_loss
- nn.functional.multi_margin_loss
- nn.functional.margin_ranking_loss
These OpInfos were taken from https://github.com/pytorch/pytorch/pull/67560 , https://github.com/pytorch/pytorch/pull/67823 , https://github.com/pytorch/pytorch/pull/68625 , and https://github.com/pytorch/pytorch/pull/67079 . The sample input update from https://github.com/pytorch/pytorch/pull/67017 is also rolled into this PR.
cc @zou3519 @nikitaved @pmeier @vfdev-5 @dagitses
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75782
Approved by: https://github.com/ngimel
2022-04-15 06:16:01 +00:00
Edward Z. Yang
0a1bc5f501
Miscellaneous __torch_function__ fixes
...
I figured these out by unconditionally turning on a no-op torch function
mode on the test suite and then fixing errors as they showed up. Here's
what I found:
- _parse_to failed internal assert when __torch_function__'ed because it
claims its name is "to" to the argument parser; added a name override
so we know how to find the correct name
- Infix operator magic methods on Tensor did not uniformly handle
__torch_function__ and TypeError to NotImplemented. Now, we always
do the __torch_function__ handling in
_wrap_type_error_to_not_implemented and your implementation of
__torch_function__ gets its TypeErrors converted to NotImplemented
(for better or for worse; see
https://github.com/pytorch/pytorch/issues/75462 )
- A few cases where code was incorrectly testing if a Tensor was
Tensor-like in the wrong way, now use is_tensor_like (in grad
and in distributions). Also update docs for has_torch_function to
push people to use is_tensor_like.
- is_grads_batched was dropped from grad in handle_torch_function, now
fixed
- Report that you have a torch function even if torch function is
disabled if a mode is enabled. This makes it possible for a mode
to return NotImplemented, pass to a subclass which does some
processing and then pass back to the mode even after the subclass
disables __torch_function__ (so the tensors are treated "as if"
they are regular Tensors). This brings the C++ handling behavior
in line with the Python behavior.
- Make the Python implementation of overloaded types computation match
the C++ version: when torch function is disabled, there are no
overloaded types (because they all report they are not overloaded).
Signed-off-by: Edward Z. Yang <ezyangfb.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/75484
Approved by: https://github.com/zou3519
2022-04-11 16:52:16 +00:00
Scott Wolchok
87f40ee6d6
[PyTorch] Existing MHA: fuse the attn_mask addition ( #73219 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73219
Saw a report that this elementwise add is causing overhead. IIUC this is easy to fuse?
ghstack-source-id: 152549975
Test Plan:
CI, review
Ran benchmark_transformers.par mha --batch-size 64 --max-sequence-length 128 --avg-sequence-length 256 --large --use-real-data-distribution --use-mask
and looked at the PT time number
```
before:
B=64, T=128, Half=True, GPU=True, Seed=1234, Padded tokens=54.92%, Use Mask=True PT Time: 1.24ms, NativePT Time: 1000000000.00ms, HF Time: 1.10ms, PT FLOPS: 59.07TFLOP/s, NativePT FLOPS: 0.00TFLOP/s, HF FLOPS: 66.46TFLOP/s
B=64, T=128, Half=True, GPU=True, Seed=1234, Padded tokens=54.92%, Use Mask=True PT Time: 1.23ms, NativePT Time: 1000000000.00ms, HF Time: 1.09ms, PT FLOPS: 59.57TFLOP/s, NativePT FLOPS: 0.00TFLOP/s, HF FLOPS: 66.75TFLOP/s
B=64, T=128, Half=True, GPU=True, Seed=1234, Padded tokens=54.92%, Use Mask=True PT Time: 1.24ms, NativePT Time: 1000000000.00ms, HF Time: 1.09ms, PT FLOPS: 58.87TFLOP/s, NativePT FLOPS: 0.00TFLOP/s, HF FLOPS: 66.77TFLOP/s
after:
B=64, T=128, Half=True, GPU=True, Seed=1234, Padded tokens=54.92%, Use Mask=True PT Time: 1.22ms, NativePT Time: 1000000000.00ms, HF Time: 1.10ms, PT FLOPS: 60.07TFLOP/s, NativePT FLOPS: 0.00TFLOP/s, HF FLOPS: 66.51TFLOP/s
B=64, T=128, Half=True, GPU=True, Seed=1234, Padded tokens=54.92%, Use Mask=True PT Time: 1.22ms, NativePT Time: 1000000000.00ms, HF Time: 1.09ms, PT FLOPS: 59.80TFLOP/s, NativePT FLOPS: 0.00TFLOP/s, HF FLOPS: 66.69TFLOP/s
B=64, T=128, Half=True, GPU=True, Seed=1234, Padded tokens=54.92%, Use Mask=True PT Time: 1.21ms, NativePT Time: 1000000000.00ms, HF Time: 1.09ms, PT FLOPS: 60.21TFLOP/s, NativePT FLOPS: 0.00TFLOP/s, HF FLOPS: 66.86TFLOP/s
```
Inspected a Kineto trace and confirmed that an elementwise add was fused into baddbmm.
Additional opportunity: I see a copy_ inside baddbmm that wasn't happening with the bmm path and I'm not sure why. Perhaps something went wrong with the structured kernels port by ezyang?
Reviewed By: ezyang
Differential Revision: D34160547
fbshipit-source-id: 78d406fb035e6f3bf13af2c9443a886eada35ac4
(cherry picked from commit aaffc39b24058742cb9ae42105f95b3eafe9d7f5)
2022-04-04 20:31:22 +00:00
Peter Bell
7f051b4d2b
Implement F.pad in ATen
...
