Commit Graph

94 Commits

Author SHA1 Message Date
Shen Li
d4736ef95f Add done() API to Future (#42013)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/42013

Test Plan: Imported from OSS

Reviewed By: rohan-varma

Differential Revision: D22729596

Pulled By: mrshenli

fbshipit-source-id: ed31021a35af6e2c3393b9b14e4572cf51013bc0
2020-07-24 14:13:41 -07:00
Yanan Cao
890b52e09f Reduce instability in runCleanUpPasses by reordering passes. (#41891)
Summary:
Currently constant pooling runs before const propagation, which can create more constants that need pooling. This can get in the way of serialization/deserialization stability because each time user serializes and deserializes a module, runCleanUpPasses is called upon it. Doing so multiple times would lead to different saved module.

This PR moves constant pooling after const propagation, which may slow down const propagation a little bit, but would otherwise side-step aforementioned problem.

test_constant_insertion in test_jit.py is also updated because after fixing the pass ordering, the number of constants is no longer a constant and it is extremely difficult to get the exact number with the current convoluted test structure. So for now, I changed the test to check only that CSE doesn't change number of "prim::constant" rather than comparing against a known number. Also left a TODO to improve this test.

ConstantPropagation pass is replaced by ConstantPropagationImmutableTypes because the latter is used in runCleanUpPasses. If not replaced, the former would create new CSE opportunities by folding more constants. This voids the purpose of the test case.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41891

Reviewed By: colesbury

Differential Revision: D22701540

Pulled By: gmagogsfm

fbshipit-source-id: 8e60dbdcc54a93dac111d81b8d88fb39387224f5
2020-07-24 11:39:20 -07:00
Ksenija Stanojevic
af5d0bff00 [ONNX] Add pass that fuses Conv and BatchNormalization (#40547)
Summary:
Add pass that fuses Conv and Batchnormalization nodes into one node Conv.
This pass is only applied in inference mode (training is None or TrainingMode.Eval).
Since this pass needs access to param_dict it is written outside peephole file where these kind of passes (fusing multiple nodes into one) is usually placed.

This PR also adds wrapper skipIfNoEmbed to skip debug_embed_params test:
Pass that fuses Conv and Batchnorm changes the params of resnet model and parameters of onnx and pytorch model won't match. Since parameters are not matching, debug_embed_params test for test_resnet will fail and that is expected, therefore debug_embed_params test for test_resnet should be skipped.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/40547

Reviewed By: gchanan

Differential Revision: D22631687

Pulled By: bzinodev

fbshipit-source-id: fe45812400398a32541e797f727fd8697eb6d8c0
2020-07-22 14:59:27 -07:00
Yanan Cao
4a3aad354a [1/N] Implement Enum JIT support (#41390)
Summary:
* Add EnumType and AnyEnumType as first-class jit type
* Add Enum-typed IValue
* Enhanced aten::eq to support Enum

Supported:
Enum-typed function targuments
using Enum type and comparing them

TODO:
Add PyThon sugared value for Enum
Support getting name/value attrs of enums
Support Enum-typed return values
Support enum values of different types in same Enum class
Support serialization and deserialization

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41390

Reviewed By: eellison

Differential Revision: D22524388

Pulled By: gmagogsfm

fbshipit-source-id: 1627154a64e752d8457cd53270f3d14aea4b1150
2020-07-18 22:15:06 -07:00
Meghan Lele
758edcd7df [JIT] Replace use of "blacklist" in python/init.cpp (#41456)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/41456

**Test Plan**
Continuous integration.

**Fixes**
This commit partially addresses #41443.

Test Plan: Imported from OSS

Reviewed By: Krovatkin

Differential Revision: D22544270

Pulled By: SplitInfinity

fbshipit-source-id: 649b30e1fcc6516a4def6b148a1da07bc3ce941d
2020-07-17 11:33:05 -07:00
Kimish Patel
8a79eec98a Add add_relu fusion pass to optimize_for_mobile. (#40252)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40252

As title says.

