Summary
* Introduce `DiagnosticContext` to `torch.onnx.dynamo_export`.
* Remove `DiagnosticEngine` in preparations to update 'diagnostics' in `dynamo_export` to drop dependencies on global diagnostic context. No plans to update `torch.onnx.export` diagnostics.
Next steps
* Separate `torch.onnx.export` diagnostics and `torch.onnx.dynamo_export` diagnostics.
* Drop dependencies on global diagnostic context. https://github.com/pytorch/pytorch/pull/100219
* Replace 'print's with 'logger.log'.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/99668
Approved by: https://github.com/justinchuby, https://github.com/abock
This PR proposes an optimized way to do Exponential Moving Average (EMA), which is faster than the current way using `swa_utils.AveragedModel` described in https://pytorch.org/docs/stable/optim.html#custom-averaging-strategies.
This implementation is asynchronous, and is built as an optimizer wrapper so that the EMA weight update happens without any additional CPU/GPU sync, just after optimizer steps, and with limited code changes.
Example usage:
```
model = Model().to(device)
opt = torch.optim.Adam(model.parameters())
opt = EMAOptimizer(opt, device, 0.9999)
for epoch in range(epochs):
training_loop(model, opt)
regular_eval_accuracy = evaluate(model)
with opt.swap_ema_weights():
ema_eval_accuracy = evaluate(model)
```
Here are some benchmarks (time per iteration) on various torchvision models:
|model|this PR iteration time |swa_utils.AveragedModel iteration time| iteration speedup |
|-----|-----------------------------|-----------------------|---------------------------------------------|
| | | | |
|regnet_x_1_6gf|62.73 |67.998 |1.08 |
|regnet_x_3_2gf|101.75 |109.422 |1.08 |
|regnet_x_400mf|25.13 |32.005 |1.27 |
|regnet_x_800mf|33.01 |37.466 |1.13 |
|regnet_x_8gf|128.13 |134.868 |1.05 |
|regnet_y_16gf|252.91 |261.292 |1.03 |
|regnet_y_1_6gf|72.14 |84.22 |1.17 |
|regnet_y_3_2gf|99.99 |109.296 |1.09 |
|regnet_y_400mf|29.53 |36.506 |1.24 |
|regnet_y_800mf|37.82 |43.634 |1.15 |
|regnet_y_8gf|196.63 |203.317 |1.03 |
|resnet101|128.80 |137.434 |1.07 |
|resnet152|182.85 |196.498 |1.07 |
|resnet18|29.06 |29.975 |1.03 |
|resnet34|50.73 |53.443 |1.05 |
|resnet50|76.88 |80.602 |1.05 |
|resnext101_32x8d|277.29 |280.759 |1.01 |
|resnext101_64x4d|269.56 |281.052 |1.04 |
|resnext50_32x4d|100.73 |101.102 |1.00 |
|shufflenet_v2_x0_5|10.56 |15.419 |1.46 |
|shufflenet_v2_x1_0|13.11 |18.525 |1.41 |
|shufflenet_v2_x1_5|18.05 |23.132 |1.28 |
|shufflenet_v2_x2_0|25.04 |30.008 |1.20 |
|squeezenet1_1|14.26 |14.325 |1.00 |
|swin_b|264.52 |274.613 |1.04 |
|swin_s|180.66 |188.914 |1.05 |
|swin_t|108.62 |112.632 |1.04 |
|swin_v2_s|220.29 |231.153 |1.05 |
|swin_v2_t|127.27 |133.586 |1.05 |
|vgg11|95.52 |103.714 |1.09 |
|vgg11_bn|106.49 |120.711 |1.13 |
|vgg13|132.94 |147.063 |1.11 |
|vgg13_bn|149.73 |165.256 |1.10 |
|vgg16|158.19 |172.865 |1.09 |
|vgg16_bn|177.04 |192.888 |1.09 |
|vgg19|184.76 |194.194 |1.05 |
|vgg19_bn|203.30 |213.334 |1.05 |
|vit_b_16|217.31 |219.748 |1.01 |
|vit_b_32|69.47 |75.692 |1.09 |
|vit_l_32|223.20 |258.487 |1.16 |
|wide_resnet101_2|267.38 |279.836 |1.05 |
|wide_resnet50_2|145.06 |154.918 |1.07 |
You can see that in all cases it is faster than using `AveragedModel`. In fact in many cases, adding EMA does not add any overhead since the computation is hidden behind the usual iteration flow.
This is a similar implementation to the one currently in [NVIDIA NeMo](https://github.com/NVIDIA/NeMo).
If the team is interested in merging this, let me know and I'll add some documentation similar to `swa_utils` and tests.
Credits to @szmigacz for the implementation.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/94820
Approved by: https://github.com/janeyx99
Allowed modules are stuck into dynamo's fx graph as call_module
nodes, without dynamo doing any tracing of the module. This means
during AOT trace time, hooks will fire during tracing when the
call_module is executed, but the hooks themselves will disappear
after that and not be present in the compiled program.
(worse, if they performed any tensor operations, those would get
traced so you could end up with part of the hook's functionality).