This moves the C++ torch pad function into ATen proper. Once the
forward-compatibility period is over, the python interface can use
this directly.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73431
Approved by: https://github.com/ezyang
2022-04-01 01:10:12 +00:00
Davit Kobaladze
8e12d2bf25
fixes torch.jit.script lp_pool bug. ( #73287 )
...
Summary:
Fixes https://github.com/pytorch/pytorch/issues/60258
I used the solution proposed in https://github.com/pytorch/pytorch/issues/61275 . His solution failed unit tests and there was no progress after 08/07/2021. I'm willing to fix problems if they arise during CI.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73287
Reviewed By: navahgar, zou3519
Differential Revision: D35057812
Pulled By: eellison
fbshipit-source-id: 8e82e9f73b9536979aecf476c5c65336cdffc93a
(cherry picked from commit e85e912a4edec1111623c5cbbba4171fe3bc5b1d)
2022-03-28 23:16:07 +00:00
Peter Bell
f86bb2d6e4
Implement _pad_circular in ATen
...
Closes #44459
This migrates the python implementation of `_pad_circular` to ATen and
removes the old C++ implementation that had diverged from python.
Note that `pad` can't actually use this until the
forward-compatibility period is over.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73410
Approved by: https://github.com/ezyang
2022-03-25 02:09:01 +00:00
Kushashwa Ravi Shrimali
452c26bbeb
Fix functional.max_poolNd warning spam in the CI
...
Fixes https://github.com/pytorch/pytorch/issues/71257 .
Warnings have been removed, please see [this](https://github.com/pytorch/pytorch/pull/71258#issuecomment-1058503649 ) comment.
cc: @Lezcano @jbschlosser @zou3519
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71258
Approved by: https://github.com/Lezcano , https://github.com/jbschlosser
2022-03-04 18:42:23 +00:00
Scott Wolchok
28339ddc25
[PyTorch] Hit fused addmm path in linear() for existing MHA ( #72871 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72871
We do this same trick in the native MHA implementation; backport it for purposes of fair comparison.
ghstack-source-id: 149526858
Test Plan: CI
Reviewed By: ngimel
Differential Revision: D34176090
fbshipit-source-id: 8b578c29c4dcf0d85bae74dfbbb82db9a8f32dc7
(cherry picked from commit fd50170935 )
2022-02-22 19:33:46 +00:00
Joel Schlosser
f670179c0a
Fix doc regressions for various modules and functional forms ( #73014 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/73014
Fixes #72501
Fixes #72502
Fixes #72503
Fixes #72504
Fixes #72505
Fixes #72506
Fixes #72507
Fixes #72509
Fixes #72510
Test Plan: Imported from OSS
Reviewed By: albanD
Differential Revision: D34305640
Pulled By: jbschlosser
fbshipit-source-id: 62f341633fdb0316eaa346cf7247865290eb830a
(cherry picked from commit 8362d264e7 )
2022-02-17 22:40:18 +00:00
Vitaly Fedyunin
81fbeea760
Add docstrings to native_channel_shuffle ( #72919 )
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/72919
Test Plan: Imported from OSS
Reviewed By: bdhirsh
Differential Revision: D34274717
Pulled By: VitalyFedyunin
fbshipit-source-id: fa42f91ef2335e2594b19ef65d914c711f7a94fd
(cherry picked from commit a6f6fe9112 )
2022-02-17 02:33:08 +00:00
Ryan Spring
4f8b986e28
Implement Tanh Gelu Approximation ( #61439 )
...
Summary:
1. Implements https://github.com/pytorch/pytorch/issues/39853
2. Adds approximate boolean flag to Gelu
3. Enables Tanh Gelu approximation
4. Adds double backward support for Gelu
5. Enable Tanh Gelu in NvFuser
```
def gelu(x, approximate : str = 'none'):
if approximate == 'tanh':
# sqrt(2/pi) = 0.7978845608028654
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * (x + 0.044715 * torch.pow(x, 3.0))))
else:
return x * normcdf(x)
```
Linking XLA PR - https://github.com/pytorch/xla/pull/3039
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61439
Reviewed By: VitalyFedyunin
Differential Revision: D33894937
Pulled By: jbschlosser
fbshipit-source-id: b65e8fb6ea66168af8f34f45ed50e92737a33851
(cherry picked from commit 6e986f91a9 )
2022-02-14 03:40:32 +00:00
kshitij12345
02f6226bff
[fix] Dropout2d-3d no-batch-dim ( #69885 )
...
Summary:
Fixes https://github.com/pytorch/pytorch/issues/69801
TODO:
* [x] Update C++ API
cc albanD mruberry jbschlosser walterddr kshitij12345
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69885
Reviewed By: mruberry
Differential Revision: D33175470
Pulled By: jbschlosser
fbshipit-source-id: c9d7d9e0f59ba290a0157725c338a345f3d58b9f
(cherry picked from commit 7e4271a156 )
2022-02-02 16:40:32 +00:00
pejato
b8a4ee5e35
Clean up old warnings in F.interpolate ( #72093 )
...
Summary:
Fixes https://github.com/pytorch/pytorch/issues/71720
This PR removes the old warnings for `recompute_scale_factor` and `align_corners`.
Looking at this, I realize that the tests I modified don't really catch whether or not a warning is created for `recompute_scale_factor`. If desired, I can add a couple lines into the tests there to pass a floating point in the `scale_factors` kwarg, along with `recompute_scale_factor=None`.
Let me know how this looks, thanks so much!
Pull Request resolved: https://github.com/pytorch/pytorch/pull/72093
Reviewed By: mruberry
Differential Revision: D33917615
Pulled By: albanD
fbshipit-source-id: e822f0a15b813ecf312cdc6ed0b693e7f1d1ca89
(cherry picked from commit c14852b85c )
2022-02-01 21:18:29 +00:00
Peter Bell
e8d226cd9a
Remove some unnecessary python functional wrappers ( #61608 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61608
See #61544 for an example of issues created by functional wrappers. In this
case, these are directly wrapping the native function with no added
functionality. One exception was `bilinear` which was just missing the default
argument in C++, but was otherwise the same.