Test Plan:
python test/test_mobile_optimizer.py

Imported from OSS

Differential Revision: D22126825

fbshipit-source-id: a1880587ba8db9dee0fa450bc463734e4a8693d9
2020-07-10 08:10:22 -07:00
Kimish Patel
c5dcf056ee JIT pass for add relu fusion. (#39343)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39343

Building on top of previous PR that adds fused add_relu op, this PR adds
a JIT pass to transform input graph to find all fusable instancs of add
+ relu and fuses them.

Test Plan:
python test/test_jit.py TestJit.test_add_relu_fusion

Imported from OSS

Differential Revision: D21822396

fbshipit-source-id: 12c7e8db54c6d70a2402b32cc06c7e305ffbb1be
2020-07-09 16:25:13 -07:00
generatedunixname89002005287564
86f72953dd [Codemod][FBSourceClangFormatLinter] Daily arc lint --take CLANGFORMAT
Reviewed By: zertosh

Differential Revision: D22452776

fbshipit-source-id: a103da6a5b1db7f1c91ca25490358da268fdfe96
2020-07-09 08:49:32 -07:00
Elias Ellison
3f32332ee6 [JIT][Easy]move remove mutation to own file (#41137)
Summary:
This should be in its own file...

Pull Request resolved: https://github.com/pytorch/pytorch/pull/41137

Reviewed By: jamesr66a

Differential Revision: D22437922

Pulled By: eellison

fbshipit-source-id: 1b62dde1a4ebac673b5c60aea4f398f734d62501
2020-07-08 17:00:35 -07:00
peter
c71ec1c717 Fix zip serialization for file > 2GiB for Windows (#40783)
Summary:
`long long == int64_t != long` in MSVC
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40783

Differential Revision: D22328757

Pulled By: ezyang

fbshipit-source-id: bc7301d6b0e7e00ee6d7ca8637e3fce7810b15e2
2020-07-01 08:15:27 -07:00
Yanghan Wang
5923a802fa Back out "[pytorch][PR] [ONNX] Add eliminate_unused_items pass"
Summary:
Original commit changeset: 30e1a6e8823a

cause issue to fusing BN

Test Plan: revert

Reviewed By: houseroad

Differential Revision: D22296958

fbshipit-source-id: 62664cc77baa8811ad6ecce9d0520a2ab7f89868
2020-06-30 10:26:35 -07:00
James Reed
320164f878 Fix zip serialization for file > 2GiB (#40722)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40722

Test Plan: Imported from OSS

Differential Revision: D22294016

Pulled By: jamesr66a

fbshipit-source-id: 0288882873d4b59bdef37d018c030519c4be7f03
2020-06-29 19:17:06 -07:00
Kimish Patel
4a174c83ca Add option to preserve certain methods during optimize_for_mobile. (#40629)
Summary:
By default freeze_module pass, invoked from optimize_for_mobile,
preserves only forward method. There is an option to specify a list of
methods that can be preserved during freeze_module. This PR exposes that
to optimize_for_module pass.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40629

Test Plan: python test/test_mobile_optimizer.py

Reviewed By: dreiss

Differential Revision: D22260972

Pulled By: kimishpatel

fbshipit-source-id: 452c653269da8bb865acfb58da2d28c23c66e326
2020-06-29 09:32:53 -07:00
Ksenija Stanojevic
547ea787ff [ONNX] Add eliminate_unused_items pass (#38812)
Summary:
This PR:

- Adds eliminate_unused_items pass that removes unused inputs and initializers.
- Fixes run_embed_params function so it doesn't export unnecessary parameters.
- Removes  test_modifying_params in test_verify since it's no longer needed.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38812

Reviewed By: ezyang

Differential Revision: D22236416

Pulled By: houseroad

fbshipit-source-id: 30e1a6e8823a7e36b51ae1823cc90476a53cd5bb
2020-06-25 22:00:26 -07:00
Zhang, Xiaobing
87c5f02f3d jit: Conv3d + BatchNorm3d fusion (#40082)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40082

Differential Revision: D22120340

Pulled By: jerryzh168

fbshipit-source-id: fce6c5f03fe7ab6c60620cbdf547d5a466a470e3
2020-06-22 11:15:52 -07:00
Ivan Kobzarev
3852215170 [vulkan] jit passes for vulkan conv2 prepack and fuse with clamp (#39282)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/39282