To circumvent this, there are two options for 'allowed modules' with hooks.
1) don't treat them as 'allowed' - trace into them
2) graph-break, so the module is no longer part of the dynamo trace at all
(1) will fail for users that opted into allowed modules becuase they know
their module has problems being traced by dynamo.
(2) causes graph breaks on common modules such as nn.Linear, just because they
are marked as 'allowed'.
It would help matters if we could differentiate between types of allowed modules
(A) allowed to avoid overheads - used for common ops like nn.Linear
(B) allowed to avoid dynamo graphbreaks caused by unsupported code
Ideally, we'd use method (1) for group (A) and (2) for (B).
For now, graph-break on all cases of allowed modules.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97184
Approved by: https://github.com/jansel
Summary
* Introduce input/output adapter. Due to design differences, input/output format
between PyTorch model and exported ONNX model are often not the same. E.g., `None`
inputs are allowed for PyTorch model, but are not supported by ONNX. Nested constructs
of tensors are allowed for PyTorch model, but only flattened tensors are supported by ONNX,
etc. The new input/output adapter is exported with the model. Providing an interface to
automatically convert and validate inputs/outputs format.
* As suggested by #98251,
provide extension for unwrapping user defined python classes for `dynamo.export` based
exporter. Unblock huggingface models.
* Re-wire tests to run through `DynamoExporter` w/ `dynamo_export` api. Kept
`DynamoOptimizeExporter` in the tests for now for coverage of this change.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98421
Approved by: https://github.com/justinchuby, https://github.com/titaiwangms, https://github.com/thiagocrepaldi
This PR makes basic nnmodule forward hooks work by default, without any overhead. But it leaves silent correctness issues if users modify/remove their hooks later, thus also emits a warning.
- the usual case is to not use hooks, so avoid guard overhead here
- registering any hook before compile will trigger a warning about hook support
- registering a hook later (or removing one) requires user knowledge and opting in,
currently this isn't warnable (but maybe we can observe compiled nnmodules to make it
warnable).
Why skip hook guards by default instead of not tracing __call__/hooks by default?
- avoid having a mode flag that alters dynamo tracing behavior (harder to test both codepaths
in CI with full coverage)
- the most basic hook usecase (registering a hook before compile, and never removing it)
will work by default with this PR, while it would require enablement and incur overhead
in the 'not tracing __call__' proposal.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98371
Approved by: https://github.com/jansel
This is the first phase of the new ONNX exporter API for exporting from TorchDynamo and FX, and represents the beginning of a new era for exporting ONNX from PyTorch.
The API here is a starting point upon which we will layer more capability and expressiveness in subsequent phases. This first phase introduces the following into `torch.onnx`:
```python
dynamo_export(
model: torch.nn.Module,
/,
*model_args,
export_options: Optional[ExportOptions] = None,
**model_kwargs,
) -> ExportOutput:
...
class ExportOptions:
opset_version: Optional[int] = None
dynamic_shapes: Optional[bool] = None
logger: Optional[logging.Logger] = None
class ExportOutputSerializer(Protocol):
def serialize(
self,
export_output: ExportOutput,
destination: io.BufferedIOBase,
) -> None:
...
class ExportOutput:
model_proto: onnx.ModelProto
def save(
self,
destination: Union[str, io.BufferedIOBase],
*,
serializer: Optional[ExportOutputSerializer] = None,
) -> None:
...
```
In addition to the API in the first commit on this PR, we have a few experiments for exporting Dynamo and FX to ONNX that this PR rationalizes through the new Exporter API and adjusts tests to use the new API.
- A base `FXGraphModuleExporter` exporter from which all derive:
- `DynamoExportExporter`: uses dynamo.export to acquire FX graph
- `DynamoOptimizeExporter`: uses dynamo.optimize to acquire FX graph
- `FXSymbolicTraceExporter`: uses FX symbolic tracing
The `dynamo_export` API currently uses `DynamoOptimizeExporter`.
### Next Steps (subsequent PRs):
* Combine `DynamoExportExporter` and `DynamoOptimizeExporter` into a single `DynamoExporter`.
* Make it easy to test `FXSymbolicTraceExporter` through the same API; eventually `FXSymbolicTraceExporter` goes away entirely when the Dynamo approach works for large models. We want to keep `FXSymbolicTraceExporter` around for now for experimenting and internal use.
* Parameterize (on `ExportOptions`) and consolidate Dynamo exporter tests.
- This PR intentionally leaves the existing tests unchanged as much as possible except for the necessary plumbing.
* Subsequent API phases:
- Diagnostics
- Registry, dispatcher, and Custom Ops
- Passes
- Dynamic shapes
Fixes#94774
Pull Request resolved: https://github.com/pytorch/pytorch/pull/97920
Approved by: https://github.com/justinchuby, https://github.com/titaiwangms, https://github.com/thiagocrepaldi, https://github.com/shubhambhokare1
Fixes https://github.com/pytorch/pytorch/issues/97260
We got some feedback that the page reads like "in order to save an input
for backward, you must return it as an output of the
autograd.Function.forward".