I've kept the symbol `torch.functional.istft` because it looks like public API,
but it could just as easily be moved to `_torch_docs.py`.
Test Plan: Imported from OSS
Reviewed By: ngimel
Differential Revision: D31401361
Pulled By: albanD
fbshipit-source-id: 162b74d0b2d4f2e5c4834687a94541960cefdd52
(cherry picked from commit 700cd73ca1 )
2022-02-01 16:59:26 +00:00
Nikita Shulga
74c44ba9d6
Revert D33850228: [pytorch][PR] Implement Tanh Gelu Approximation
...
Test Plan: revert-hammer
Differential Revision:
D33850228 (23d03025dc )
Original commit changeset: 3cc33fb298e4
Original Phabricator Diff: D33850228 (23d03025dc )
fbshipit-source-id: 9436e7df73c2b2e2011f321674f24973316d3692
(cherry picked from commit c9efb58223 )
2022-01-31 17:44:19 +00:00
Ryan Spring
23d03025dc
Implement Tanh Gelu Approximation ( #61439 )
...
Summary:
1. Implements https://github.com/pytorch/pytorch/issues/39853
2. Adds approximate boolean flag to Gelu
3. Enables Tanh Gelu approximation
4. Adds double backward support for Gelu
5. Enable Tanh Gelu in NvFuser
```
def gelu(x, approximate : str = 'none'):
if approximate == 'tanh':
# sqrt(2/pi) = 0.7978845608028654
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * (x + 0.044715 * torch.pow(x, 3.0))))
else:
return x * normcdf(x)
```
Linking XLA PR - https://github.com/pytorch/xla/pull/3039
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61439
Reviewed By: cpuhrsch
Differential Revision: D33850228
Pulled By: jbschlosser
fbshipit-source-id: 3cc33fb298e480d7ecc5c67716da019d60c6ab33
(cherry picked from commit 3a53b3e94f )
2022-01-31 17:07:45 +00:00
vfdev
63429bf4b3
Removed JIT FC tweaks for interpolation options ( #71937 )
...
Summary:
Description:
- Removed JIT FC tweaks for interpolation options : nearest-exact and antialiasing
They were added in
- https://github.com/pytorch/pytorch/pull/64501 (Sept 04 2021)
- https://github.com/pytorch/pytorch/pull/65142 (Sept 16 2021)
cc jbschlosser
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71937
Reviewed By: mrshenli
Differential Revision: D33845502
Pulled By: jbschlosser
fbshipit-source-id: 8a94454fd643cd2aef21b06689f72a0f16620d30
(cherry picked from commit b21173d64c )
2022-01-28 19:56:59 +00:00
Joel Schlosser
cb823d9f07
Revert D33744717: [pytorch][PR] Implement Tanh Gelu Approximation
...
Test Plan: revert-hammer
Differential Revision:
D33744717 (f499ab9cef )
Original commit changeset: d64532a562ed
Original Phabricator Diff: D33744717 (f499ab9cef )
fbshipit-source-id: 396c3f63de5865f894dbc353d0790a01a624be93
(cherry picked from commit e9fb2d1db1 )
2022-01-28 18:35:01 +00:00
Ryan Spring
f499ab9cef
Implement Tanh Gelu Approximation ( #61439 )
...
Summary:
1. Implements https://github.com/pytorch/pytorch/issues/39853
2. Adds approximate boolean flag to Gelu
3. Enables Tanh Gelu approximation
4. Adds double backward support for Gelu
5. Enable Tanh Gelu in NvFuser
```
def gelu(x, approximate : str = 'none'):
if approximate == 'tanh':
# sqrt(2/pi) = 0.7978845608028654
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * (x + 0.044715 * torch.pow(x, 3.0))))
else:
return x * normcdf(x)
```
Linking XLA PR - https://github.com/pytorch/xla/pull/3039
Pull Request resolved: https://github.com/pytorch/pytorch/pull/61439
Reviewed By: mikaylagawarecki
Differential Revision: D33744717
Pulled By: jbschlosser
fbshipit-source-id: d64532a562ed53247bb4fa52bb16722634d5c187
(cherry picked from commit 4713dd9cca )
2022-01-28 16:59:09 +00:00
kshitij12345
2981534f54
[nn] cross_entropy: no batch dim support ( #71055 )
...
Summary:
Reference: https://github.com/pytorch/pytorch/issues/60585
cc albanD mruberry jbschlosser walterddr kshitij12345
Pull Request resolved: https://github.com/pytorch/pytorch/pull/71055
Reviewed By: anjali411
Differential Revision: D33567403
Pulled By: jbschlosser
fbshipit-source-id: 4d0a311ad7419387c4547e43e533840c8b6d09d8
2022-01-13 14:48:51 -08:00
George Qi
d7db5fb462
ctc loss no batch dim support ( #70092 )
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/70092
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D33280068
Pulled By: george-qi
fbshipit-source-id: 3278fb2d745a396fe27c00fb5f40df0e7f584f81
2022-01-07 14:33:22 -08:00
Joel Schlosser
e6befbe85c
Add flag to optionally average output attention weights across heads ( #70055 )
...
Summary:
Fixes https://github.com/pytorch/pytorch/issues/47583
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70055
Reviewed By: bhosmer
Differential Revision: D33457866
Pulled By: jbschlosser
fbshipit-source-id: 17746b3668b0148c1e1ed8333227b7c42f1e3bf5
2022-01-06 17:32:37 -08:00
kshitij12345
1aa98c7540
[docs] multi_head_attention_forward no-batch dim support ( #70590 )
...