Test Plan: Imported from OSS

Differential Revision: D21962424

Pulled By: IvanKobzarev

fbshipit-source-id: 2d20e827d2c3836b7e6b443293377c68dc1ffa5a
2020-06-20 14:12:21 -07:00
Shen Li
4463f59c2c Let torch.futures.wait_all re-throw errors (#40291)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40291

Test Plan: Imported from OSS

Differential Revision: D22141702

Pulled By: mrshenli

fbshipit-source-id: 50b5e5c687e87930aef3a50cc40839729a4eb9c6
2020-06-19 15:32:56 -07:00
Xingying Cheng
0b3755b1d0 Add optimization blacklist as second arg to optimizeForMobile method. (#37462)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37462

Instead of running all the optimization pass in optimizeForMobile method,
introducing a whitelist optimizer dictionary as second param in the method,
when it is not passed during calling, the method will run all the optimization
passes, otherwise the method will read the dict and only run the pass with
value of True.
ghstack-source-id: 106104503

Test Plan:
python test/test_mobile_optimizer.py

Imported from OSS

Differential Revision: D22096029

fbshipit-source-id: daa9370c0510930f4c032328b225df0bcf97880f
2020-06-17 18:14:45 -07:00
Linbin Yu
7021635d61 fix more duplicated names (#40062)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/40062

fix duplicated op names after D21992552

Test Plan: build

Reviewed By: iseeyuan

Differential Revision: D22056588

fbshipit-source-id: 6d2fcf16b5b86b30b6ac7a4107b20c8cfb6816b0
2020-06-16 11:47:05 -07:00
Jerry Zhang
ec1833bc3c Revert D22069566: Revert D22013026: [quant][graphmode] Pass debug option into insert_quant_dequant pass
Test Plan: revert-hammer

Differential Revision:
D22069566

Original commit changeset: 6230bc806089

fbshipit-source-id: 930490ab0b6a017c949445620e7c6b7056693998
2020-06-16 11:37:33 -07:00
Christian Puhrsch
305921734a Revert D22013026: [quant][graphmode] Pass debug option into insert_quant_dequant pass
Test Plan: revert-hammer

Differential Revision:
D22013026

Original commit changeset: 714b938f25c1

fbshipit-source-id: 6230bc8060892e6485159ca88cc3ad49217791a2
2020-06-16 09:44:04 -07:00
Jerry Zhang
ee5ad6ce25 [quant][graphmode] Pass debug option into insert_quant_dequant pass (#39915)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39915

Some of the usage, e.g. add_scalar will not be supporting the debug option,
that is, we will not have a numerically exact representation of the final quantized model
before finalize if people use add scalar.
warning will be added in a later PR.

Test Plan: Imported from OSS

Differential Revision: D22013026

fbshipit-source-id: 714b938f25c10fad3dfc79f095356b9803ef4b47
2020-06-16 08:14:50 -07:00
Shihao Xu
00651b8c93 [distribtued.nn] Implement TorchScript-compatible RemoteModule API (#37139)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/37139

See design doc in https://github.com/pytorch/pytorch/issues/37136

ghstack-source-id: 105926270

Test Plan:
TODO:

- Make the generated Interface usable. https://github.com/pytorch/pytorch/pull/37139#discussion_r434190978
-
- Avoid generating the same template instances for Module that is not scriptable.
- Remove "infer_module_interface_cls".
- Use Python format instead of a CodeTemplate
- Use Python tempfile to track and delete file. Does it work if there is crash.

```
buck test mode/dev-nosan //caffe2/test/distributed/nn/jit:test_instantiator

buck build mode/dev-nosan //caffe2/test/distributed/nn/jit:test_instantiator && \
buck-out/gen/caffe2/test/distributed/nn/jit/test_instantiator\#binary.par -r test_instantiate_scripted_remote_module_template

buck build mode/dev-nosan //caffe2/test/distributed/nn/jit:test_instantiator && \
buck-out/gen/caffe2/test/distributed/nn/jit/test_instantiator\#binary.par -r test_instantiate_non_scripted_remote_module_template
```

```
buck test mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_spawn
```

```
buck test mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_user_provided_global_unique_name

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_forward_async_script

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_forward_sync_script

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_forward_with_kwargs

buck build mode/dev-nosan //caffe2/test/distributed/nn/api:remote_module_fork && \
buck-out/gen/caffe2/test/distributed/nn/api/remote_module_fork\#binary.par -r test_user_provided_global_unique_name
```

```
buck test mode/dev-nosan //caffe2/test/distributed/rpc:rpc_fork
```