Doing so actually raises an error (on master and as of 2.1), but results
in an ambiguous situation on 2.0.0. To avoid more users running into
this, we clarify the documentation so it doesn't read like the above
and clearly mentions that you can save things from the inputs or
outputs.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/98020
Approved by: https://github.com/soulitzer, https://github.com/kshitij12345
Chatted with @stas00 on slack and here are some great improvements he suggested to the compile docs
- [x] Rename `dynamo` folder to `compile`
- [x] Link `compile` docstring on `torch.html` to main index page for compile
- [x] Create a new index page that describes why people should care
- [x] easy perf, memory reduction, 1 line
- [x] Short benchmark table
- [x] How to guide
- [x] TOC that links to the more technical pages folks have written, make the existing docs we have a Technical overview
- [x] Highlight the new APIs for `torch._inductor.list_options()` and `torch._inductor.list_mode_options()` - clarify these are inductor specific and add more prose around which ones are most interesting
He also highlighted an interesting way to think about who is reading this doc we have
- [x] End users, that just want things to run fast
- [x] Library maintainers wrapping torch.compile which would care for example about understanding when in their code they should compile a model, which backends are supported
- [x] Debuggers who needs are somewhat addressed by the troubleshooting guide and faq but those could be dramatically reworked to say what we expect to break
And in a seperate PR I'll work on the below with @SherlockNoMad
- [ ] Authors of new backends that care about how to plug into dynamo or inductor layer so need to explain some more internals like
- [ ] IR
- [ ] Where to plugin, dynamo? inductor? triton?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96706
Approved by: https://github.com/svekars
Fixes#95796
### Implementation
Adds python implementation for `nn.ZeroPad1d` and `nn.ZeroPad3d` in `torch/nn/modules/padding.py`.
Adds cpp implementation for `nn::ZeroPad1d` and `nn::ZeroPad3d` in the following 3 files, refactored with templates similarly to `nn::ConstantPad`'s implementation: <br>
- `torch/crsc/api/include/torch/nn/modules/padding.h`
- `torch/csrc/api/include/torch/nn/options/padding.h`
- `torch/csrc/api/src/nn/modules/padding.cpp`
Also added relevant definitions in `torch/nn/modules/__init__.py`.
### Testing
Adds the following tests:
- cpp tests of similar length and structure as `ConstantPad` and the existing `ZeroPad2d` impl in `test/cpp/api/modules.cpp`
- cpp API parity tests in `torch/testing/_internal/common_nn.py`
- module init tests in `test/test_module_init.py`
Also added relevant definitions in `test/cpp_api_parity/parity-tracker.md`
Pull Request resolved: https://github.com/pytorch/pytorch/pull/96295
Approved by: https://github.com/soulitzer
This should be self containable to merge but other stuff that's been bugging me is
* Instructions on debugging IMA issues
* Dynamic shape instructions
* Explaining config options better
Will look at adding a config options doc
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95802
Approved by: https://github.com/svekars
Fixed following errors in contribution guide.
"deep neural networks using a **on** tape-based autograd systems." to "deep neural networks **using a tape-based** autograd systems."
"the best entrance **point** and are great places to start." to "the best entrance **points** and are great places to start."
Pull Request resolved: https://github.com/pytorch/pytorch/pull/95454
Approved by: https://github.com/ezyang
Fixes https://github.com/pytorch/serve/issues/1937
A fairly common query I see folks running while using pytorch is
`nvidia-smi --format=csv,noheader,nounits --query-gpu=utilization.gpu,utilization.memory,memory.total,memory.used,temperature.gpu,power.draw,clocks.current.sm,clocks.current.memory -l 10`
Existing metrics we have
* For kernel utilization`torch.cuda.utilization()`
* For memory utilization we have them under `torch.cuda.memory` the memory allocated with `torch.cuda.memory.memory_allocated()`
* For total available memory we have `torch.cuda.get_device_properties(0).total_memory`
Which means the only metrics we're missing are
* Temperature: now in `torch.cuda.temperature()`
* Power draw: now in `torch.cuda.power()`
* Clock speed: now in `torch.cuda.clock_speed()`
With some important details on each
* Clock speed settings: I picked the SM clock domain which is documented here https://docs.nvidia.com/deploy/nvml-api/group__nvmlDeviceEnumvs.html#group__nvmlDeviceEnumvs_1g805c0647be9996589fc5e3f6ff680c64
* Temperature: I use `pynvml.nvmlDeviceGetTemperature(handle, 0)` where 0 refers to the GPU die temperature
Pull Request resolved: https://github.com/pytorch/pytorch/pull/91717
Approved by: https://github.com/ngimel
Corrected the grammar of a sentence in "Implementing Features or Fixing Bugs" section of the contribution guide.
**Before:**
Issues that are labeled first-new-issue, low, or medium priority provide the best entrance point are great places to start.
**After:**
Issues that are labeled first-new-issue, low, or medium priority provide the best entrance point _and_ are great places to start.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/93014
Approved by: https://github.com/albanD, https://github.com/kit1980