Summary:
no batch dim support added in https://github.com/pytorch/pytorch/issues/67176
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70590
Reviewed By: VitalyFedyunin
Differential Revision: D33405283
Pulled By: jbschlosser
fbshipit-source-id: 86217d7d540184fd12f3a9096605d2b1e9aa313e
2022-01-05 08:26:25 -08:00
vfdev
d2abf3f981
Added antialias flag to interpolate (CPU only, bicubic) ( #68819 )
...
Summary:
Description:
- Added antialias flag to interpolate (CPU only)
- forward and backward for bicubic mode
- added tests
Previous PR for bilinear, https://github.com/pytorch/pytorch/pull/65142
### Benchmarks
<details>
<summary>
Forward pass, CPU. PTH interpolation vs PIL
</summary>
Cases:
- PTH RGB 3 Channels, float32 vs PIL RGB uint8 (apples vs pears)
- PTH 1 Channel, float32 vs PIL 1 Channel Float
Code: https://gist.github.com/vfdev-5/b173761a567f2283b3c649c3c0574112
```
Torch config: PyTorch built with:
- GCC 9.3
- C++ Version: 201402
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- CPU capability usage: AVX2
- CUDA Runtime 11.1
- NVCC architecture flags: -gencode;arch=compute_61,code=sm_61
- CuDNN 8.0.5
- Build settings: BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_PYTORCH_QNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.11.0, USE_CUDA=1, USE_CUDNN=1, USE_EIGEN_FOR_BLAS=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=OFF, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=0, USE_OPENMP=ON, USE_ROCM=OFF,
Num threads: 1
[------------------- Downsampling (bicubic): torch.Size([1, 3, 906, 438]) -> (320, 196) -------------------]
| Reference, PIL 8.4.0, mode: RGB | 1.11.0a0+gitb0bdf58
1 threads: -------------------------------------------------------------------------------------------------
channels_first contiguous torch.float32 | 4.5 | 5.2
channels_last non-contiguous torch.float32 | 4.5 | 5.3
Times are in milliseconds (ms).
[------------------- Downsampling (bicubic): torch.Size([1, 3, 906, 438]) -> (460, 220) -------------------]
| Reference, PIL 8.4.0, mode: RGB | 1.11.0a0+gitb0bdf58
1 threads: -------------------------------------------------------------------------------------------------
channels_first contiguous torch.float32 | 5.7 | 6.4
channels_last non-contiguous torch.float32 | 5.7 | 6.4
Times are in milliseconds (ms).
[------------------- Downsampling (bicubic): torch.Size([1, 3, 906, 438]) -> (120, 96) --------------------]
| Reference, PIL 8.4.0, mode: RGB | 1.11.0a0+gitb0bdf58
1 threads: -------------------------------------------------------------------------------------------------
channels_first contiguous torch.float32 | 3.0 | 4.0
channels_last non-contiguous torch.float32 | 2.9 | 4.1
Times are in milliseconds (ms).
[------------------ Downsampling (bicubic): torch.Size([1, 3, 906, 438]) -> (1200, 196) -------------------]
| Reference, PIL 8.4.0, mode: RGB | 1.11.0a0+gitb0bdf58
1 threads: -------------------------------------------------------------------------------------------------
channels_first contiguous torch.float32 | 14.7 | 17.1
channels_last non-contiguous torch.float32 | 14.8 | 17.2
Times are in milliseconds (ms).
[------------------ Downsampling (bicubic): torch.Size([1, 3, 906, 438]) -> (120, 1200) -------------------]
| Reference, PIL 8.4.0, mode: RGB | 1.11.0a0+gitb0bdf58
1 threads: -------------------------------------------------------------------------------------------------
channels_first contiguous torch.float32 | 3.5 | 3.9
channels_last non-contiguous torch.float32 | 3.5 | 3.9
Times are in milliseconds (ms).
[---------- Downsampling (bicubic): torch.Size([1, 1, 906, 438]) -> (320, 196) ---------]
| Reference, PIL 8.4.0, mode: F | 1.11.0a0+gitb0bdf58
1 threads: ------------------------------------------------------------------------------
contiguous torch.float32 | 2.4 | 1.8
Times are in milliseconds (ms).
[---------- Downsampling (bicubic): torch.Size([1, 1, 906, 438]) -> (460, 220) ---------]
| Reference, PIL 8.4.0, mode: F | 1.11.0a0+gitb0bdf58
1 threads: ------------------------------------------------------------------------------
contiguous torch.float32 | 3.1 | 2.2
Times are in milliseconds (ms).
[---------- Downsampling (bicubic): torch.Size([1, 1, 906, 438]) -> (120, 96) ----------]
| Reference, PIL 8.4.0, mode: F | 1.11.0a0+gitb0bdf58
1 threads: ------------------------------------------------------------------------------
contiguous torch.float32 | 1.6 | 1.4
Times are in milliseconds (ms).
[--------- Downsampling (bicubic): torch.Size([1, 1, 906, 438]) -> (1200, 196) ---------]
| Reference, PIL 8.4.0, mode: F | 1.11.0a0+gitb0bdf58
1 threads: ------------------------------------------------------------------------------
contiguous torch.float32 | 7.9 | 5.7
Times are in milliseconds (ms).
[--------- Downsampling (bicubic): torch.Size([1, 1, 906, 438]) -> (120, 1200) ---------]
| Reference, PIL 8.4.0, mode: F | 1.11.0a0+gitb0bdf58
1 threads: ------------------------------------------------------------------------------
contiguous torch.float32 | 1.7 | 1.3
Times are in milliseconds (ms).