buck test mode/opt-asan //caffe2/test:jit -- 'test_script_forward_method_replacement

buck build mode/dev-nosan //caffe2/test:jit && \
buck-out/gen/caffe2/test/jit\#binary.par -r 'test_script_forward_method_replacement'

buck build mode/dev-nosan //caffe2/test:jit && \
buck-out/gen/caffe2/test/jit\#binary.par -r 'test_imported_classes'

Differential Revision: D20499658

fbshipit-source-id: dd9383ae4eb2343366c11127664f845b91ca3b0a
2020-06-15 19:07:35 -07:00
Jeremy Lilley
0c25428597 [futures] Reland: Add torch.futures.collect_all()/wait_all() python api. (#39964)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39964

The "[fut.wait() for fut in futs]" idiom can introduce up to
O(len(futs)) thread switches, which may be excessive for large N.

This plumbs through the new c++ c10::collectAll() to Python space
so that we only employ a single jit-side wait.

Test Plan: buck test mode/dev-nosan caffe2/test/distributed/rpc:rpc_spawn

Differential Revision: D22027412

fbshipit-source-id: 4e344a19a09638ee46e7fc478df80a41941b84ce
2020-06-15 14:07:12 -07:00
Mike Ruberry
8bc821f0d0 Revert D21976891: [futures] Add torch.futures.collect_all()/wait_all() python api.
Test Plan: revert-hammer

Differential Revision:
D21976891

Original commit changeset: 253c61f503f4

fbshipit-source-id: f839b16f4469e96325b607b6313a1397e1988856
2020-06-12 13:40:37 -07:00
Jeremy Lilley
a9aa6367c2 [futures] Add torch.futures.collect_all()/wait_all() python api. (#39790)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39790

The "[fut.wait() for fut in futs]" idiom can introduce up to
O(len(futs)) thread switches, which may be excessive for large N.

This plumbs through the new c++ c10::collectAll() to Python space
so that we only employ a single jit-side wait.
ghstack-source-id: 105779443

Test Plan: buck test mode/dev-nosan caffe2/test/distributed/rpc:rpc_spawn

Reviewed By: kiukchung

Differential Revision: D21976891

fbshipit-source-id: 253c61f503f4ffb9be784e6c49a0656cede139fb
2020-06-12 12:36:04 -07:00
Vasiliy Kuznetsov
5d2f6d86e5 graph mode: add quantization type enum (#39795)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39795

Replaces the `is_dynamic` bool by enums in Python and c++
graph quantization code.  This makes the code more readable
and will make it easier to modify for adding QAT logic in the future.

Test Plan:
CI, as well as
```
python test/test_quantization.py TestQuantizeDynamicScript
python test/test_quantization.py TestQuantizeScriptJitPasses
```

Imported from OSS

Differential Revision: D21981643

fbshipit-source-id: d475760407bcc794aeae92a2c696bac4acda843d
2020-06-10 21:34:23 -07:00
Zino Benaissa
9111ae7782 Preserve user specified attributes and methods (#38830)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38830

This patch enables to preserve user specified attributes or non forward
methods. The API:
  _freeze_module(Module, ["a", "version"])

Test Plan: Imported from OSS

Differential Revision: D21957316

Pulled By: bzinodev

fbshipit-source-id: 5c9146ae679791070a9de868c45785725b48a9e6
2020-06-10 01:38:18 -07:00
Jerry Zhang
9551fb22d6 [quant][graphmode] Preserve numerics in debug option for clamp ops (#39219)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39219

We didn't model clamp ops correctly right now, this PR fixes that.