```
</details>
Code is moved from torchvision: https://github.com/pytorch/vision/pull/3810 and https://github.com/pytorch/vision/pull/4208
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68819
Reviewed By: mikaylagawarecki
Differential Revision: D33339117
Pulled By: jbschlosser
fbshipit-source-id: 6a0443bbba5439f52c7dbc1be819b75634cf67c4
2021-12-29 14:04:43 -08:00
srijan789
73b5b6792f
Adds reduction args to signature of F.multilabel_soft_margin_loss docs ( #70420 )
...
Summary:
Fixes https://github.com/pytorch/pytorch/issues/70301
Pull Request resolved: https://github.com/pytorch/pytorch/pull/70420
Reviewed By: gchanan
Differential Revision: D33336924
Pulled By: jbschlosser
fbshipit-source-id: 18189611b3fc1738900312efe521884bced42666
2021-12-28 09:48:05 -08:00
George Qi
7c690ef1c2
FractionalMaxPool3d with no_batch_dim support ( #69732 )
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/69732
Test Plan: Imported from OSS
Reviewed By: jbschlosser
Differential Revision: D33280090
Pulled By: george-qi
fbshipit-source-id: aaf90a372b6d80da0554bad28d56436676f9cb89
2021-12-22 14:30:32 -08:00
rohitgr7
78bea1bb66
update example in classification losses ( #69816 )
...
Summary:
Just updated a few examples that were either failing or raising deprecated warnings.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/69816
Reviewed By: bdhirsh
Differential Revision: D33217585
Pulled By: albanD
fbshipit-source-id: c6804909be74585c8471b8166b69e6693ad62ca7
2021-12-21 02:46:48 -08:00
kshitij12345
e8d5c7cf7f
[nn] mha : no-batch-dim support (python) ( #67176 )
...
Summary:
Reference: https://github.com/pytorch/pytorch/issues/60585
* [x] Update docs
* [x] Tests for shape checking
Tests take roughly 20s on system that I use. Below is the timings for slowest 20 tests.
```
pytest test/test_modules.py -k _multih --durations=20
============================================================================================== test session starts ===============================================================================================
platform linux -- Python 3.10.0, pytest-6.2.5, py-1.10.0, pluggy-1.0.0
rootdir: /home/kshiteej/Pytorch/pytorch_no_batch_mha, configfile: pytest.ini
plugins: hypothesis-6.23.2, repeat-0.9.1
collected 372 items / 336 deselected / 36 selected
test/test_modules.py ..............ssssssss.............. [100%]
================================================================================================ warnings summary ================================================================================================
../../.conda/envs/pytorch-cuda-dev/lib/python3.10/site-packages/torch/backends/cudnn/__init__.py:73
test/test_modules.py::TestModuleCUDA::test_factory_kwargs_nn_MultiheadAttention_cuda_float32
/home/kshiteej/.conda/envs/pytorch-cuda-dev/lib/python3.10/site-packages/torch/backends/cudnn/__init__.py:73: UserWarning: PyTorch was compiled without cuDNN/MIOpen support. To use cuDNN/MIOpen, rebuild PyTorch making sure the library is visible to the build system.
warnings.warn(
-- Docs: https://docs.pytest.org/en/stable/warnings.html
============================================================================================== slowest 20 durations ==============================================================================================
8.66s call test/test_modules.py::TestModuleCUDA::test_gradgrad_nn_MultiheadAttention_cuda_float64
2.02s call test/test_modules.py::TestModuleCPU::test_gradgrad_nn_MultiheadAttention_cpu_float64
1.89s call test/test_modules.py::TestModuleCUDA::test_grad_nn_MultiheadAttention_cuda_float64
1.01s call test/test_modules.py::TestModuleCUDA::test_factory_kwargs_nn_MultiheadAttention_cuda_float32
0.51s call test/test_modules.py::TestModuleCPU::test_grad_nn_MultiheadAttention_cpu_float64
0.46s call test/test_modules.py::TestModuleCUDA::test_forward_nn_MultiheadAttention_cuda_float32
0.45s call test/test_modules.py::TestModuleCUDA::test_non_contiguous_tensors_nn_MultiheadAttention_cuda_float64
0.44s call test/test_modules.py::TestModuleCUDA::test_non_contiguous_tensors_nn_MultiheadAttention_cuda_float32
0.21s call test/test_modules.py::TestModuleCUDA::test_pickle_nn_MultiheadAttention_cuda_float64
0.21s call test/test_modules.py::TestModuleCUDA::test_pickle_nn_MultiheadAttention_cuda_float32
0.18s call test/test_modules.py::TestModuleCUDA::test_forward_nn_MultiheadAttention_cuda_float64
0.17s call test/test_modules.py::TestModuleCPU::test_non_contiguous_tensors_nn_MultiheadAttention_cpu_float32
0.16s call test/test_modules.py::TestModuleCPU::test_non_contiguous_tensors_nn_MultiheadAttention_cpu_float64
0.11s call test/test_modules.py::TestModuleCUDA::test_factory_kwargs_nn_MultiheadAttention_cuda_float64
0.08s call test/test_modules.py::TestModuleCPU::test_pickle_nn_MultiheadAttention_cpu_float32
0.08s call test/test_modules.py::TestModuleCPU::test_pickle_nn_MultiheadAttention_cpu_float64
0.06s call test/test_modules.py::TestModuleCUDA::test_repr_nn_MultiheadAttention_cuda_float64
0.06s call test/test_modules.py::TestModuleCUDA::test_repr_nn_MultiheadAttention_cuda_float32
0.06s call test/test_modules.py::TestModuleCPU::test_forward_nn_MultiheadAttention_cpu_float32
0.06s call test/test_modules.py::TestModuleCPU::test_forward_nn_MultiheadAttention_cpu_float64
============================================================================================ short test summary info =============================================================================================
=========================================================================== 28 passed, 8 skipped, 336 deselected, 2 warnings in 19.71s ===========================================================================
```
cc albanD mruberry jbschlosser walterddr
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67176
Reviewed By: dagitses
Differential Revision: D33094285
Pulled By: jbschlosser
fbshipit-source-id: 0dd08261b8a457bf8bad5c7f3f6ded14b0beaf0d
2021-12-14 13:21:21 -08:00
Pearu Peterson
48771d1c7f
[BC-breaking] Change dtype of softmax to support TorchScript and MyPy ( #68336 )
...
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/68336
Test Plan: Imported from OSS
Reviewed By: VitalyFedyunin
Differential Revision: D32470965
Pulled By: cpuhrsch
fbshipit-source-id: 254b62db155321e6a139bda9600722c948f946d3
2021-11-18 11:26:14 -08:00
Richard Zou
f9ef807f4d
Replace empty with new_empty in nn.functional.pad ( #68565 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68565
This makes it so that we can now vmap over nn.functional.pad (circular
variant). Previously we could not because we were effectively doing
`out.copy_(input)` where the out was created with empty.
This also has the added side effect of cleaning up the code.
Test Plan:
- I tested this using functorch.vmap and can confirm that vmap now
works.
- Unfortunately this doesn't work with the vmap in core so I cannot add
a test for this here.
Reviewed By: albanD
Differential Revision: D32520188
Pulled By: zou3519
fbshipit-source-id: 780a7e8207d7c45fcba645730a5803733ebfd7be
2021-11-18 06:06:50 -08:00
vfdev-5
3da2e09c9b
Added antialias flag to interpolate (CPU only, bilinear) ( #65142 )
...
Summary:
Description:
- Added antialias flag to interpolate (CPU only)
- forward and backward for bilinear mode
- added tests
### Benchmarks
<details>
<summary>
Forward pass, CPU. PTH interpolation vs PIL
</summary>
Cases:
- PTH RGB 3 Channels, float32 vs PIL RGB uint8 (apply vs pears)
- PTH 1 Channel, float32 vs PIL 1 Channel Float
Code: https://gist.github.com/vfdev-5/b173761a567f2283b3c649c3c0574112
```
# OMP_NUM_THREADS=1 python bench_interp_aa_vs_pillow.py
Torch config: PyTorch built with:
- GCC 9.3
- C++ Version: 201402
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- CPU capability usage: AVX2
- CUDA Runtime 11.1
- NVCC architecture flags: -gencode;arch=compute_75,code=sm_75
- CuDNN 8.0.5
- Build settings: BUILD_TYPE=Release, CUDA_VERSION=11.1, CUDNN_VERSION=8.0.5, CXX_COMPILER=/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_PYTORCH_QNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.0, USE_CUDA=1, USE_CUDNN=1, USE_EIGEN_FOR_BLAS=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=OFF, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=0, USE_OPENMP=ON,
Num threads: 1
[------------------------ Downsampling: torch.Size([1, 3, 906, 438]) -> (320, 196) ------------------------]
| Reference, PIL 8.3.2, mode: RGB | 1.10.0a0+git1e87d91
1 threads: -------------------------------------------------------------------------------------------------
channels_first contiguous torch.float32 | 2.9 | 3.1
channels_last non-contiguous torch.float32 | 2.6 | 3.6
Times are in milliseconds (ms).
[------------------------ Downsampling: torch.Size([1, 3, 906, 438]) -> (460, 220) ------------------------]
| Reference, PIL 8.3.2, mode: RGB | 1.10.0a0+git1e87d91
1 threads: -------------------------------------------------------------------------------------------------
channels_first contiguous torch.float32 | 3.4 | 4.0
channels_last non-contiguous torch.float32 | 3.4 | 4.8
Times are in milliseconds (ms).
[------------------------ Downsampling: torch.Size([1, 3, 906, 438]) -> (120, 96) -------------------------]
| Reference, PIL 8.3.2, mode: RGB | 1.10.0a0+git1e87d91
1 threads: -------------------------------------------------------------------------------------------------
channels_first contiguous torch.float32 | 1.6 | 1.8
channels_last non-contiguous torch.float32 | 1.6 | 1.9
Times are in milliseconds (ms).
[----------------------- Downsampling: torch.Size([1, 3, 906, 438]) -> (1200, 196) ------------------------]
| Reference, PIL 8.3.2, mode: RGB | 1.10.0a0+git1e87d91
1 threads: -------------------------------------------------------------------------------------------------
channels_first contiguous torch.float32 | 9.0 | 11.3
channels_last non-contiguous torch.float32 | 8.9 | 12.5
Times are in milliseconds (ms).
[----------------------- Downsampling: torch.Size([1, 3, 906, 438]) -> (120, 1200) ------------------------]
| Reference, PIL 8.3.2, mode: RGB | 1.10.0a0+git1e87d91
1 threads: -------------------------------------------------------------------------------------------------
channels_first contiguous torch.float32 | 2.1 | 1.8
channels_last non-contiguous torch.float32 | 2.1 | 3.4
Times are in milliseconds (ms).
[--------------- Downsampling: torch.Size([1, 1, 906, 438]) -> (320, 196) --------------]
| Reference, PIL 8.3.2, mode: F | 1.10.0a0+git1e87d91
1 threads: ------------------------------------------------------------------------------
contiguous torch.float32 | 1.2 | 1.0
Times are in milliseconds (ms).
[--------------- Downsampling: torch.Size([1, 1, 906, 438]) -> (460, 220) --------------]
| Reference, PIL 8.3.2, mode: F | 1.10.0a0+git1e87d91
1 threads: ------------------------------------------------------------------------------
contiguous torch.float32 | 1.4 | 1.3
Times are in milliseconds (ms).