Reason is quantized clamp op quantizes the scalar arguments in the op implementation: https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/quantized/cpu/kernels/QuantizedOpKernels.cpp#L614-L617

So we'll need to model this explicitly in the IR.
When we see a `aten::dequantize - aten::clamp(%x, %min, %max)`
we first make a scalar tensor with `aten::scalar_tensor(%scalar, ...)`, then we quantize the tensor with the same quantization parameters from the input tensor of the `aten::clamp`, dequantize the tensor, then convert the dequantized tensor to scalar using `aten::item`.

Test Plan: Imported from OSS

Differential Revision: D21831350

fbshipit-source-id: d60731459a0465d64946aabc62065d25d92faefc
2020-06-08 17:15:39 -07:00
davidriazati
da8191a9ad Remove useless copy on zip file load (#36362)
Summary:
Instead of copying to a buffer, then setting a tensor's storage with that buffer, create a storage directly from the file

Pull Request resolved: https://github.com/pytorch/pytorch/pull/36362

Pulled By: driazati

Differential Revision: D21889537

fbshipit-source-id: edbd430073c2bbf52332fe7b3b2590e7d936dedf
2020-06-04 16:59:54 -07:00
Shen Li
bb0377bb24 Expose torch.futures.Future (#39008)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39008

This commit adds a `torch.futures.Future` type and exposes its ctor,
`wait`, `then`, and `set_result` APIs. This type is currently a
wrapper of `c10::ivalue::Future` and mainly used by RPC for now. Later,
we could revamp c10d APIs to return this `Future` type as well. More
utils will be added into `torch.futures` package in followup PRs.

Test Plan: Imported from OSS

Differential Revision: D21723022

Pulled By: mrshenli

fbshipit-source-id: 92e56160544e9bf00d11db3e8347a1b9707882c9
2020-06-02 10:12:56 -07:00
Jie
07518e120b [nvFuser] add torch.jit.fuser context manager (#38993)
Summary:
1. `torch.jit.fuser(str)` context manager facilitates switch between backend fusers:
  str - 'fuser0' enables only legacy fuser;
  str - 'fuser1' enables only NNC;
  str - 'fuser2' enables only nvFuser;
2. cleanup updated python tests.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38993

Reviewed By: nairbv, pbelevich

Differential Revision: D21800620

Pulled By: soumith

fbshipit-source-id: 7fe855f5a5b97368e5e84c98c28d04b2e1276c85
2020-06-01 10:52:40 -07:00
Jerry Zhang
85d0292c14 [quant][graphmode] Cleanup inplace API (#38827)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38827

Test Plan: Imported from OSS

Differential Revision: D21673481

fbshipit-source-id: becca38efcf720089407c981419b33f629a33e91
2020-05-29 11:13:25 -07:00
Kimish Patel
bb12e4dca0 Add JIT fusion pass to fuse quantized add and relu. (#38897)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38897

Quantized ops support add_relu. This pass enables finding quantized add + relu
pattern and fuse them to add_relu.

Test Plan: buck run caffe2/test:quantization -- test_quantization.TestFusionPasses

Reviewed By: jerryzh168

Differential Revision: D21690909

fbshipit-source-id: 607cf72dde535df15eb7638841543ab2156af464
2020-05-27 14:16:57 -07:00
Elias Ellison
f90dc741eb [JIT] Normalize op aliases (#38735)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38735

Follow up to my comment https://github.com/pytorch/pytorch/pull/36597/#issuecomment-613674329

This adds a pass to convert op aliases into a normalized form. Having two ops generated in our IR that do the same thing makes the IR harder for downstream consumers of the IR, such as TorchScript passes but also ONNX, glow, etc.

Another solution would have been to fix our code generation to only emit `aten::abs` from the start. This seems trickier, and doesn't really buy us much if we still have to expose `aten::absolute` in C++, as glaringlee of the C++ API thinks we should.

Bike shedding: maybe this should be `CanonicalizeOps` instead

Test Plan: Imported from OSS

Differential Revision: D21673108

Pulled By: eellison

fbshipit-source-id: c328618907de1af22e07f57fd27fa619978c2817
2020-05-21 21:47:17 -07:00
Elias Ellison
5183e3aa16 [JIT] Rename canonicalize ops (#38734)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38734

As far as I can tell, this pass only exists to canonicalize ops that are generating in the graph fuser, so it's kind of a misnomer.