[--------------- Downsampling: torch.Size([1, 1, 906, 438]) -> (120, 96) ---------------]
| Reference, PIL 8.3.2, mode: F | 1.10.0a0+git1e87d91
1 threads: ------------------------------------------------------------------------------
contiguous torch.float32 | 719.9 | 599.9
Times are in microseconds (us).
[-------------- Downsampling: torch.Size([1, 1, 906, 438]) -> (1200, 196) --------------]
| Reference, PIL 8.3.2, mode: F | 1.10.0a0+git1e87d91
1 threads: ------------------------------------------------------------------------------
contiguous torch.float32 | 3.7 | 3.5
Times are in milliseconds (ms).
[-------------- Downsampling: torch.Size([1, 1, 906, 438]) -> (120, 1200) --------------]
| Reference, PIL 8.3.2, mode: F | 1.10.0a0+git1e87d91
1 threads: ------------------------------------------------------------------------------
contiguous torch.float32 | 834.4 | 605.7
Times are in microseconds (us).
```
</details>
Code is moved from torchvision: https://github.com/pytorch/vision/pull/4208
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65142
Reviewed By: mrshenli
Differential Revision: D32432405
Pulled By: jbschlosser
fbshipit-source-id: b66c548347f257c522c36105868532e8bc1d4c6d
2021-11-17 09:10:15 -08:00
vfdev-5
6adbe044e3
Added nearest-exact interpolation mode ( #64501 )
...
Summary:
Added "nearest-exact" interpolation mode to fix the issues: https://github.com/pytorch/pytorch/issues/34808 and https://github.com/pytorch/pytorch/issues/62237 .
Description:
As we can not fix "nearest" mode without large impact on already trained model [it was suggested](https://github.com/pytorch/pytorch/pull/64501#pullrequestreview-749771815 ) to introduce new mode instead of fixing exising "nearest" mode.
- New mode "nearest-exact" performs index computation for nearest interpolation to match scikit-image, pillow, TF2 and while "nearest" mode still match opencv INTER_NEAREST, which appears to be buggy, see https://ppwwyyxx.com/blog/2021/Where-are-Pixels/#Libraries .
"nearest":
```
input_index_f32 = output_index * scale
input_index = floor(input_index_f32)
```
"nearest-exact"
```
input_index_f32 = (output_index + 0.5) * scale - 0.5
input_index = round(input_index_f32)
```
Comparisions with other libs: https://gist.github.com/vfdev-5/a5bd5b1477b1c82a87a0f9e25c727664
PyTorch version | 1.9.0 "nearest" | this PR "nearest" | this PR "nearest-exact"
---|---|---|---
Resize option: | |
OpenCV INTER_NEAREST result mismatches | 0 | 0 | 10
OpenCV INTER_NEAREST_EXACT result mismatches | 9 | 9 | 9
Scikit-Image result mismatches | 10 | 10 | 0
Pillow result mismatches | 10 | 10 | 7
TensorFlow result mismatches | 10 | 10 | 0
Rescale option: | | |
size mismatches (https://github.com/pytorch/pytorch/issues/62396 ) | 10 | 10 | 10
OpenCV INTER_NEAREST result mismatches | 3 | 3| 5
OpenCV INTER_NEAREST_EXACT result mismatches | 3 | 3| 4
Scikit-Image result mismatches | 4 | 4 | 0
Scipy result mismatches | 4 | 4 | 0
TensorFlow: no such option | - | -
Versions:
```
skimage: 0.19.0.dev0
opencv: 4.5.4-dev
scipy: 1.7.2
Pillow: 8.4.0
TensorFlow: 2.7.0
```
Implementations in other libs:
- Pillow:
- ee079ae67e/src/libImaging/Geometry.c (L889-L899)
- ee079ae67e/src/libImaging/Geometry.c (L11)
- `a[2] == 0`
- Scikit-Image :
- dev v0.19.0 uses scipy ndi.zoom:
- 38fae50c3f/skimage/transform/_warps.py (L180-L188)
- 47bb6febaa/scipy/ndimage/src/ni_interpolation.c (L775-L779)
- 47bb6febaa/scipy/ndimage/src/ni_interpolation.c (L479)
Additionally:
- Updated upsampling tests
cc ezyang gchanan albanD mruberry jbschlosser walterddr fmassa heitorschueroff ppwwyyxx
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64501
Reviewed By: anjali411
Differential Revision: D32361901
Pulled By: jbschlosser
fbshipit-source-id: df906f4d25a2b2180e1942ffbab2cc14600aeed2
2021-11-15 14:28:19 -08:00
Junjie Wang
301369a774
[PyTorch][Fix] Pass the arguments of embedding as named arguments ( #67574 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67574
When adding the optional params for sharded embedding op. Found that we cannot get these params from `__torch_function__` override. The reason is that we don't pass them via keyword arguments. So maybe we want to change them to kwargs?
ghstack-source-id: 143029375
Test Plan: CI
Reviewed By: albanD
Differential Revision: D32039152
fbshipit-source-id: c7e598e49eddbabff6e11e3f8cb0818f57c839f6
2021-11-11 15:22:10 -08:00
Kushashwa Ravi Shrimali
9e7b314318
OpInfo for nn.functional.conv1d ( #67747 )
...
Summary:
This PR adds OpInfo for `nn.functional.conv1d`. There is a minor typo fix in the documentation as well.
Issue tracker: https://github.com/pytorch/pytorch/issues/54261
cc: mruberry
Pull Request resolved: https://github.com/pytorch/pytorch/pull/67747
Reviewed By: malfet
Differential Revision: D32309258
Pulled By: mruberry
fbshipit-source-id: add21911b8ae44413e033e19398f398210737c6c
2021-11-11 09:23:04 -08:00
Natalia Gimelshein
8dfbc620d4
don't hardcode mask type in mha ( #68077 )
...
Summary:
Fixes #{issue number}
Pull Request resolved: https://github.com/pytorch/pytorch/pull/68077
Reviewed By: zou3519
Differential Revision: D32292410
Pulled By: ngimel
fbshipit-source-id: 67213cf5474dc3f83e90e28cf5a823abb683a6f9
2021-11-10 09:41:21 -08:00
vfdev-5
49bf24fc83
Updated error message for nn.functional.interpolate ( #66417 )
...
Summary:
Description:
- Updated error message for nn.functional.interpolate
Fixes https://github.com/pytorch/pytorch/issues/63845
cc vadimkantorov
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66417
Reviewed By: albanD
Differential Revision: D31924761
Pulled By: jbschlosser
fbshipit-source-id: ca74c77ac34b4f644aa10440b77b3fcbe4e770ac
2021-10-26 10:33:24 -07:00
kshitij12345
828a9dcc04
[nn] MarginRankingLoss : no batch dim ( #64975 )
...
Summary:
Reference: https://github.com/pytorch/pytorch/issues/60585
cc albanD mruberry jbschlosser walterddr
Pull Request resolved: https://github.com/pytorch/pytorch/pull/64975
Reviewed By: albanD
Differential Revision: D31906528
Pulled By: jbschlosser
fbshipit-source-id: 1127242a859085b1e06a4b71be19ad55049b38ba
2021-10-26 09:03:31 -07:00
Mikayla Gawarecki
5569d5824c
Fix documentation of arguments for torch.nn.functional.Linear ( #66884 )
...
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66884
Addressing docs fix mentioned in issue 64978 on Github
ghstack-source-id: 141093449
Test Plan: https://pxl.cl/1Rxkz
Reviewed By: anjali411
Differential Revision: D31767303
fbshipit-source-id: f1ca10fed5bb768749bce3ddc240bbce1dfb3f84
2021-10-20 12:02:58 -07:00
vfdev
62ca5a81c0
Exposed recompute_scale_factor into nn.Upsample ( #66419 )
...
Summary:
Description:
- Exposed recompute_scale_factor into nn.Upsample such that recompute_scale_factor=True option could be used
Context: https://github.com/pytorch/pytorch/pull/64501#discussion_r710205190
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66419
Reviewed By: gchanan
Differential Revision: D31731276
Pulled By: jbschlosser
fbshipit-source-id: 2118489e6f5bc1142f2a64323f4cfd095a9f3c42
2021-10-20 07:59:25 -07:00
kshitij12345
1db50505d5
[nn] MultiLabelSoftMarginLoss : no batch dim support ( #65690 )
...
Summary:
Reference: https://github.com/pytorch/pytorch/issues/60585
cc albanD mruberry jbschlosser walterddr
Pull Request resolved: https://github.com/pytorch/pytorch/pull/65690
Reviewed By: zou3519
Differential Revision: D31731162
Pulled By: jbschlosser
fbshipit-source-id: d26f27555f78afdadd49126e0548a8bfda50cc5a
2021-10-18 15:30:01 -07:00
Kushashwa Ravi Shrimali
909694fd88
Fix nn.functional.max_poolNd dispatch (for arg: return_indices) ( #62544 )
...
Summary:
Please see https://github.com/pytorch/pytorch/issues/62545 for context.
The order of `return_indices, ceil_mode` is different for `nn.functional.max_poolNd` functions to what seen with `torch.nn.MaxPoolNd` (modular form). While this should be resolved in the future, it was decided to first raise a warning that the behavior will be changed in the future. (please see https://github.com/pytorch/pytorch/pull/62544#issuecomment-893770955 for more context)
This PR thus raises appropriate warnings and updates the documentation to show the full signature (along with a note) for `torch.nn.functional.max_poolNd` functions.
**Quick links:**
(_upstream_)
* Documentation of [`nn.functional.max_pool1d`](https://pytorch.org/docs/1.9.0/generated/torch.nn.functional.max_pool1d.html ), [`nn.functional.max_pool2d`](https://pytorch.org/docs/stable/generated/torch.nn.functional.max_pool2d.html ), and [`nn.functional.max_pool3d`](https://pytorch.org/docs/stable/generated/torch.nn.functional.max_pool3d.html ).
(_this branch_)
* Documentation of [`nn.functional.max_pool1d`](https://docs-preview.pytorch.org/62544/generated/torch.nn.functional.max_pool1d.html?highlight=max_pool1d ), [`nn.functional.max_pool2d`](https://docs-preview.pytorch.org/62544/generated/torch.nn.functional.max_pool2d.html?highlight=max_pool2d#torch.nn.functional.max_pool2d ), and [`nn.functional.max_pool3d`](https://docs-preview.pytorch.org/62544/generated/torch.nn.functional.max_pool3d.html?highlight=max_pool3d#torch.nn.functional.max_pool3d ).
cc mruberry jbschlosser
Pull Request resolved: https://github.com/pytorch/pytorch/pull/62544
Reviewed By: gchanan
Differential Revision: D31179038
Pulled By: jbschlosser
fbshipit-source-id: 0a2c7215df9e132ce9ec51448c5b3c90bbc69030
2021-10-18 08:34:38 -07:00
Natalia Gimelshein
4a50b6c490
fix cosine similarity dimensionality check ( #66191 )
...
Summary:
Fixes https://github.com/pytorch/pytorch/issues/66086
Pull Request resolved: https://github.com/pytorch/pytorch/pull/66191
Reviewed By: dagitses, malfet
Differential Revision: D31436997
Pulled By: ngimel
fbshipit-source-id: 363556eea4e1696d928ae08320d298451c286b10
2021-10-06 15:44:51 -07:00