Test Plan: Imported from OSS

Differential Revision: D21673109

Pulled By: eellison

fbshipit-source-id: b7bedf34ccaf1fcd442bfb2bbb990e64915f51d4
2020-05-21 21:45:15 -07:00
Nikita Shulga
4c0bf93a0e Revert D21057090: Remove useless copy on zip file load
Test Plan: revert-hammer

Differential Revision:
D21057090

Original commit changeset: e3d30a3b09f4

fbshipit-source-id: b24cbe77aae38b321882e7dcf41022710ee28ed0
2020-05-21 19:34:18 -07:00
davidriazati
455bf77da5 Remove useless copy on zip file load (#36362)
Summary:
Instead of copying to a buffer, then setting a tensor's storage with that buffer, create a storage directly from the file
](https://our.intern.facebook.com/intern/diff/21057090/)
Pull Request resolved: https://github.com/pytorch/pytorch/pull/36362

Pulled By: driazati

Differential Revision: D21057090

fbshipit-source-id: e3d30a3b09f4d67bf4bb7a0dd7f4f60c3dd1a47e
2020-05-21 18:57:06 -07:00
Will Constable
6fd48e24f1 Add support, test for kwargs in jit._fork (#38357) (#38665)
Summary:
Closing 38357
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38665

Reviewed By: suo

Differential Revision: D21643697

Pulled By: wconstab

fbshipit-source-id: c292c037f87bc2bb69a4ca163d7107d5396c53a2
2020-05-19 13:02:46 -07:00
James Reed
db86c8c6f5 Test BC for built-in torchbind methods (#38560)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/38560

Test Plan: Imported from OSS

Reviewed By: ngimel

Differential Revision: D21598067

Pulled By: jamesr66a

fbshipit-source-id: 26a0e92a5c2883326be261cf84b7e916ebfd60d8
2020-05-15 19:06:59 -07:00
David Reiss
6d642a6f6c Remove (most) Python 2 support from C++ code (#35614)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35614

Python 2 has reached end-of-life and is no longer supported by PyTorch.
Now we can clean up a lot of cruft that we put in place to support it.
These changes were all done manually, and I skipped anything that seemed
like it would take more than a few seconds, so I think it makes sense to
review it manually as well.

Test Plan: CI

Differential Revision: D20842876

Pulled By: dreiss

fbshipit-source-id: 18abf0d324ed2185ec6d27c864e935d856dcc6ad
2020-05-14 15:01:49 -07:00
Kimish Patel
f954dd7823 Add dropout removal pass. (#38253)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38253

This pass removes dropout and dropout_ nodes when training is false. It
requires to have run freeze_module pass which does both inlining and constant
propagation, without which training variable remains as attribute instead of
constant.
ghstack-source-id: 103939141

Test Plan: python test/test_jit.py TestScript.test_remove_dropout

Reviewed By: dreiss

Differential Revision: D21505863

fbshipit-source-id: 42ea45804e4653b625b6a254c8d8480757264aa8
2020-05-12 14:38:34 -07:00
Shen Li
dad552666e Add then(callback)->Future API to ivalue::Future (#37311)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37311

Test Plan: Imported from OSS

Differential Revision: D21247827

Pulled By: mrshenli

fbshipit-source-id: f8fe0617ccb957aa747a78554a000ce2c4a58495
2020-05-11 21:58:56 -07:00
Shihao Xu
3d0279862d Consolidate builtin/python_udf RPC to return ivalue::Future like torchscript RPC does (#35154)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35154

This is for issue https://github.com/pytorch/pytorch/issues/34999.

close https://github.com/pytorch/pytorch/issues/34999.

https://github.com/pytorch/pytorch/issues/34997 need more work.

This will make a few work items easier, like 1) Dist autograd profiler, 2) JIT annotation for Future.

Test Plan:
```
buck test mode/dev-nosan //caffe2/test/distributed/rpc:rpc_fork

buck test mode/dev-nosan //caffe2/test/distributed/rpc:rpc_fork -- test_rref_forward_chain --stress-runs 100

buck build mode/dev-nosan //caffe2/test/distributed/rpc:rpc_fork && \
buck-out/gen/caffe2/test/distributed/rpc/rpc_fork\#binary.par \
-r test_call_method_on_rref
```

buck test mode/dev-nosan //caffe2/test/distributed/rpc:rpc_fork -- 'test_rref_proxy_class \(fb\.test_rpc_fork\.RpcTestWithFork\)' --stress-runs 100

test_rref_proxy_reuse
test_handle_send_exceptions

```
buck test mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork

buck build mode/dev-nosan //caffe2/test/distributed/rpc/jit:rpc_fork && \
buck-out/gen/caffe2/test/distributed/rpc/jit/rpc_fork\#binary.par \
-r test_script_call_python_return_future
```

Differential Revision: D7722184

fbshipit-source-id: bd92b855bfea4913d6672700590c57622fa86e0e
2020-05-08 21:28:56 -07:00
Jerry Zhang
0ed7fc581c [quant][graphmode][refactor] Split quantization.cpp (#37975)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37975

Test Plan:
.

Imported from OSS

Differential Revision: D21468497

fbshipit-source-id: 35cbf98a344ca6e4094d616a4040eacf017fd2de
2020-05-08 12:24:50 -07:00
Jerry Zhang
ff9a809ccd [quant][graphmode][refactor] Remove unused code in quantization.cpp (#37974)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/37974

Differential Revision: D21468498

Pulled By: jerryzh168

fbshipit-source-id: 96f34db9f98474ec8e5d33e9b7c406b1637f5de8
2020-05-08 11:03:03 -07:00
James Reed
c1e7758b5e Back out "Revert D20229168: [quantization] Use torchbind for Linear PackedParams" (#38101)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/38101

Original commit changeset: 29e8a4d3b8bf
ghstack-source-id: 103730417

Test Plan: waitforsadcastle

Differential Revision: D21471381

fbshipit-source-id: a922cdf31ba32021e7264ae1454c646c0bfd7ef4
2020-05-08 10:53:06 -07:00
Nikita Shulga
4bc0a7f86a Revert D20229168: [quantization] Use torchbind for Linear PackedParams
Test Plan: revert-hammer

Differential Revision:
D20229168

Original commit changeset: 3607cac9aa5b

fbshipit-source-id: 29e8a4d3b8bffd95ff6a58b46c4f1c1e23770304
2020-05-07 19:47:45 -07:00
James Reed
eaf9b28c55 [quantization] Use torchbind for Linear PackedParams (#34140)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/34140

Test Plan: Imported from OSS

Reviewed By: ZolotukhinM

Differential Revision: D20229168

Pulled By: jamesr66a

fbshipit-source-id: 3607cac9aa5b4b044572329742baed03350491c6
2020-05-07 19:03:44 -07:00
eellison
d5df055bbb [WIP][JIT] Add JIT backend registration API (#35833)
Summary:
**Summary**
This commit adds `torch::jit::RegisterBackend`, an API that allows
external backends to be registered for the execution of JIT subgraphs
outside the JIT interpreter. In order to register an external backend,
one must extend the provided abstract class `PyTorchBackendInterface` and provide
two additional functions: one that creates an instance of the aforementioned subclass
of `PyTorchBackendInterface`, and another that preprocesses a `ScriptModule` so that
it can run on the backend. Then, a `ScriptModule` that can compile and execute a given
JIT subgraph using the functions provided at registration time is generated
for each registered backend.

**Testing**
This commit adds a unit test that uses a minimal test backend
to make sure that the registration endpoint and generated
`ScriptModule` work.

```
$ python test/test_jit.py TestBackends
Fail to import hypothesis in common_utils, tests are not derandomized
.
----------------------------------------------------------------------
Ran 1 test in 0.183s

OK

```
Pull Request resolved: https://github.com/pytorch/pytorch/pull/35833

Differential Revision: D21231955

Pulled By: SplitInfinity

fbshipit-source-id: 452db1123d0e5d83f97fe5da8a00fdfdb50dbef9
2020-05-07 18:15:26 -07:00